101
|
Nagata S, Imai J, Makino G, Tomita M, Kanai A. Evolutionary Analysis of HIV-1 Pol Proteins Reveals Representative Residues for Viral Subtype Differentiation. Front Microbiol 2017; 8:2151. [PMID: 29163435 PMCID: PMC5666293 DOI: 10.3389/fmicb.2017.02151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 11/15/2022] Open
Abstract
RNA viruses have been used as model systems to understand the patterns and processes of molecular evolution because they have high mutation rates and are genetically diverse. Human immunodeficiency virus 1 (HIV-1), the etiological agent of acquired immune deficiency syndrome, is highly genetically diverse, and is classified into several groups and subtypes. However, it has been difficult to use its diverse sequences to establish the overall phylogenetic relationships of different strains or the trends in sequence conservation with the construction of phylogenetic trees. Our aims were to systematically characterize HIV-1 subtype evolution and to identify the regions responsible for HIV-1 subtype differentiation at the amino acid level in the Pol protein, which is often used to classify the HIV-1 subtypes. In this study, we systematically characterized the mutation sites in 2,052 Pol proteins from HIV-1 group M (144 subtype A; 1,528 subtype B; 380 subtype C), using sequence similarity networks. We also used spectral clustering to group the sequences based on the network graph structures. A stepwise analysis of the cluster hierarchies allowed us to estimate a possible evolutionary pathway for the Pol proteins. The subtype A sequences also clustered according to when and where the viruses were isolated, whereas both the subtype B and C sequences remained as single clusters. Because the Pol protein has several functional domains, we identified the regions that are discriminative by comparing the structures of the domain-based networks. Our results suggest that sequence changes in the RNase H domain and the reverse transcriptase (RT) connection domain are responsible for the subtype classification. By analyzing the different amino acid compositions at each site in both domain sequences, we found that a few specific amino acid residues (i.e., M357 in the RT connection domain and Q480, Y483, and L491 in the RNase H domain) represent the differences among the subtypes. These residues were located on the surface of the RT structure and in the vicinity of the amino acid sites responsible for RT enzymatic activity or function.
Collapse
Affiliation(s)
- Shohei Nagata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Junnosuke Imai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Gakuto Makino
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
102
|
Abstract
The biggest challenge for accurate diagnosis of viral infectious disease is the high genetic variability of involved viruses, which affects amplification efficiency and results in low sensitivity and narrow spectrum. Here, we developed a new simple qPCR mediated by high-fidelity (HF) DNA polymerase. The new method utilizes an HFman probe and one primer. Fluorescent signal was generated from the 3'-5' hydrolysis of HFman probe by HF DNA polymerase before elongation initiation. Mismatches between probe/primer and template have less influence on the amplification efficiency of the new method. The new qPCR exhibited higher sensitivity and better adaptability to sequence variable templates than the conventional TaqMan probe based-qPCR in quantification of HIV-1 viral load. Further comparison with COBAS TaqMan HIV-1 Test (v2.0) showed a good correlation coefficient (R2 = 0.79) between both methods in quantification of HIV-1 viral load among 21 clinical samples. The characteristics of tolerance to variable templates and one probe-one primer system imply that the probe/primer design for the new method will be easier and more flexible than the conventional method for highly heterogeneous viruses. Therefore, the HF DNA polymerase-mediated qPCR method is a simple, sensitive and promising approach for the development of diagnostics for viral infectious diseases.
Collapse
|
103
|
Olabode AS, Kandathil SM, Lovell SC, Robertson DL. Adaptive HIV-1 evolutionary trajectories are constrained by protein stability. Virus Evol 2017; 3:vex019. [PMID: 28852572 PMCID: PMC5570062 DOI: 10.1093/ve/vex019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023] Open
Abstract
Despite the use of combination antiretroviral drugs for the treatment of HIV-1 infection, the emergence of drug resistance remains a problem. Resistance may be conferred either by a single mutation or a concerted set of mutations. The involvement of multiple mutations can arise due to interactions between sites in the amino acid sequence as a consequence of the need to maintain protein structure. To better understand the nature of such epistatic interactions, we reconstructed the ancestral sequences of HIV-1’s Pol protein, and traced the evolutionary trajectories leading to mutations associated with drug resistance. Using contemporary and ancestral sequences we modelled the effects of mutations (i.e. amino acid replacements) on protein structure to understand the functional effects of residue changes. Although the majority of resistance-associated sequences tend to destabilise the protein structure, we find there is a general tendency for protein stability to decrease across HIV-1’s evolutionary history. That a similar pattern is observed in the non-drug resistance lineages indicates that non-resistant mutations, for example, associated with escape from the immune response, also impacts on protein stability. Maintenance of optimal protein structure therefore represents a major constraining factor to the evolution of HIV-1.
Collapse
Affiliation(s)
- Abayomi S Olabode
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Shaun M Kandathil
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK.,Francis Crick Institute & Dept. of Computer Science, University College London, London, UK
| | - Simon C Lovell
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - David L Robertson
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK.,MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, UK
| |
Collapse
|
104
|
Gray ER, Brookes JC, Caillat C, Turbé V, Webb BLJ, Granger LA, Miller BS, McCoy LE, El Khattabi M, Verrips CT, Weiss RA, Duffy DM, Weissenhorn W, McKendry RA. Unravelling the Molecular Basis of High Affinity Nanobodies against HIV p24: In Vitro Functional, Structural, and in Silico Insights. ACS Infect Dis 2017; 3:479-491. [PMID: 28591513 DOI: 10.1021/acsinfecdis.6b00189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Preventing the spread of infectious diseases remains an urgent priority worldwide, and this is driving the development of advanced nanotechnology to diagnose infections at the point of care. Herein, we report the creation of a library of novel nanobody capture ligands to detect p24, one of the earliest markers of HIV infection. We demonstrate that these nanobodies, one tenth the size of conventional antibodies, exhibit high sensitivity and broad specificity to global HIV-1 subtypes. Biophysical characterization indicates strong 690 pM binding constants and fast kinetic on-rates, 1 to 2 orders of magnitude better than monoclonal antibody comparators. A crystal structure of the lead nanobody and p24 was obtained and used alongside molecular dynamics simulations to elucidate the molecular basis of these enhanced performance characteristics. They indicate that binding occurs at C-terminal helices 10 and 11 of p24, a negatively charged region of p24 complemented by the positive surface of the nanobody binding interface involving CDR1, CDR2, and CDR3 loops. Our findings have broad implications on the design of novel antibodies and a wide range of advanced biomedical applications.
Collapse
Affiliation(s)
- Eleanor R. Gray
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Jennifer C. Brookes
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Christophe Caillat
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Valérian Turbé
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Benjamin L. J. Webb
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Luke A. Granger
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Benjamin S. Miller
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Laura E. McCoy
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | | | - C. Theo Verrips
- QVQ Holding B.V., Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Robin A. Weiss
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Dorothy M. Duffy
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Rachel A. McKendry
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| |
Collapse
|
105
|
Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States. J Virol 2017; 91:JVI.00174-17. [PMID: 28490588 DOI: 10.1128/jvi.00174-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023] Open
Abstract
The envelope glycoproteins (Envs) on the surfaces of HIV-1 particles are targeted by host antibodies. Primary HIV-1 isolates demonstrate different global sensitivities to antibody neutralization; tier-1 isolates are sensitive, whereas tier-2 isolates are more resistant. Single-site mutations in Env can convert tier-2 into tier-1-like viruses. We hypothesized that such global change in neutralization sensitivity results from weakening of intramolecular interactions that maintain Env integrity. Three strategies commonly applied to perturb protein structure were tested for their effects on global neutralization sensitivity: exposure to low temperature, Env-activating ligands, and a chaotropic agent. A large panel of diverse tier-2 isolates from clades B and C was analyzed. Incubation at 0°C, which globally weakens hydrophobic interactions, causes gradual and reversible exposure of the coreceptor-binding site. In the cold-induced state, Envs progress at isolate-specific rates to unstable forms that are sensitive to antibody neutralization and then gradually lose function. Agents that mimic the effects of CD4 (CD4Ms) also induce reversible structural changes to states that exhibit isolate-specific stabilities. The chaotropic agent urea (at low concentrations) does not affect the structure or function of native Env. However, urea efficiently perturbs metastable states induced by cold and CD4Ms and increases their sensitivity to antibody neutralization and their inactivation rates Therefore, chemical and physical agents can guide Env from the stable native state to perturbation-sensitive forms and modulate their stability to bestow tier-1-like properties on primary tier-2 strains. These concepts can be applied to enhance the potency of vaccine-elicited antibodies and microbicides at mucosal sites of HIV-1 transmission.IMPORTANCE An effective vaccine to prevent transmission of HIV-1 is a primary goal of the scientific and health care communities. Vaccine-elicited antibodies target the viral envelope glycoproteins (Envs) and can potentially inhibit infection. However, the potency of such antibodies is generally low. Single-site mutations in Env can enhance the global sensitivity of HIV-1 to neutralization by antibodies. We found that such a hypersensitivity phenotype can also be induced by agents that destabilize protein structure. Exposure to 0°C or low concentrations of Env-activating ligands gradually guides Env to metastable forms that expose cryptic epitopes and that are highly sensitive to neutralization. Low concentrations of the chaotropic agent urea do not affect native Env but destabilize perturbed states induced by cold or CD4Ms and increase their neutralization. The concept of enhancing antibody sensitivity by chemical agents that affect the structural stability of proteins can be applied to increase the potency of topical microbicides and vaccine-elicited antibodies.
Collapse
|
106
|
Conserved presence of G-quadruplex forming sequences in the Long Terminal Repeat Promoter of Lentiviruses. Sci Rep 2017; 7:2018. [PMID: 28515481 PMCID: PMC5435695 DOI: 10.1038/s41598-017-02291-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2017] [Accepted: 04/03/2017] [Indexed: 12/25/2022] Open
Abstract
G-quadruplexes (G4s) are secondary structures of nucleic acids that epigenetically regulate cellular processes. In the human immunodeficiency lentivirus 1 (HIV-1), dynamic G4s are located in the unique viral LTR promoter. Folding of HIV-1 LTR G4s inhibits viral transcription; stabilization by G4 ligands intensifies this effect. Cellular proteins modulate viral transcription by inducing/unfolding LTR G4s. We here expanded our investigation on the presence of LTR G4s to all lentiviruses. G4s in the 5′-LTR U3 region were completely conserved in primate lentiviruses. A G4 was also present in a cattle-infecting lentivirus. All other non-primate lentiviruses displayed hints of less stable G4s. In primate lentiviruses, the possibility to fold into G4s was highly conserved among strains. LTR G4 sequences were very similar among phylogenetically related primate viruses, while they increasingly differed in viruses that diverged early from a common ancestor. A strong correlation between primate lentivirus LTR G4s and Sp1/NFκB binding sites was found. All LTR G4s folded: their complexity was assessed by polymerase stop assay. Our data support a role of the lentiviruses 5′-LTR G4 region as control centre of viral transcription, where folding/unfolding of G4s and multiple recruitment of factors based on both sequence and structure may take place.
