101
|
Hsu YP, Hall E, Booher G, Murphy B, Radkov AD, Yablonowski J, Mulcahey C, Alvarez L, Cava F, Brun YV, Kuru E, VanNieuwenhze MS. Fluorogenic D-amino acids enable real-time monitoring of peptidoglycan biosynthesis and high-throughput transpeptidation assays. Nat Chem 2019; 11:335-341. [PMID: 30804500 PMCID: PMC6444347 DOI: 10.1038/s41557-019-0217-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
Peptidoglycan (PG) is an essential cell wall component that maintains the morphology and viability of nearly all bacteria. Its biosynthesis requires periplasmic transpeptidation reactions which construct peptide cross-linkages between polysaccharide chains to endow mechanical strength. However, tracking transpeptidation reaction in vivo and in vitro is challenging, mainly due to the lack of efficient, biocompatible probes. Here, we report the design, synthesis, and application of rotor-fluorogenic D-amino acids (RfDAAs) enabling real-time, continuous tracking of transpeptidation reactions. These probes enable monitoring PG biosynthesis in real time through visualizing transpeptidase reactions in live cells, as well as real-time activity assays of D,D-, L,D-transpeptidases, and sortases in vitro. The unique ability of RfDAAs to become fluorescent when incorporated into PG provides a powerful new tool to study PG biosynthesis with high temporal resolution and prospectively enable high-throughput screening for inhibitors of PG biosynthesis.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Edward Hall
- Department of Chemistry, Indiana University, Bloomington, IN, USA.,Department of Chemistry, Hanover College, Hanover, IN, USA
| | - Garrett Booher
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Brennan Murphy
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Atanas D Radkov
- Department of Chemistry, Indiana University, Bloomington, IN, USA.,Department of Biophysics and Biochemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jacob Yablonowski
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Caitlyn Mulcahey
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Laura Alvarez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA. .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succursale Centre-ville, Montréal, Canada.
| | - Erkin Kuru
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Michael S VanNieuwenhze
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA. .,Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
102
|
van Zyl WF, Deane SM, Dicks LMT. Bacteriocin production and adhesion properties as mechanisms for the anti-listerial activity of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA. Benef Microbes 2019; 10:329-349. [PMID: 30773929 DOI: 10.3920/bm2018.0141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Probiotics play an important role in maintaining a healthy and stable intestinal microbiota, primarily by preventing infection. Probiotic lactic acid bacteria (LAB) are known to be inhibitory to many bacterial enteric pathogens, including antibiotic-resistant strains. Whilst the positive role that probiotics have on human physiology, specifically in the treatment or prevention of specific infectious diseases of the gastro-intestinal tract (GIT) is known, the precise mechanistic basis of these effects remains a major research goal. In this study, molecular evidence to underpin the protective and anti-listerial effect of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA against orally administered Listeria monocytogenes EGDe in the GIT of mice is provided. Bacteriocins plantaricin 423 and mundticin ST4SA, produced by L. plantarum 423 and E. mundtii ST4SA, respectively, inhibited the growth of L. monocytogenes in vitro and in vivo. Bacteriocin-negative mutants of L. plantarum 423 and E. mundtii ST4SA failed to exclude L. monocytogenes EGDe from the gastrointestinal tract (GIT) of mice. Furthermore, L. plantarum 423 and E. mundtii ST4SA failed to inhibit recombinant strains of L. monocytogenes EGDe in vivo that expressed the immunity proteins of the two bacteriocins. These results confirmed that bacteriocins plantaricin 423 and mundticin ST4SA acted as anti-infective mediators in vivo. Compared to wild type strains, mutants of L. plantarum 423 and E. mundtii ST4SA, in which the adhesion genes were knocked out, were less effective in the exclusion of L. monocytogenes EGDe from the GIT of mice. This work demonstrates the importance of bacteriocin and adhesion genes as probiotic anti-infective mechanisms.
Collapse
Affiliation(s)
- W F van Zyl
- 1 Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch 7600, South Africa
| | - S M Deane
- 1 Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch 7600, South Africa
| | - L M T Dicks
- 1 Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch 7600, South