Collapse
|
107
|
Palumbo PJ, Wilson EA, Piwowar-Manning E, McCauley M, Gamble T, Kumwenda N, Makhema J, Kumarasamy N, Chariyalertsak S, Hakim JG, Hosseinipour MC, Melo MG, Godbole SV, Pilotto JH, Grinsztejn B, Panchia R, Chen YQ, Cohen MS, Eshleman SH, Fogel JM. Association of HIV diversity and virologic outcomes in early antiretroviral treatment: HPTN 052. PLoS One 2017; 12:e0177281. [PMID: 28481902 PMCID: PMC5421787 DOI: 10.1371/journal.pone.0177281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2016] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
Higher HIV diversity has been associated with virologic outcomes in children on antiretroviral treatment (ART). We examined the association of HIV diversity with virologic outcomes in adults from the HPTN 052 trial who initiated ART at CD4 cell counts of 350-550 cells/mm3. A high resolution melting (HRM) assay was used to analyze baseline (pre-treatment) HIV diversity in six regions in the HIV genome (two in gag, one in pol, and three in env) from 95 participants who failed ART. We analyzed the association of HIV diversity in each genomic region with baseline (pre-treatment) factors and three clinical outcomes: time to virologic suppression after ART initiation, time to ART failure, and emergence of HIV drug resistance at ART failure. After correcting for multiple comparisons, we did not find any association of baseline HIV diversity with demographic, laboratory, or clinical characteristics. For the 18 analyses performed for clinical outcomes evaluated, there was only one significant association: higher baseline HIV diversity in one of the three HIV env regions was associated with longer time to ART failure (p = 0.008). The HRM diversity assay may be useful in future studies exploring the relationship between HIV diversity and clinical outcomes in individuals with HIV infection.
Collapse
Affiliation(s)
- Philip J Palumbo
- Dept. of Pathology, Johns Hopkins Univ. School of Medicine, Baltimore, Maryland, United States of America
| | - Ethan A Wilson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Estelle Piwowar-Manning
- Dept. of Pathology, Johns Hopkins Univ. School of Medicine, Baltimore, Maryland, United States of America
| | - Marybeth McCauley
- Science Facilitation Department, FHI 360, Washington DC, United States of America
| | - Theresa Gamble
- Science Facilitation Department, FHI 360, Durham, North Carolina, United States of America
| | | | - Joseph Makhema
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | - Suwat Chariyalertsak
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - James G Hakim
- Dept. of Medicine, Univ. of Zimbabwe, Harare, Zimbabwe
| | - Mina C Hosseinipour
- Division of Infectious Diseases, Univ. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Project-Malawi, Institute for Global Health and Infectious Diseases, Lilongwe, Malawi
| | - Marineide G Melo
- Hospital Nossa Senhora da Conceição, Serviço de Infectologia, Porto Alegre, Brazil
| | | | - Jose H Pilotto
- Hospital Geral de Nova Iguacu and Laboratorio de AIDS e Imunologia Molecular-IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas-INI-Fiocruz, Rio de Janeiro, Brazil
| | - Ravindre Panchia
- Univ. of the Witwatersrand, Perinatal HIV Research Unit, Soweto HPTN CRS, Soweto, South Africa
| | - Ying Q Chen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Myron S Cohen
- Dept. of Medicine, Univ. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Susan H Eshleman
- Dept. of Pathology, Johns Hopkins Univ. School of Medicine, Baltimore, Maryland, United States of America
| | - Jessica M Fogel
- Dept. of Pathology, Johns Hopkins Univ. School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
108
|
The multi-faceted dynamics of HIV-1 transmission in Northern Alberta: A combined analysis of virus genetic and public health data. INFECTION GENETICS AND EVOLUTION 2017; 52:100-105. [PMID: 28427935 DOI: 10.1016/j.meegid.2017.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/18/2016] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
Molecular epidemiology has become a key tool for tracking infectious disease epidemics. Here, the spread of the most prevalent HIV-1 subtypes in Northern Alberta, Canada, was characterized with a Bayesian phylogenetic approach using 1146 HIV-1 pol sequences collected between 2007 and 2013 for routine clinical management purposes. Available patient metadata were qualitatively interpreted and correlated with onwards transmission using Fisher exact tests and logistic regression. Most infections were from subtypes A (n=36), B (n=815) and C (n=211). Africa is the dominant origin location for subtypes A and C while the subtype B epidemic was seeded from the USA and Middle America and, from the early 1990s onwards, mostly by interprovincial spread. Subtypes A (77.8%) and C (74.0%) were usually heterosexually transmitted and circulate predominantly among Blacks (61.1% and 85% respectively). Subtype B was mostly found among Caucasians (48.6%) and First Nations (36.8%), and its modes of transmission were stratified by ethnic origin. Compared to subtypes A (5.6%) and C (3.8-10.0%), a larger portion of subtype B patients were found within putative provincial transmission networks (20.3-29.5%), and this almost doubled when focusing on nationwide transmission clusters (37.9-57.5%). No clear association between cluster membership and particular patient characteristics was found. This study reveals complex and multi-faceted transmission dynamics of the HIV-1 epidemic in this otherwise low HIV prevalence population in Northern Alberta, Canada. These findings can aid public health planning.
Collapse
|
109
|
DeLeon O, Hodis H, O’Malley Y, Johnson J, Salimi H, Zhai Y, Winter E, Remec C, Eichelberger N, Van Cleave B, Puliadi R, Harrington RD, Stapleton JT, Haim H. Accurate predictions of population-level changes in sequence and structural properties of HIV-1 Env using a volatility-controlled diffusion model. PLoS Biol 2017; 15:e2001549. [PMID: 28384158 PMCID: PMC5383018 DOI: 10.1371/journal.pbio.2001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
The envelope glycoproteins (Envs) of HIV-1 continuously evolve in the host by random mutations and recombination events. The resulting diversity of Env variants circulating in the population and their continuing diversification process limit the efficacy of AIDS vaccines. We examined the historic changes in Env sequence and structural features (measured by integrity of epitopes on the Env trimer) in a geographically defined population in the United States. As expected, many Env features were relatively conserved during the 1980s. From this state, some features diversified whereas others remained conserved across the years. We sought to identify “clues” to predict the observed historic diversification patterns. Comparison of viruses that cocirculate in patients at any given time revealed that each feature of Env (sequence or structural) exists at a defined level of variance. The in-host variance of each feature is highly conserved among individuals but can vary between different HIV-1 clades. We designate this property “volatility” and apply it to model evolution of features as a linear diffusion process that progresses with increasing genetic distance. Volatilities of different features are highly correlated with their divergence in longitudinally monitored patients. Volatilities of features also correlate highly with their population-level diversification. Using volatility indices measured from a small number of patient samples, we accurately predict the population diversity that developed for each feature over the course of 30 years. Amino acid variants that evolved at key antigenic sites are also predicted well. Therefore, small “fluctuations” in feature values measured in isolated patient samples accurately describe their potential for population-level diversification. These tools will likely contribute to the design of population-targeted AIDS vaccines by effectively capturing the diversity of currently circulating strains and addressing properties of variants expected to appear in the future. HIV-1 is the causative agent of the global AIDS pandemic. The envelope glycoproteins (Envs) of HIV-1 constitute a primary target for antibody-based vaccines. However, the diversity of Envs in the population limits the potential efficacy of this approach. Accurate estimates of the range of variants that currently infect patients and those expected to appear in the future will likely contribute to the design of population-targeted immunogens. We found that different properties (features) of Env have different propensities for small “fluctuations” in their values among viruses that infect patients at any given time point. This propensity of each feature for in-host variance, which we designate “volatility”, is conserved among patients. We apply this parameter to model the evolution of features (in patients and population) as a diffusion process driven by their “diffusion coefficients” (volatilities). Using volatilities measured from a few patient samples from the 1980s, we accurately predict properties of viruses that evolved in the population over the course of 30 years. The diffusion-based model described here efficiently captures evolution of phenotypes in biological systems controlled by a dominant random component.
Collapse
Affiliation(s)
- Orlando DeLeon
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hagit Hodis
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yunxia O’Malley
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jacklyn Johnson
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hamid Salimi
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yinjie Zhai
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Elizabeth Winter
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Claire Remec
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Noah Eichelberger
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Brandon Van Cleave
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramya Puliadi
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Robert D. Harrington
- Center for AIDS Research (CFAR) at the University of Washington, Seattle, Washington, United States of America
| | - Jack T. Stapleton
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
110
|
Wan X, Zhao X, Yau SST. An information-based network approach for protein classification. PLoS One 2017; 12:e0174386. [PMID: 28350835 PMCID: PMC5370107 DOI: 10.1371/journal.pone.0174386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
Protein classification is one of the critical problems in bioinformatics. Early studies used geometric distances and polygenetic-tree to classify proteins. These methods use binary trees to present protein classification. In this paper, we propose a new protein classification method, whereby theories of information and networks are used to classify the multivariate relationships of proteins. In this study, protein universe is modeled as an undirected network, where proteins are classified according to their connections. Our method is unsupervised, multivariate, and alignment-free. It can be applied to the classification of both protein sequences and structures. Nine examples are used to demonstrate the efficiency of our new method.
Collapse
Affiliation(s)
- Xiaogeng Wan
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
- * E-mail: (XW); (XZ); (SSTY)
| | - Xin Zhao
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
- * E-mail: (XW); (XZ); (SSTY)
| | - Stephen S. T. Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
- * E-mail: (XW); (XZ); (SSTY)
| |
Collapse
|
111
|
Harada S, Yoshimura K. Driving HIV-1 into a Vulnerable Corner by Taking Advantage of Viral Adaptation and Evolution. Front Microbiol 2017; 8:390. [PMID: 28360890 PMCID: PMC5352695 DOI: 10.3389/fmicb.2017.00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Anti-retroviral therapy (ART) is crucial for controlling human immunodeficiency virus type-1 (HIV-1) infection. Recently, progress in identifying and characterizing highly potent broadly neutralizing antibodies has provided valuable templates for HIV-1 therapy and vaccine design. Nevertheless, HIV-1, like many RNA viruses, exhibits genetically diverse populations known as quasispecies. Evolution of quasispecies can occur rapidly in response to selective pressures, such as that exerted by ART and the immune system. Hence, rapid viral evolution leading to drug resistance and/or immune evasion is a significant barrier to the development of effective HIV-1 treatments and vaccines. Here, we describe our recent investigations into evolutionary pressure exerted by anti-retroviral drugs and monoclonal neutralizing antibodies (NAbs) on HIV-1 envelope sequences. We also discuss sensitivities of HIV-1 escape mutants to maraviroc, a CCR5 inhibitor, and HIV-1 sensitized to NAbs by small-molecule CD4-mimetic compounds. These studies help to develop an understanding of viral evolution and escape from both anti-retroviral drugs and the immune system, and also provide fundamental insights into the combined use of NAbs and entry inhibitors. These findings of the adaptation and evolution of HIV in response to drug and immune pressure will inform the development of more effective antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| |
Collapse
|
112
|
Wang N, Yuan Z, Niu W, Li Q, Guo J. Synthetic biology approach for the development of conditionally replicating HIV-1 vaccine. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2017; 92:455-462. [PMID: 28983143 PMCID: PMC5624719 DOI: 10.1002/jctb.5174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
While the combined antiretroviral therapy has resulted in a significant decrease in HIV-1 related morbidity and mortality, the HIV-1 pandemic has not been substantially averted. To curtail the 2.4 million new infections each year, a prophylactic HIV-1 vaccine is urgently needed. This review first summarizes four major completed clinical efficacy trials of prophylactic HIV-1 vaccine and their outcomes. Next, it discusses several other approaches that have not yet advanced to clinical efficacy trials, but provided valuable insights into vaccine design. Among them, live-attenuated vaccines (LAVs) provided excellent protection in a non-human primate model. However, safety concerns have precluded the current version of LAVs from clinical application. As the major component of this review, two synthetic biology approaches for improving the safety of HIV-1 LAVs through controlling HIV-1 replication are discussed. Particular focus is on a novel approach that uses unnatural amino acid-mediated suppression of amber nonsense codon to generate conditionally replicating HIV-1 variants. The objective is to attract more attention towards this promising research field and to provoke creative designs and innovative utilization of the two control strategies.
Collapse
Affiliation(s)
- Nanxi Wang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Zhe Yuan
- Nebraska Center for Virology & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Qingsheng Li
- Nebraska Center for Virology & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
113
|
Lack of impact of pre-existing T97A HIV-1 integrase mutation on integrase strand transfer inhibitor resistance and treatment outcome. PLoS One 2017; 12:e0172206. [PMID: 28212411 PMCID: PMC5315389 DOI: 10.1371/journal.pone.0172206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023] Open
Abstract
T97A is an HIV-1 integrase polymorphism associated with integrase strand transfer inhibitor (INSTI) resistance. Using pooled data from 16 clinical studies, we investigated the prevalence of T97A (pre-existing and emergent) and its impact on INSTI susceptibility and treatment response in INSTI-naive patients who enrolled on elvitegravir (EVG)- or raltegravir (RAL)-based regimens. Prior to INSTI-based therapy, primary INSTI resistance-associated mutations (RAMs) were absent and T97A pre-existed infrequently (1.4%; 47 of 3367 integrase sequences); most often among non-B (5.3%) than B (0.9%) HIV-1 subtypes. During INSTI-based therapy, few patients experienced virologic failure with emergent INSTI RAMs (3%; 122 of 3881 patients), among whom T97A emerged infrequently in the presence (n = 6) or absence (n = 8) of primary INSTI RAMs. A comparison between pre-existing and emergent T97A patient populations (i.e., in the absence of primary INSTI RAMs) showed no significant differences in EVG or RAL susceptibility in vitro. Furthermore, among all T97A-containing viruses tested, only 38-44% exhibited reduced susceptibility to EVG and/or RAL (all of low magnitude; <11-fold), while all maintained susceptibility to dolutegravir. Of the patients with pre-existing T97A, 17 had available clinical follow-up: 16 achieved virologic suppression and 1 maintained T97A and INSTI sensitivity without further resistance development. Overall, T97A is an infrequent integrase polymorphism that is enriched among non-B HIV-1 subtypes and can confer low-level reduced susceptibility to EVG and/or RAL. However, detection of T97A does not affect response to INSTI-based therapy with EVG or RAL. These results suggest a very low risk of initiating INSTI-based therapy in patients with pre-existing T97A.
Collapse
|
114
|
Siljic M, Salemovic D, Cirkovic V, Pesic-Pavlovic I, Ranin J, Todorovic M, Nikolic S, Jevtovic D, Stanojevic M. Forensic application of phylogenetic analyses - Exploration of suspected HIV-1 transmission case. Forensic Sci Int Genet 2016; 27:100-105. [PMID: 28024238 DOI: 10.1016/j.fsigen.2016.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2016] [Revised: 12/05/2016] [Accepted: 12/18/2016] [Indexed: 11/28/2022]
Abstract
Transmission of human immunodeficiency virus (HIV) between individuals may have important legal implications and therefore may come to require forensic investigation based upon phylogenetic analysis. In criminal trials results of phylogenetic analyses have been used as evidence of responsibility for HIV transmission. In Serbia, as in many countries worldwide, exposure and deliberate transmission of HIV are criminalized. We present the results of applying state of the art phylogenetic analyses, based on pol and env genetic sequences, in exploration of suspected HIV transmission among three subjects: a man and two women, with presumed assumption of transmission direction from one woman to a man. Phylogenetic methods included relevant neighbor-joining (NJ), maximum likelihood (ML) and Bayesian methods of phylogenetic trees reconstruction and hypothesis testing, that has been shown to be the most sensitive for the reconstruction of epidemiological links mostly from sexually infected individuals. End-point limiting-dilution PCR (EPLD-PCR) assay, generating the minimum of 10 sequences per genetic region per subject, was performed to assess HIV quasispecies distribution and to explore the direction of HIV transmission between three subjects. Phylogenetic analysis revealed that the viral sequences from the three subjects were more genetically related to each other than to other strains circulating in the same area with the similar epidemiological profile, forming strongly supported transmission chain, which could be in favour of a priori hypothesis of one of the women infecting the man. However, in the EPLD based phylogenetic trees for both pol and env genetic region, viral sequences of one subject (man) were paraphyletic to those of two other subjects (women), implying the direction of transmission opposite to the a priori assumption. The dated tree in our analysis confirmed the clustering pattern of query sequences. Still, in the context of unsampled sequences and inherent limitations of the applied methods, we cannot unambiguously prove that HIV-1 transmission occurred directly between two individuals. Further exploration of the known and suspected transmission cases is needed in order to define methodologies and establish their reliability.
Collapse
Affiliation(s)
- Marina Siljic
- Institute of Microbiology and Immunology, University of Belgrade School of Medicine, Belgrade, Serbia
| | - Dubravka Salemovic
- Infectious and Tropical Diseases University Hospital, Clinical Center Serbia, HIV/AIDS Unit, Belgrade, Serbia
| | - Valentina Cirkovic
- Institute of Microbiology and Immunology, University of Belgrade School of Medicine, Belgrade, Serbia
| | - Ivana Pesic-Pavlovic
- Virology Laboratory, Microbiology Department, Clinical Center Serbia, Belgrade, Serbia
| | - Jovan Ranin
- Institute of Microbiology and Immunology, University of Belgrade School of Medicine, Belgrade, Serbia; Infectious and Tropical Diseases University Hospital, Clinical Center Serbia, HIV/AIDS Unit, Belgrade, Serbia
| | - Marija Todorovic
- Institute of Microbiology and Immunology, University of Belgrade School of Medicine, Belgrade, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, University of Belgrade School of Medicine, Belgrade, Serbia
| | - Djordje Jevtovic
- Institute of Microbiology and Immunology, University of Belgrade School of Medicine, Belgrade, Serbia; Infectious and Tropical Diseases University Hospital, Clinical Center Serbia, HIV/AIDS Unit, Belgrade, Serbia
| | - Maja Stanojevic
- Institute of Microbiology and Immunology, University of Belgrade School of Medicine, Belgrade, Serbia.
| |
Collapse
|
115
|
Gambette P, van Iersel L, Kelk S, Pardi F, Scornavacca C. Do Branch Lengths Help to Locate a Tree in a Phylogenetic Network? Bull Math Biol 2016; 78:1773-1795. [DOI: 10.1007/s11538-016-0199-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022]
|
116
|
Bardeskar NS, Mania-Pramanik J. HIV and host immunogenetics: unraveling the role of HLA-C. HLA 2016; 88:221-231. [PMID: 27620973 DOI: 10.1111/tan.12882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 01/09/2023]
Abstract
Host genetic factors play a major role in determining the outcome of many infections including human immunodeficiency virus (HIV). Multiple host factors have been studied till date showing their varied role in susceptibility or resistance to HIV infection. HLA-C, however, has been recently started gaining interest in researchers mind revealing its polymorphisms to have an important effect on viral load set-points, disease progression as well as transmission. In this review report, we have compiled these significant findings of HLA-C in HIV infection, in an attempt to highlight the need for further research in the area in different ethnic population to establish its role in the infection.
Collapse
Affiliation(s)
- N S Bardeskar
- Infectious Diseases Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - J Mania-Pramanik
- Infectious Diseases Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400012, India.
| |
Collapse
|
117
|
Abstract
Effective HIV prevention requires knowledge of the structure and dynamics of the social networks across which infections are transmitted. These networks most commonly comprise chains of sexual relationships, but in some populations, sharing of contaminated needles is also an important, or even the main mechanism that connects people in the network. Whereas network data have long been collected during survey interviews, new data sources have become increasingly common in recent years, because of advances in molecular biology and the use of partner notification services in HIV prevention and treatment programmes. We review current and emerging methods for collecting HIV-related network data, as well as modelling frameworks commonly used to infer network parameters and map potential HIV transmission pathways within the network. We discuss the relative strengths and weaknesses of existing methods and models, and we propose a research agenda for advancing network analysis in HIV epidemiology. We make the case for a combination approach that integrates multiple data sources into a coherent statistical framework.
Collapse
|
118
|
Chingwaru W, Vidmar J. Culture, myths and panic: Three decades and beyond with an HIV/AIDS epidemic in Zimbabwe. Glob Public Health 2016; 13:249-264. [PMID: 27685780 DOI: 10.1080/17441692.2016.1215485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Abstract
Zimbabwe is going through a generalised acquired immunodeficiency syndrome (AIDS) epidemic. The first five years of the epidemic (1985-1990) were characterised by lack of medicines against human immunodeficiency virus (HIV), and an exponential increase in prevalence (65-fold) and incidence (13-fold), which were fuelled by high-risk sexual behaviour. The high HIV prevalence, mortality and stigma yielded great fear and panic in the population, which are thought to have led to confusion and hopelessness, and, in turn, increased risky sexual behaviour. The country's government and civil society embarked on HIV awareness campaigns that are claimed to have played a central role in slowing down the epidemic since the mid-2000s. HIV-related mortality then fell by 70% between 2003 and 2013, which is attributed to high uptake of antiretroviral therapy (ART) and prevention of mother-to-child transmission (95%) prophylaxis. However, the epidemic has been characterised by a low paediatric ART coverage (35% in 2011 to 46.12% in 2013). Year 2014 saw an increase in adolescent and young adult HIV prevalence, which may be signalling a rebound of the epidemic. A more holistic approach which deals with the epidemic in its socio-political context is required to effectively lower the country's HIV burden.
Collapse
Affiliation(s)
- Walter Chingwaru
- a Faculty of Science, Department of Biological Sciences , Bindura University Science Education , Bindura , Zimbabwe.,b Research and Development Department , Institute Ceres/Zavod Ceres , Lahovna, Celje , Slovenia.,c Research and Development Department, Maribor Institute for Biomedical Sciences , Maribor , Slovenia
| | - Jerneja Vidmar
- b Research and Development Department , Institute Ceres/Zavod Ceres , Lahovna, Celje , Slovenia.,d Department of Plastic and Reconstructive Surgery , University Medical Centre Maribor , Maribor , Slovenia
| |
Collapse
|
119
|
Vatsiou AI, Bazin E, Gaggiotti OE. Changes in selective pressures associated with human population expansion may explain metabolic and immune related pathways enriched for signatures of positive selection. BMC Genomics 2016; 17:504. [PMID: 27444955 PMCID: PMC4955149 DOI: 10.1186/s12864-016-2783-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
Background The study of local adaptation processes is a very important research topic in the field of population genomics. There is a particular interest in the study of human populations because they underwent a process of rapid spatial expansion and faced important environmental changes that translated into changes in selective pressures. New mutations may have been selected for in the new environment and previously existing genetic variants may have become detrimental. Immune related genes may have been released from the selective pressure exerted by pathogens in the ancestral environment and new variants may have been positively selected due to pathogens present in the newly colonized habitat. Also, variants that had a selective advantage in past environments may have become deleterious in the modern world due to external stimuli including climatic, dietary and behavioral changes, which could explain the high prevalence of some polygenic diseases such as diabetes and obesity. Results We performed an enrichment analysis to identify gene sets enriched for signals of positive selection in humans. We used two genome scan methods, XPCLR and iHS to detect selection using a dense coverage of SNP markers combined with two gene set enrichment approaches. We identified immune related gene sets that could be involved in the protection against pathogens especially in the African population. We also identified the glycolysis & gluconeogenesis gene set, related to metabolism, which supports the thrifty genotype hypothesis invoked to explain the current high prevalence of diseases such as diabetes and obesity. Extending our analysis to the gene level, we found signals for 23 candidate genes linked to metabolic syndrome, 13 of which are new candidates for positive selection. Conclusions Our study provides a list of genes and gene sets associated with immunity and metabolic syndrome that are enriched for signals of positive selection in three human populations (Europeans, Africans and Asians). Our results highlight differences in the relative importance of pathogens as drivers of local adaptation in different continents and provide new insights into the evolution and high incidence of metabolic syndrome in modern human populations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2783-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra I Vatsiou
- Laboratoire d'Écologie Alpine (LECA), Univesrity Joseph Fourier, 2233 Rue de la Piscine, 38041, Grenoble, Cedex 9, France. .,Scottish Oceans Institute, East Sands, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK. .,Oh no sequences! Research group, Era7Bioinformatics, Plaza de Campo Verde, 3, 18001, Granada, Spain.
| | - Eric Bazin
- Laboratoire d'Écologie Alpine (LECA), Univesrity Joseph Fourier, 2233 Rue de la Piscine, 38041, Grenoble, Cedex 9, France
| | - Oscar E Gaggiotti
- Laboratoire d'Écologie Alpine (LECA), Univesrity Joseph Fourier, 2233 Rue de la Piscine, 38041, Grenoble, Cedex 9, France.,Scottish Oceans Institute, East Sands, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK
| |
Collapse
|
120
|
Abstract
Since the first antiviral drug, idoxuridine, was approved in 1963, 90 antiviral drugs categorized into 13 functional groups have been formally approved for the treatment of the following 9 human infectious diseases: (i) HIV infections (protease inhibitors, integrase inhibitors, entry inhibitors, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and acyclic nucleoside phosphonate analogues), (ii) hepatitis B virus (HBV) infections (lamivudine, interferons, nucleoside analogues, and acyclic nucleoside phosphonate analogues), (iii) hepatitis C virus (HCV) infections (ribavirin, interferons, NS3/4A protease inhibitors, NS5A inhibitors, and NS5B polymerase inhibitors), (iv) herpesvirus infections (5-substituted 2'-deoxyuridine analogues, entry inhibitors, nucleoside analogues, pyrophosphate analogues, and acyclic guanosine analogues), (v) influenza virus infections (ribavirin, matrix 2 protein inhibitors, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) human cytomegalovirus infections (acyclic guanosine analogues, acyclic nucleoside phosphonate analogues, pyrophosphate analogues, and oligonucleotides), (vii) varicella-zoster virus infections (acyclic guanosine analogues, nucleoside analogues, 5-substituted 2'-deoxyuridine analogues, and antibodies), (viii) respiratory syncytial virus infections (ribavirin and antibodies), and (ix) external anogenital warts caused by human papillomavirus infections (imiquimod, sinecatechins, and podofilox). Here, we present for the first time a comprehensive overview of antiviral drugs approved over the past 50 years, shedding light on the development of effective antiviral treatments against current and emerging infectious diseases worldwide.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Guangdi Li
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
121
|
McMahon DP, Natsopoulou ME, Doublet V, Fürst M, Weging S, Brown MJF, Gogol-Döring A, Paxton RJ. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc Biol Sci 2016; 283:20160811. [PMID: 27358367 PMCID: PMC4936039 DOI: 10.1098/rspb.2016.0811] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2016] [Accepted: 06/03/2016] [Indexed: 01/29/2023] Open
Abstract
Emerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline.
Collapse
Affiliation(s)
- Dino P McMahon
- School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, UK Institute of Biology, Free University Berlin, Schwendenerstrasse 1, 14195 Berlin, Germany Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
| | - Myrsini E Natsopoulou
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Vincent Doublet
- Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Matthias Fürst
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK IST Austria (Institute of Science and Technology Austria), 3400 Klosterneuburg, Austria
| | - Silvio Weging
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Robert J Paxton
- School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, UK Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
122
|
Paraskevis D, Nikolopoulos GK, Magiorkinis G, Hodges-Mameletzis I, Hatzakis A. The application of HIV molecular epidemiology to public health. INFECTION GENETICS AND EVOLUTION 2016; 46:159-168. [PMID: 27312102 DOI: 10.1016/j.meegid.2016.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/09/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/02/2023]
Abstract
HIV is responsible for one of the largest viral pandemics in human history. Despite a concerted global response for prevention and treatment, the virus persists. Thus, urgent public health action, utilizing novel interventions, is needed to prevent future transmission events, critical to eliminating HIV. For public health planning to prove effective and successful, we need to understand the dynamics of regional epidemics and to intervene appropriately. HIV molecular epidemiology tools as implemented in phylogenetic, phylodynamic and phylogeographic analyses have proven to be powerful tools in public health planning across many studies. Numerous applications with HIV suggest that molecular methods alone or in combination with mathematical modelling can provide inferences about the transmission dynamics, critical epidemiological parameters (prevalence, incidence, effective number of infections, Re, generation times, time between infection and diagnosis), or the spatiotemporal characteristics of epidemics. Molecular tools have been used to assess the impact of an intervention and outbreak investigation which are of great public health relevance. In some settings, molecular sequence data may be more readily available than HIV surveillance data, and can therefore allow for molecular analyses to be conducted more easily. Nonetheless, classic methods have an integral role in monitoring and evaluation of public health programmes, and should supplement emerging techniques from the field of molecular epidemiology. Importantly, molecular epidemiology remains a promising approach in responding to viral diseases.
Collapse
Affiliation(s)
- D Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - G K Nikolopoulos
- Hellenic Center for Diseases Control and Prevention, Maroussi, Greece
| | - G Magiorkinis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, United Kingdom
| | | | - A Hatzakis
- Hellenic Center for Diseases Control and Prevention, Maroussi, Greece
| |
Collapse
|
123
|
HIV-1 Protease, Reverse Transcriptase, and Integrase Variation. J Virol 2016; 90:6058-6070. [PMID: 27099321 PMCID: PMC4907232 DOI: 10.1128/jvi.00495-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2016] [Accepted: 04/16/2016] [Indexed: 11/20/2022] Open
Abstract
HIV-1 protease (PR), reverse transcriptase (RT), and integrase (IN) variability presents a challenge to laboratories performing genotypic resistance testing. This challenge will grow with increased sequencing of samples enriched for proviral DNA such as dried blood spots and increased use of next-generation sequencing (NGS) to detect low-abundance HIV-1 variants. We analyzed PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to characterize variation at each amino acid position, identify mutations indicating APOBEC-mediated G-to-A editing, and identify mutations resulting from selective drug pressure. Forty-seven percent of PR, 37% of RT, and 34% of IN positions had one or more amino acid variants with a prevalence of ≥1%. Seventy percent of PR, 60% of RT, and 60% of IN positions had one or more variants with a prevalence of ≥0.1%. Overall 201 PR, 636 RT, and 346 IN variants had a prevalence of ≥0.1%. The median intersubtype prevalence ratios were 2.9-, 2.1-, and 1.9-fold for these PR, RT, and IN variants, respectively. Only 5.0% of PR, 3.7% of RT, and 2.0% of IN variants had a median intersubtype prevalence ratio of ≥10-fold. Variants at lower prevalences were more likely to differ biochemically and to be part of an electrophoretic mixture compared to high-prevalence variants. There were 209 mutations indicative of APOBEC-mediated G-to-A editing and 326 mutations nonpolymorphic treatment selected. Identification of viruses with a high number of APOBEC-associated mutations will facilitate the quality control of dried blood spot sequencing. Identifying sequences with a high proportion of rare mutations will facilitate the quality control of NGS. IMPORTANCE Most antiretroviral drugs target three HIV-1 proteins: PR, RT, and IN. These proteins are highly variable: many different amino acids can be present at the same position in viruses from different individuals. Some of the amino acid variants cause drug resistance and occur mainly in individuals receiving antiretroviral drugs. Some variants result from a human cellular defense mechanism called APOBEC-mediated hypermutation. Many variants result from naturally occurring mutation. Some variants may represent technical artifacts. We studied PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to quantify variation at each amino acid position in these three HIV-1 proteins. We performed analyses to determine which amino acid variants resulted from antiretroviral drug selection pressure, APOBEC-mediated editing, and naturally occurring variation. Our results provide information essential to clinical, research, and public health laboratories performing genotypic resistance testing by sequencing HIV-1 PR, RT, and IN.
Collapse
|
124
|
Junqueira DM, Almeida SEDM. HIV-1 subtype B: Traces of a pandemic. Virology 2016; 495:173-84. [PMID: 27228177 DOI: 10.1016/j.virol.2016.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 11/18/2022]
Abstract
Human migration is a major process that shaped the origin and dissemination of HIV. Within HIV-1, subtype B (HIV-1B) is the most disseminated variant and it is assumed to be the causative agent in approximately 11% of all cases of HIV worldwide. Phylogenetic studies have revealed that HIV-1B emerged in Kinshasa (Africa) and was introduced into the Caribbean region via Haiti in or around 1966 by human migration. After localized dispersion, the virus was brought to the United States of America via homosexual/bisexual contact around 1969. Inside USA, the incidence of HIV-1B infection increased exponentially and it became established in the population, affecting not only homosexual individuals but also heterosexual individuals and injecting drug users. Soon after, the virus was disseminated and became established in other regions, including Europe, Asia, Latin America, and Australia. Recent studies suggest that, in addition to this pandemic clade, several lineages have emerged from Haiti and reached other Caribbean and Latin American countries via short-distance dissemination. Different subtype B genetic variants have also been detected in these epidemics. Four genetic variants have been described to date: subtype B', which mainly circulates in Thailand and other Asian countries; a specific variant mainly found in Trinidad and Tobago; the GPGS variant, which is primarily detected in Korea; and the GWGR variant, which is mainly detected in Brazil. This paper reviews the evolution of HIV-1B and its impact on the human population.
Collapse
Affiliation(s)
- Dennis Maletich Junqueira
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Avenida Ipiranga, 5400 - Jd Botânico, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9800 - Agronomia, Porto Alegre, RS, Brazil; Centro Universitário Ritter dos Reis - UniRitter, Departamento de Ciências da Saúde, Avenida Orfanotrófio, 555 - Teresópolis, Porto Alegre, RS, Brazil.
| | - Sabrina Esteves de Matos Almeida
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Avenida Ipiranga, 5400 - Jd Botânico, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9800 - Agronomia, Porto Alegre, RS, Brazil; Instituto de Ciências da Saúde, Universidade FEEVALE, Rodovia RS 239, 2755 - Vila Nova, Novo Hamburgo, RS, Brazil.
| |
Collapse
|
125
|
Chi PB, Chattopadhyay S, Lemey P, Sokurenko EV, Minin VN. Synonymous and nonsynonymous distances help untangle convergent evolution and recombination. Stat Appl Genet Mol Biol 2016; 14:375-89. [PMID: 26061623 DOI: 10.1515/sagmb-2014-0078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
When estimating a phylogeny from a multiple sequence alignment, researchers often assume the absence of recombination. However, if recombination is present, then tree estimation and all downstream analyses will be impacted, because different segments of the sequence alignment support different phylogenies. Similarly, convergent selective pressures at the molecular level can also lead to phylogenetic tree incongruence across the sequence alignment. Current methods for detection of phylogenetic incongruence are not equipped to distinguish between these two different mechanisms and assume that the incongruence is a result of recombination or other horizontal transfer of genetic information. We propose a new recombination detection method that can make this distinction, based on synonymous codon substitution distances. Although some power is lost by discarding the information contained in the nonsynonymous substitutions, our new method has lower false positive probabilities than the comparable recombination detection method when the phylogenetic incongruence signal is due to convergent evolution. We apply our method to three empirical examples, where we analyze: (1) sequences from a transmission network of the human immunodeficiency virus, (2) tlpB gene sequences from a geographically diverse set of 38 Helicobacter pylori strains, and (3) hepatitis C virus sequences sampled longitudinally from one patient.
Collapse
|
126
|
Cromer D, Schlub TE, Smyth RP, Grimm AJ, Chopra A, Mallal S, Davenport MP, Mak J. HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells. Viruses 2016; 8:118. [PMID: 27110814 PMCID: PMC4848610 DOI: 10.3390/v8040118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2015] [Revised: 04/05/2016] [Accepted: 04/19/2016] [Indexed: 11/16/2022] Open
Abstract
High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics.
Collapse
Affiliation(s)
- Deborah Cromer
- Infection Analytics Program, Kirby Institute, UNSW Australia, Sydney NSW 2052, Australia.
- Centre for Vascular Research, UNSW Australia, Sydney NSW 2052, Australia.
| | - Timothy E Schlub
- Sydney School of Public Health, Sydney Medical School, University of Sydney, Sydney NSW 2006, Australia.
| | - Redmond P Smyth
- Centre for Virology, Burnet Institute, Melbourne VIC 3004, Australia.
- Architecture et Réactivité de l'ARN, IBMC, CNRS, Université de Strasbourg, 67084 Strasbourg, France.
| | - Andrew J Grimm
- Infection Analytics Program, Kirby Institute, UNSW Australia, Sydney NSW 2052, Australia.
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Perth WA 6150, Australia.
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Perth WA 6150, Australia.
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute, UNSW Australia, Sydney NSW 2052, Australia.
- Centre for Vascular Research, UNSW Australia, Sydney NSW 2052, Australia.
| | - Johnson Mak
- Biosecurity Flagship, CSIRO (AAHL), Geelong VIC 3220, Australia.
- School of Medicine, Deakin University and CSIRO (AAHL), Geelong VIC 3216, Australia.
| |
Collapse
|
127
|
Butler TC, Barton JP, Kardar M, Chakraborty AK. Identification of drug resistance mutations in HIV from constraints on natural evolution. Phys Rev E 2016; 93:022412. [PMID: 26986367 DOI: 10.1103/physreve.93.022412] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2015] [Indexed: 11/07/2022]
Abstract
Human immunodeficiency virus (HIV) evolves with extraordinary rapidity. However, its evolution is constrained by interactions between mutations in its fitness landscape. Here we show that an Ising model describing these interactions, inferred from sequence data obtained prior to the use of antiretroviral drugs, can be used to identify clinically significant sites of resistance mutations. Successful predictions of the resistance sites indicate progress in the development of successful models of real viral evolution at the single residue level and suggest that our approach may be applied to help design new therapies that are less prone to failure even where resistance data are not yet available.
Collapse
Affiliation(s)
- Thomas C Butler
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - John P Barton
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arup K Chakraborty
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA.,Departments of Chemistry and Biological Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
128
|
Maldarelli F. The role of HIV integration in viral persistence: no more whistling past the proviral graveyard. J Clin Invest 2016; 126:438-47. [PMID: 26829624 DOI: 10.1172/jci80564] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
A substantial research effort has been directed to identifying strategies to eradicate or control HIV infection without a requirement for combination antiretroviral therapy (cART). A number of obstacles prevent HIV eradication, including low-level viral persistence during cART, long-term persistence of HIV-infected cells, and latent infection of resting CD4+ T cells. Mechanisms of persistence remain uncertain, but integration of the provirus into the host genome represents a central event in replication and pathogenesis of all retroviruses, including HIV. Analysis of HIV proviruses in CD4+ lymphocytes from individuals after prolonged cART revealed that a substantial proportion of the infected cells that persist have undergone clonal expansion and frequently have proviruses integrated in genes associated with regulation of cell growth. These data suggest that integration may influence persistence and clonal expansion of HIV-infected cells after cART is introduced, and these processes may represent key mechanisms for HIV persistence. Determining the diversity of host genes with integrants in HIV-infected cells that persist for prolonged periods may yield useful information regarding pathways by which infected cells persist for prolonged periods. Moreover, many integrants are defective, and new studies are required to characterize the role of clonal expansion in the persistence of replication-competent HIV.
Collapse
|
129
|
|
130
|
Reisman S, Hatzopoulos T, Läufer K, Thiruvathukal GK, Putonti C. A Polyglot Approach to Bioinformatics Data Integration: A Phylogenetic Analysis of HIV-1. Evol Bioinform Online 2016; 12:23-7. [PMID: 26819543 PMCID: PMC4718148 DOI: 10.4137/ebo.s32757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2015] [Revised: 10/18/2015] [Accepted: 10/25/2015] [Indexed: 02/04/2023] Open
Abstract
As sequencing technologies continue to drop in price and increase in throughput, new challenges emerge for the management and accessibility of genomic sequence data. We have developed a pipeline for facilitating the storage, retrieval, and subsequent analysis of molecular data, integrating both sequence and metadata. Taking a polyglot approach involving multiple languages, libraries, and persistence mechanisms, sequence data can be aggregated from publicly available and local repositories. Data are exposed in the form of a RESTful web service, formatted for easy querying, and retrieved for downstream analyses. As a proof of concept, we have developed a resource for annotated HIV-1 sequences. Phylogenetic analyses were conducted for >6,000 HIV-1 sequences revealing spatial and temporal factors influence the evolution of the individual genes uniquely. Nevertheless, signatures of origin can be extrapolated even despite increased globalization. The approach developed here can easily be customized for any species of interest.
Collapse
Affiliation(s)
- Steven Reisman
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.; Department of Computer Science, Loyola University Chicago, Chicago, IL, USA.; Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Thomas Hatzopoulos
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.; Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| | - Konstantin Läufer
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.; Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| | - George K Thiruvathukal
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.; Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.; Department of Computer Science, Loyola University Chicago, Chicago, IL, USA.; Department of Biology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
131
|
Raghwani J, Bhatt S, Pybus OG. Faster Adaptation in Smaller Populations: Counterintuitive Evolution of HIV during Childhood Infection. PLoS Comput Biol 2016; 12:e1004694. [PMID: 26741359 PMCID: PMC4704780 DOI: 10.1371/journal.pcbi.1004694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
Analysis of HIV-1 gene sequences sampled longitudinally from infected individuals can reveal the evolutionary dynamics that underlie associations between disease outcome and viral genetic diversity and divergence. Here we extend a statistical framework to estimate rates of viral molecular adaptation by considering sampling error when computing nucleotide site-frequencies. This is particularly beneficial when analyzing viral sequences from within-host viral infections if the number of sequences per time point is limited. To demonstrate the utility of this approach, we apply our method to a cohort of 24 patients infected with HIV-1 at birth. Our approach finds that viral adaptation arising from recurrent positive natural selection is associated with the rate of HIV-1 disease progression, in contrast to previous analyses of these data that found no significant association. Most surprisingly, we discover a strong negative correlation between viral population size and the rate of viral adaptation, the opposite of that predicted by standard molecular evolutionary theory. We argue that this observation is most likely due to the existence of a confounding third variable, namely variation in selective pressure among hosts. A conceptual non-linear model of virus adaptation that incorporates the two opposing effects of host immunity on the virus population can explain this counterintuitive result. Since some common approaches to the study of molecular adaptation may not be optimal for answering questions regarding within-host virus evolution, we have developed an alternative approach that estimates an absolute rate of molecular adaptation from serially-sampled viral populations. Here, we extend this framework to include sampling error when estimating the rate of adaptation, which is an important addition when analyzing historical data sets obtained in the pre-HAART era, for which the number of sequences per time point is often limited. We applied this extended method to a cohort of 24 pediatric HIV-1 patients and discovered that viral adaptation is strongly associated with the rate of disease progression, which is in contrast to previous analyses of these data that did not find a significant association. Strikingly, this results in a negative relationship between the rate of viral adaptation and viral population size, which is unexpected under standard micro-evolutionary models since larger populations are predicted to fix more mutations per unit time than smaller populations. Our findings indicate that the negative correlation is unlikely to be driven by relaxation of selective constraint, but instead by significant variation in host immune responses. Consequently, this supports a previously proposed non-linear model of viral adaptation in which host immunity imposes counteracting effects on population size and selection.
Collapse
Affiliation(s)
- Jayna Raghwani
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (JR); (OGP)
| | - Samir Bhatt
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (JR); (OGP)
| |
Collapse
|
132
|
Lopinavir Resistance Classification with Imbalanced Data Using Probabilistic Neural Networks. J Med Syst 2016; 40:69. [PMID: 26733278 DOI: 10.1007/s10916-015-0428-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Resistance to antiretroviral drugs has been a major obstacle for long-lasting treatment of HIV-infected patients. The development of models to predict drug resistance is recognized as useful for helping the decision of the best therapy for each HIV+ individual. The aim of this study was to develop classifiers for predicting resistance to the HIV protease inhibitor lopinavir using a probabilistic neural network (PNN). The data were provided by the Molecular Virology Laboratory of the Health Sciences Center, Federal University of Rio de Janeiro (CCS-UFRJ/Brazil). Using bootstrap and stepwise techniques, ten features were selected by logistic regression (LR) to be used as inputs to the network. Bootstrap and cross-validation were used to define the smoothing parameter of the PNN networks. Four balanced models were designed and evaluated using a separate test set. The accuracies of the classifiers with the test set ranged from 0.89 to 0.94, and the area under the receiver operating characteristic (ROC) curve (AUC) ranged from 0.96 to 0.97. The sensitivity ranged from 0.94 to 1.00, and the specificity was between 0.88 and 0.92. Four classifiers showed performances very close to three existing expert-based interpretation systems, the HIVdb, the Rega and the ANRS algorithms, and to a k-Nearest Neighbor.
Collapse
|
133
|
Chingwaru W, Vidmar J. Thirty years on with an HIV epidemic in Zimbabwe (1985–2015). HIV & AIDS REVIEW 2016. [DOI: 10.1016/j.hivar.2015.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022] Open
|
134
|
Contribution of Epidemiological Predictors in Unraveling the Phylogeographic History of HIV-1 Subtype C in Brazil. J Virol 2015; 89:12341-8. [PMID: 26423943 DOI: 10.1128/jvi.01681-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The phylogeographic history of the Brazilian HIV-1 subtype C (HIV-1C) epidemic is still unclear. Previous studies have mainly focused on the capital cities of Brazilian federal states, and the fact that HIV-1C infections increase at a higher rate than subtype B infections in Brazil calls for a better understanding of the process of spatial spread. A comprehensive sequence data set sampled across 22 Brazilian locations was assembled and analyzed. A Bayesian phylogeographic generalized linear model approach was used to reconstruct the spatiotemporal history of HIV-1C in Brazil, considering several potential explanatory predictors of the viral diffusion process. Analyses were performed on several subsampled data sets in order to mitigate potential sample biases. We reveal a central role for the city of Porto Alegre, the capital of the southernmost state, in the Brazilian HIV-1C epidemic (HIV-1C_BR), and the northward expansion of HIV-1C_BR could be linked to source populations with higher HIV-1 burdens and larger proportions of HIV-1C infections. The results presented here bring new insights to the continuing discussion about the HIV-1C epidemic in Brazil and raise an alternative hypothesis for its spatiotemporal history. The current work also highlights how sampling bias can confound phylogeographic analyses and demonstrates the importance of incorporating external information to protect against this. IMPORTANCE Subtype C is responsible for the largest HIV infection burden worldwide, but our understanding of its transmission dynamics remains incomplete. Brazil witnessed a relatively recent introduction of HIV-1C compared to HIV-1B, but it swiftly spread throughout the south, where it now circulates as the dominant variant. The northward spread has been comparatively slow, and HIV-1B still prevails in that region. While epidemiological data and viral genetic analyses have both independently shed light on the dynamics of spread in isolation, their combination has not yet been explored. Here, we complement publically available sequences and new genetic data from 13 cities with epidemiological data to reconstruct the history of HIV-1C spread in Brazil. The combined approach results in more robust reconstructions and can protect against sampling bias. We found evidence for an alternative view of the HIV-1C spatiotemporal history in Brazil that, contrary to previous explanations, integrates seamlessly with other observational data.
Collapse
|
135
|
Abstract
OBJECTIVE To determine how HIV-1 risk groups impact transmitted diversity and the tempo of viral evolution at a population scale. METHODS We investigated a set of previously described transmission chains (n = 70) using a population genetic approach, and tested whether the expected differences in proportions of multivariant transmissions are reflected by varying proportions of transmitted diversity between men having sex with men (MSM) and heterosexual (HET) subpopulations - the largest contributors to HIV spread. To assess evolutionary rate differences among the different risk groups, we compiled risk group datasets for subtypes A1, B and CRF01_AE, and directly compared the absolute substitution rate and its synonymous and non-synonymous components. RESULTS There was sufficient demographic signal to inform the transmission model in Bayesian evolutionary analysis by sampling trees using env data to compare the transmission bottleneck size between the MSM and HET risk groups. We found no indications for a different proportion of transmitted genetic diversity at the population level between these groups. In the direct rate comparisons between the risk groups, however, we consistently recovered a higher evolutionary rate in the male-dominated risk group compared to the HET datasets. CONCLUSION We find that the risk group composition affects the viral evolutionary rate and therefore potentially also the adaptation rate. In particular, risk group-specific sex ratios, and the variation in within-host evolutionary rates between men and women, impose evolutionary rate differences at the epidemic level, but we cannot exclude a role of varying transmission rates.
Collapse
|
136
|
Chang CH, Kist NC, Stuart Chester TL, Sreenu VB, Herman M, Luo M, Lunn D, Bell J, Plummer FA, Ball TB, Katzourakis A, Iversen AKN. HIV-infected sex workers with beneficial HLA-variants are potential hubs for selection of HIV-1 recombinants that may affect disease progression. Sci Rep 2015; 5:11253. [PMID: 26082240 PMCID: PMC4469978 DOI: 10.1038/srep11253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) responses against the HIV Gag protein are associated with lowering viremia; however, immune control is undermined by viral escape mutations. The rapid viral mutation rate is a key factor, but recombination may also contribute. We hypothesized that CTL responses drive the outgrowth of unique intra-patient HIV-recombinants (URFs) and examined gag sequences from a Kenyan sex worker cohort. We determined whether patients with HLA variants associated with effective CTL responses (beneficial HLA variants) were more likely to carry URFs and, if so, examined whether they progressed more rapidly than patients with beneficial HLA-variants who did not carry URFs. Women with beneficial HLA-variants (12/52) were more likely to carry URFs than those without beneficial HLA variants (3/61) (p < 0.0055; odds ratio = 5.7). Beneficial HLA variants were primarily found in slow/standard progressors in the URF group, whereas they predominated in long-term non-progressors/survivors in the remaining cohort (p = 0.0377). The URFs may sometimes spread and become circulating recombinant forms (CRFs) of HIV and local CRF fragments were over-represented in the URF sequences (p < 0.0001). Collectively, our results suggest that CTL-responses associated with beneficial HLA variants likely drive the outgrowth of URFs that might reduce the positive effect of these CTL responses on disease progression.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicolaas C Kist
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Tammy L Stuart Chester
- National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada
| | - Vattipally B Sreenu
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa Herman
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ma Luo
- 1] National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Lunn
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - John Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Oxford, United Kingdom
| | - Francis A Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - T Blake Ball
- 1] National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada [3] Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Astrid K N Iversen
- 1] Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom [2] Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
137
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) is an RNA virus that is prone to high rates of mutation. While the disease is managed with current antiretroviral therapies, drugs with a new mode of action are needed. A strategy towards this goal is aimed at targeting the native three-dimensional fold of conserved RNA structures. This perspective highlights medium-sized peptides and peptidomimetics used to target two conserved RNA structures of HIV-1. In particular, branched peptides have the capacity to bind in a multivalent fashion, utilizing a large surface area to achieve the necessary affinity and selectivity toward the target RNA.
Collapse
Affiliation(s)
- Jessica E Wynn
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
138
|
Pardi F, Scornavacca C. Reconstructible phylogenetic networks: do not distinguish the indistinguishable. PLoS Comput Biol 2015; 11:e1004135. [PMID: 25849429 PMCID: PMC4388854 DOI: 10.1371/journal.pcbi.1004135] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022] Open
Abstract
Phylogenetic networks represent the evolution of organisms that have undergone reticulate events, such as recombination, hybrid speciation or lateral gene transfer. An important way to interpret a phylogenetic network is in terms of the trees it displays, which represent all the possible histories of the characters carried by the organisms in the network. Interestingly, however, different networks may display exactly the same set of trees, an observation that poses a problem for network reconstruction: from the perspective of many inference methods such networks are "indistinguishable". This is true for all methods that evaluate a phylogenetic network solely on the basis of how well the displayed trees fit the available data, including all methods based on input data consisting of clades, triples, quartets, or trees with any number of taxa, and also sequence-based approaches such as popular formalisations of maximum parsimony and maximum likelihood for networks. This identifiability problem is partially solved by accounting for branch lengths, although this merely reduces the frequency of the problem. Here we propose that network inference methods should only attempt to reconstruct what they can uniquely identify. To this end, we introduce a novel definition of what constitutes a uniquely reconstructible network. For any given set of indistinguishable networks, we define a canonical network that, under mild assumptions, is unique and thus representative of the entire set. Given data that underwent reticulate evolution, only the canonical form of the underlying phylogenetic network can be uniquely reconstructed. While on the methodological side this will imply a drastic reduction of the solution space in network inference, for the study of reticulate evolution this is a fundamental limitation that will require an important change of perspective when interpreting phylogenetic networks.
Collapse
Affiliation(s)
- Fabio Pardi
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM, UMR 5506) CNRS, Université de Montpellier, France
- Institut de Biologie Computationnelle, Montpellier, France
| | - Celine Scornavacca
- Institut des Sciences de l’Evolution de Montpellier (ISE-M, UMR 5554) CNRS, IRD, Université de Montpellier, France
- Institut de Biologie Computationnelle, Montpellier, France
| |
Collapse
|
139
|
Bęczkowski PM, Hughes J, Biek R, Litster A, Willett BJ, Hosie MJ. Rapid evolution of the env gene leader sequence in cats naturally infected with feline immunodeficiency virus. J Gen Virol 2015; 96:893-903. [PMID: 25535323 PMCID: PMC4361796 DOI: 10.1099/vir.0.000035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
Analysing the evolution of feline immunodeficiency virus (FIV) at the intra-host level is important in order to address whether the diversity and composition of viral quasispecies affect disease progression. We examined the intra-host diversity and the evolutionary rates of the entire env and structural fragments of the env sequences obtained from sequential blood samples in 43 naturally infected domestic cats that displayed different clinical outcomes. We observed in the majority of cats that FIV env showed very low levels of intra-host diversity. We estimated that env evolved at a rate of 1.16×10(-3) substitutions per site per year and demonstrated that recombinant sequences evolved faster than non-recombinant sequences. It was evident that the V3-V5 fragment of FIV env displayed higher evolutionary rates in healthy cats than in those with terminal illness. Our study provided the first evidence that the leader sequence of env, rather than the V3-V5 sequence, had the highest intra-host diversity and the highest evolutionary rate of all env fragments, consistent with this region being under a strong selective pressure for genetic variation. Overall, FIV env displayed relatively low intra-host diversity and evolved slowly in naturally infected cats. The maximum evolutionary rate was observed in the leader sequence of env. Although genetic stability is not necessarily a prerequisite for clinical stability, the higher genetic stability of FIV compared with human immunodeficiency virus might explain why many naturally infected cats do not progress rapidly to AIDS.
Collapse
Affiliation(s)
- Paweł M Bęczkowski
- Small Animal Hospital, University of Glasgow, Glasgow, UK
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Roman Biek
- Boyd Orr Centre for Population and Ecosystem Health & Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Annette Litster
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Brian J Willett
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Margaret J Hosie
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
140
|
Chen M, Ma Y, Yang C, Yang L, Chen H, Dong L, Dai J, Jia M, Lu L. The combination of phylogenetic analysis with epidemiological and serological data to track HIV-1 transmission in a sexual transmission case. PLoS One 2015; 10:e0119989. [PMID: 25807147 PMCID: PMC4373787 DOI: 10.1371/journal.pone.0119989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2014] [Accepted: 01/24/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To investigate the linkage of HIV transmission from a man to a woman through unprotected sexual contact without disclosing his HIV-positive status. METHODS Combined with epidemiological information and serological tests, phylogenetic analysis was used to test the a priori hypothesis of HIV transmission from the man to the woman. Control subjects, infected with HIV through heterosexual intercourse, from the same location were also sampled. Phylogenetic analyses were performed using the consensus gag, pol and env sequences obtained from blood samples of the man, the woman and the local control subjects. The env quasispecies of the man, the woman, and two controls were also obtained using single genome amplification and sequencing (SGA/S) to explore the paraphyletic relationship by phylogenetic analysis. RESULTS Epidemiological information and serological tests indicated that the man was infected with HIV-1 earlier than the woman. Phylogenetic analyses of the consensus sequences showed a monophyletic cluster for the man and woman in all three genomic regions. Furthermore, gag sequences of the man and woman shared a unique recombination pattern from subtype B and C, which was different from those of CRF07_BC or CRF08_BC observed in the local samples. These indicated that the viral sequences from the two subjects display a high level of similarity. Further, viral quasispecies from the man exhibited a paraphyletic relationship with those from the woman in the Bayesian and maximum-likelihood (ML) phylogenetic trees of the env region, which supported the transmission direction from the man to the woman. CONCLUSIONS In the context of epidemiological and serological evidence, the results of phylogenetic analyses support the transmission from the man to the woman.
Collapse
Affiliation(s)
- Min Chen
- Center for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan 650022, China
| | - Yanling Ma
- Center for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan 650022, China
| | - Chaojun Yang
- Center for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan 650022, China
| | - Li Yang
- Center for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan 650022, China
| | - Huichao Chen
- Center for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan 650022, China
| | - Lijuan Dong
- Center for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan 650022, China
| | - Jie Dai
- Center for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan 650022, China
| | - Manhong Jia
- Center for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan 650022, China
- * E-mail: (LL); (MJ)
| | - Lin Lu
- Center for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan 650022, China
- College of Public Health, Kunming Medical University, Kunming, Yunnan 650500, China
- * E-mail: (LL); (MJ)
| |
Collapse
|
141
|
Hartfield M, Alizon S. Within-host stochastic emergence dynamics of immune-escape mutants. PLoS Comput Biol 2015; 11:e1004149. [PMID: 25785434 PMCID: PMC4365036 DOI: 10.1371/journal.pcbi.1004149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2014] [Accepted: 01/22/2015] [Indexed: 12/28/2022] Open
Abstract
Predicting the emergence of new pathogenic strains is a key goal of evolutionary epidemiology. However, the majority of existing studies have focussed on emergence at the population level, and not within a host. In particular, the coexistence of pre-existing and mutated strains triggers a heightened immune response due to the larger total pathogen population; this feedback can smother mutated strains before they reach an ample size and establish. Here, we extend previous work for measuring emergence probabilities in non-equilibrium populations, to within-host models of acute infections. We create a mathematical model to investigate the emergence probability of a fitter strain if it mutates from a self-limiting strain that is guaranteed to go extinct in the long-term. We show that ongoing immune cell proliferation during the initial stages of infection causes a drastic reduction in the probability of emergence of mutated strains; we further outline how this effect can be accurately measured. Further analysis of the model shows that, in the short-term, mutant strains that enlarge their replication rate due to evolving an increased growth rate are more favoured than strains that suffer a lower immune-mediated death rate (‘immune tolerance’), as the latter does not completely evade ongoing immune proliferation due to inter-parasitic competition. We end by discussing the model in relation to within-host evolution of human pathogens (including HIV, hepatitis C virus, and cancer), and how ongoing immune growth can affect their evolutionary dynamics. The ongoing evolution of infectious diseases provides a constant health threat. This evolution can either result in the production of new pathogens, or new strains of existing pathogens that escape prevailing drug treatments or immune responses. The latter process, also known as immune escape, is a predominant reason for the persistence of several viruses, including HIV and hepatitis C virus (HCV), in their human host. As a consequence, the within-host emergence of new strains has been the intense focus of modelling studies. However, existing models have neglected important feedbacks that affects this emergence probability. Specifically, once a mutated pathogen arises that spreads more quickly than the initial (resident) strain, it potentially triggers a heightened immune response that can eliminate the mutated strain before it spreads. Our study outlines novel mathematical modelling techniques that accurately quantify how ongoing immune growth reduces the emergence probability of mutated pathogenic strains over the course of an infection. Analysis of this model suggests that, in order to enlarge its emergence probability, it is evolutionary beneficial for a mutated strain to increase its growth rate rather than tolerate immunity by having a lower immune-mediated death-rate. Our model can be readily applied to existing within-host data, as demonstrated with application to HIV, HCV, and cancer dynamics.
Collapse
Affiliation(s)
- Matthew Hartfield
- Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM1, UM2), 911 avenue Agropolis, Montpellier, France
- * E-mail:
| | - Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM1, UM2), 911 avenue Agropolis, Montpellier, France
| |
Collapse
|
142
|
Li G, Piampongsant S, Faria NR, Voet A, Pineda-Peña AC, Khouri R, Lemey P, Vandamme AM, Theys K. An integrated map of HIV genome-wide variation from a population perspective. Retrovirology 2015; 12:18. [PMID: 25808207 PMCID: PMC4358901 DOI: 10.1186/s12977-015-0148-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2014] [Accepted: 01/28/2015] [Indexed: 01/01/2023] Open
Abstract
Background The HIV pandemic is characterized by extensive genetic variability, which has challenged the development of HIV drugs and vaccines. Although HIV genomes have been classified into different types, groups, subtypes and recombinants, a comprehensive study that maps HIV genome-wide diversity at the population level is still lacking to date. This study aims to characterize HIV genomic diversity in large-scale sequence populations, and to identify driving factors that shape HIV genome diversity. Results A total of 2996 full-length genomic sequences from 1705 patients infected with 16 major HIV groups, subtypes and circulating recombinant forms (CRFs) were analyzed along with structural, immunological and peptide inhibitor information. Average nucleotide diversity of HIV genomes was almost 50% between HIV-1 and HIV-2 types, 37.5% between HIV-1 groups, 14.7% between HIV-1 subtypes, 8.2% within individual HIV-1 subtypes and less than 1% within single patients. Along the HIV genome, diversity patterns and compositions of nucleotides and amino acids were highly similar across different groups, subtypes and CRFs. Current HIV-derived peptide inhibitors were predominantly derived from conserved, solvent accessible and intrinsically ordered structures in the HIV-1 subtype B genome. We identified these conserved regions in Capsid, Nucleocapsid, Protease, Integrase, Reverse transcriptase, Vpr and the GP41 N terminus as potential drug targets. In the analysis of factors that impact HIV-1 genomic diversity, we focused on protein multimerization, immunological constraints and HIV-human protein interactions. We found that amino acid diversity in monomeric proteins was higher than in multimeric proteins, and diversified positions were preferably located within human CD4 T cell and antibody epitopes. Moreover, intrinsic disorder regions in HIV-1 proteins coincided with high levels of amino acid diversity, facilitating a large number of interactions between HIV-1 and human proteins. Conclusions This first large-scale analysis provided a detailed mapping of HIV genomic diversity and highlighted drug-target regions conserved across different groups, subtypes and CRFs. Our findings suggest that, in addition to the impact of protein multimerization and immune selective pressure on HIV-1 diversity, HIV-human protein interactions are facilitated by high variability within intrinsically disordered structures. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0148-6) contains supplementary material, which is available to authorized users.
Collapse
|
143
|
Paraskevis D, Kostaki E, Beloukas A, Cañizares A, Aguilera A, Rodríguez J, Grandal M, Pernas B, Castro-Iglesias A, Mena Á, Pedreira JD, Poveda E. Molecular characterization of HIV-1 infection in Northwest Spain (2009-2013): Investigation of the subtype F outbreak. INFECTION GENETICS AND EVOLUTION 2014; 30:96-101. [PMID: 25527396 DOI: 10.1016/j.meegid.2014.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/06/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND HIV-1 subtype B is the predominant one in European regions several, while other subtypes and recombinants are also circulating with high prevalence. A sub-epidemic of subtype F with specific characteristics and low response to treatment has been recently identified in Galicia. In this study we investigated the characteristics of the HIV-1 subtype F sub-epidemic in A Coruña and Santiago de Compostela in Northwest Spain. METHODS 420 newly HIV-1 diagnosed patients during 2009-2013 were enrolled in this study. HIV-1 subtyping was carried out using automated subtyping tools and phylogenetic analysis. Molecular epidemiology investigation of subtypes B and F was performed by means of phylogenetic analysis using fast maximum likelihood. Phylodynamic analysis was performed using Bayesian method as implemented in BEAST v1.8. RESULTS Subtype B found to be the predominant (61.2% and 70.4%) followed by subtype F (25.6% and 12.0%) in both areas (A Coruña and Santiago de Compostela, respectively). The latter found to mainly spread among men having sex with men (MSM). The vast majority of subtype F lineages from both areas clustered monophyletically, while subtype B sequences clustered in several tree branches. The exponential growth of subtype F sub-epidemic dated back in 2008 by means of phylodynamic analysis. Most of new infections during 2009-2013 occurred within the subtype F transmission cluster. CONCLUSIONS Subtype F circulates at high prevalence in A Coruña and Santiago de Compostela in Northwest Spain, suggesting that the HIV-1 epidemic in this region has distinct characteristics to the rest of Spain. Subtype F has being spreading among MSM and is currently the most actively spreading network. The single cluster spread of this local sub-epidemic might provide an explanation for the distinct characteristics and the low response to antiretroviral treatment.
Collapse
Affiliation(s)
- Dimitrios Paraskevis
- National Retrovirus Reference Center, Department of Hygiene, Epidemiology and Medical Statistics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Evangelia Kostaki
- National Retrovirus Reference Center, Department of Hygiene, Epidemiology and Medical Statistics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos Beloukas
- National Retrovirus Reference Center, Department of Hygiene, Epidemiology and Medical Statistics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Institute of Infection & Global Health (IGH), University of Liverpool, Liverpool, UK
| | - Angelina Cañizares
- Service of Microbiology, INIBIC-Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Antonio Aguilera
- Service of Microbiology, Hospital Conxo-CHUS, and Department of Microbiology, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Rodríguez
- Service of Microbiology, Hospital Conxo-CHUS, and Department of Microbiology, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta Grandal
- Division of Clinical Virology, INIBIC-Complejo Hospitalario Universitario de A Coruña, Universidade da Coruña, A Coruña, Spain
| | - Berta Pernas
- Division of Clinical Virology, INIBIC-Complejo Hospitalario Universitario de A Coruña, Universidade da Coruña, A Coruña, Spain
| | - Angeles Castro-Iglesias
- Division of Clinical Virology, INIBIC-Complejo Hospitalario Universitario de A Coruña, Universidade da Coruña, A Coruña, Spain
| | - Álvaro Mena
- Division of Clinical Virology, INIBIC-Complejo Hospitalario Universitario de A Coruña, Universidade da Coruña, A Coruña, Spain
| | - José D Pedreira
- Division of Clinical Virology, INIBIC-Complejo Hospitalario Universitario de A Coruña, Universidade da Coruña, A Coruña, Spain
| | - Eva Poveda
- Division of Clinical Virology, INIBIC-Complejo Hospitalario Universitario de A Coruña, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
144
|
Bártolo I, Zakovic S, Martin F, Palladino C, Carvalho P, Camacho R, Thamm S, Clemente S, Taveira N. HIV-1 diversity, transmission dynamics and primary drug resistance in Angola. PLoS One 2014; 9:e113626. [PMID: 25479241 PMCID: PMC4257534 DOI: 10.1371/journal.pone.0113626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2014] [Accepted: 10/29/2014] [Indexed: 11/30/2022] Open
Abstract
Objectives To assess HIV-1 diversity, transmission dynamics and prevalence of transmitted drug resistance (TDR) in Angola, five years after ART scale-up. Methods Population sequencing of the pol gene was performed on 139 plasma samples collected in 2009 from drug-naive HIV-1 infected individuals living in Luanda. HIV-1 subtypes were determined using phylogenetic analysis. Drug resistance mutations were identified using the Calibrated Population Resistance Tool (CPR). Transmission networks were determined using phylogenetic analysis of all Angolan sequences present in the databases. Evolutionary trends were determined by comparison with a similar survey performed in 2001. Results 47.1% of the viruses were pure subtypes (all except B), 47.1% were recombinants and 5.8% were untypable. The prevalence of subtype A decreased significantly from 2001 to 2009 (40.0% to 10.8%, P = 0.0019) while the prevalence of unique recombinant forms (URFs) increased>2-fold (40.0% to 83.1%, P<0.0001). The most frequent URFs comprised untypable sequences with subtypes H (U/H, n = 7, 10.8%), A (U/A, n = 6, 9.2%) and G (G/U, n = 4, 6.2%). Newly identified U/H recombinants formed a highly supported monophyletic cluster suggesting a local and common origin. TDR mutation K103N was found in one (0.7%) patient (1.6% in 2001). Out of the 364 sequences sampled for transmission network analysis, 130 (35.7%) were part of a transmission network. Forty eight transmission clusters were identified; the majority (56.3%) comprised sequences sampled in 2008–2010 in Luanda which is consistent with a locally fuelled epidemic. Very low genetic distance was found in 27 transmission pairs sampled in the same year, suggesting recent transmission events. Conclusions Transmission of drug resistant strains was still negligible in Luanda in 2009, five years after the scale-up of ART. The dominance of small and recent transmission clusters and the emergence of new URFs are consistent with a rising HIV-1 epidemics mainly driven by heterosexual transmission.
Collapse
Affiliation(s)
- Inês Bártolo
- Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular e Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Suzana Zakovic
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Francisco Martin
- Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular e Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Claudia Palladino
- Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular e Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Carvalho
- Laboratório de Biologia Molecular, Centro Hospitalar Lisboa Ocidental, Hospital Egas Moniz, Lisboa, Portugal
| | - Ricardo Camacho
- Laboratório de Biologia Molecular, Centro Hospitalar Lisboa Ocidental, Hospital Egas Moniz, Lisboa, Portugal
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sven Thamm
- Abbott GmbH & Co. KG, Wiesbaden, Germany
| | - Sofia Clemente
- Hospital da Divina Providência, Serviço de Doenças Infecciosas, Luanda, Angola
| | - Nuno Taveira
- Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular e Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
- * E-mail:
| |
Collapse
|
145
|
Nali LHDS, Moraes L, Fink MCD, Callegaro D, Romano CM, Oliveira ACPD. Natalizumab treatment for multiple sclerosis: updates and considerations for safer treatment in JCV positive patients. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:960-5. [PMID: 25465776 DOI: 10.1590/0004-282x20140142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/21/2014] [Accepted: 08/04/2014] [Indexed: 01/26/2023]
Abstract
Natalizumab is currently one of the best options for treatment of patients with Multiple Sclerosis who have failed traditional prior therapies. However, prolonged use, prior immunosuppressive therapy and anti-JCV antibody status have been associated with increased risk of developing progressive multifocal leukoencephalopathy (PML). The evaluation of these conditions has been used to estimate risks of PML in these patients, and distinct (sometimes extreme) approaches are used to avoid the PML onset. At this time, the biggest issue facing the use of Natalizumab is how to get a balance between the risks and the benefits of the treatment. Hence, strategies for monitor JCV-positive patients undergoing Natalizumab treatment are deeply necessary. To illustrate it, we monitored JCV/DNA in blood and urine of a patient receiving Natalizumab for 12 months. We also bring to discussion the effectiveness of the current methods used for risk evaluation, and the real implications of viral reactivation.
Collapse
Affiliation(s)
- Luiz Henrique da Silva Nali
- Departamento de Moléstias Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Lenira Moraes
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Maria Cristina Domingues Fink
- Departamento de Moléstias Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Dagoberto Callegaro
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Camila Malta Romano
- Departamento de Moléstias Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
146
|
Moonsamy S, Bhakat S, Soliman MES. Dynamic features of apo and bound HIV-Nef protein reveal the anti-HIV dimerization inhibition mechanism. J Recept Signal Transduct Res 2014; 35:346-56. [DOI: 10.3109/10799893.2014.984310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
|
147
|
Deep sequencing of HIV-1 near full-length proviral genomes identifies high rates of BF1 recombinants including two novel circulating recombinant forms (CRF) 70_BF1 and a disseminating 71_BF1 among blood donors in Pernambuco, Brazil. PLoS One 2014; 9:e112674. [PMID: 25401747 PMCID: PMC4234413 DOI: 10.1371/journal.pone.0112674] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2014] [Accepted: 10/10/2014] [Indexed: 01/05/2023] Open
Abstract
Background The findings of frequent circulation of HIV-1 subclade F1 viruses and the scarcity of BF1 recombinant viruses based on pol subgenomic fragment sequencing among blood donors in Pernambuco (PE), Northeast of Brazil, were reported recently. Here, we aimed to determine whether the classification of these strains (n = 26) extends to the whole genome sequences. Methods Five overlapping amplicons spanning the HIV near full-length genomes (NFLGs) were PCR amplified from peripheral blood mononuclear cells (PBMCs) of 26 blood donors. The amplicons were molecularly bar-coded, pooled, and sequenced by Illumina paired-end protocol. The prevalence of viral variants containing drug resistant mutations (DRMs) was compared between plasma and PBMCs. Results Of the 26 samples studied, 20 NFLGs and 4 partial fragments were de novo assembled into contiguous sequences and successfully subtyped. Two distinct BF1 recombinant profiles designated CRF70_BF1 and CRF71_BF1, with 4 samples in profile I and 11 in profile II were detected and thus constitute two novel recombinant forms circulating in PE. Evidence of dual infections was detected in four patients co-infected with distinct HIV-1 subtypes. According to our estimate, the new CRF71_BF1 accounts for 10% of the HIV-1 circulating strains among blood donors in PE. Discordant data between the plasma and PBMCs-virus were found in 15 of 24 donors. Six of these strains displayed major DRMs only in PBMCs and four of which had detectable DRMs changes at prevalence between 1-20% of the sequenced population. Conclusions The high percentage of the new RF71_BF1 and other BF1 recombinants found among blood donors in Pernambuco, coupled with high rates of transmitted DRMs and dual infections confirm the need for effective surveillance to monitor the prevalence and distribution of HIV variants in a variety of settings in Brazil.
Collapse
|
148
|
Armitage AE, Deforche K, Welch JJ, Van Laethem K, Camacho R, Rambaut A, Iversen AKN. Possible footprints of APOBEC3F and/or other APOBEC3 deaminases, but not APOBEC3G, on HIV-1 from patients with acute/early and chronic infections. J Virol 2014; 88:12882-94. [PMID: 25165112 PMCID: PMC4248940 DOI: 10.1128/jvi.01460-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2014] [Accepted: 08/21/2014] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Members of the apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like-3 (APOBEC3) innate cellular cytidine deaminase family, particularly APOBEC3F and APOBEC3G, can cause extensive and lethal G-to-A mutations in HIV-1 plus-strand DNA (termed hypermutation). It is unclear if APOBEC3-induced mutations in vivo are always lethal or can occur at sublethal levels that increase HIV-1 diversification and viral adaptation to the host. The viral accessory protein Vif counteracts APOBEC3 activity by binding to APOBEC3 and promoting proteasome degradation; however, the efficiency of this interaction varies, since a range of hypermutation frequencies are observed in HIV-1 patient DNA. Therefore, we examined "footprints" of APOBEC3G and APOBEC3F activity in longitudinal HIV-1 RNA pol sequences from approximately 3,000 chronically infected patients by determining whether G-to-A mutations occurred in motifs that were favored or disfavored by these deaminases. G-to-A mutations were more frequent in APOBEC3G-disfavored than in APOBEC3G-favored contexts. In contrast, mutations in APOBEC3F-disfavored contexts were relatively rare, whereas mutations in contexts favoring APOBEC3F (and possibly other deaminases) occurred 16% more often than average G-to-A mutations. These results were supported by analyses of >500 HIV-1 env sequences from acute/early infection. IMPORTANCE Collectively, our results suggest that APOBEC3G-induced mutagenesis is lethal to HIV-1, whereas mutagenesis caused by APOBEC3F and/or other deaminases may result in sublethal mutations that might facilitate viral diversification. Therefore, Vif-specific cytotoxic T lymphocyte (CTL) responses and drugs that manipulate the interplay between Vif and APOBEC3 may have beneficial or detrimental clinical effects depending on how they affect the binding of Vif to various members of the APOBEC3 family.
Collapse
Affiliation(s)
- Andrew E Armitage
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Koen Deforche
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Kristel Van Laethem
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Ricardo Camacho
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andrew Rambaut
- Institute of Evolutionary Biology. University of Edinburgh, Edinburgh, United Kingdom
| | - Astrid K N Iversen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
149
|
Khiabanian H, Carpenter Z, Kugelman J, Chan J, Trifonov V, Nagle E, Warren T, Iversen P, Bavari S, Palacios G, Rabadan R. Viral diversity and clonal evolution from unphased genomic data. BMC Genomics 2014; 15 Suppl 6:S17. [PMID: 25573168 PMCID: PMC4240099 DOI: 10.1186/1471-2164-15-s6-s17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022] Open
Abstract
Background Clonal expansion is a process in which a single organism reproduces asexually, giving rise to a diversifying population. It is pervasive in nature, from within-host pathogen evolution to emergent infectious disease outbreaks. Standard phylogenetic tools rely on full-length genomes of individual pathogens or population consensus sequences (phased genotypes). Although high-throughput sequencing technologies are able to sample population diversity, the short sequence reads inherent to them preclude assessing whether two reads originate from the same clone (unphased genotypes). This obstacle severely limits the application of phylogenetic methods and investigation of within-host dynamics of acute infections using this rich data source. Methods We introduce two measures of diversity to study the evolution of clonal populations using unphased genomic data, which eliminate the need to construct full-length genomes. Our method follows a maximum likelihood approach to estimate evolutionary rates and times to the most recent common ancestor, based on a relaxed molecular clock model; independent of a growth model. Deviations from neutral evolution indicate the presence of selection and bottleneck events. Results We evaluated our methods in silico and then compared it against existing approaches with the well-characterized 2009 H1N1 influenza pandemic. We then applied our method to high-throughput genomic data from marburgvirus-infected non-human primates and inferred the time of infection and the intra-host evolutionary rate, and identified purifying selection in viral populations. Conclusions Our method has the power to make use of minor variants present in less than 1% of the population and capture genomic diversification within days of infection, making it an ideal tool for the study of acute RNA viral infection dynamics.
Collapse
|
150
|
Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, Tatem AJ, Sousa JD, Arinaminpathy N, Pépin J, Posada D, Peeters M, Pybus OG, Lemey P. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science 2014; 346:56-61. [PMID: 25278604 PMCID: PMC4254776 DOI: 10.1126/science.1256739] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Thirty years after the discovery of HIV-1, the early transmission, dissemination, and establishment of the virus in human populations remain unclear. Using statistical approaches applied to HIV-1 sequence data from central Africa, we show that from the 1920s Kinshasa (in what is now the Democratic Republic of Congo) was the focus of early transmission and the source of pre-1960 pandemic viruses elsewhere. Location and dating estimates were validated using the earliest HIV-1 archival sample, also from Kinshasa. The epidemic histories of HIV-1 group M and nonpandemic group O were similar until ~1960, after which group M underwent an epidemiological transition and outpaced regional population growth. Our results reconstruct the early dynamics of HIV-1 and emphasize the role of social changes and transport networks in the establishment of this virus in human populations.
Collapse
Affiliation(s)
- Nuno R Faria
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK. Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA. Centre for Immunity, Infection and Evolution, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Marc A Suchard
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1766, USA. Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA 90095-1766, USA
| | - Guy Baele
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Melissa J Ward
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Andrew J Tatem
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA. Department of Geography and Environment, University of Southampton, Highfield, Southampton, UK
| | - João D Sousa
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium. Centro de Malária e outras Doenças Tropicais and Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | | | - Jacques Pépin
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, CHUS, 3001, 12ème Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
| | - Martine Peeters
- Laboratoire Retrovirus, UMI233, Institut de Recherche pour le Développement and University of Montpellier, 911 Avenue Agropolis, BP5045, 34032 Montpellier, France
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Philippe Lemey
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|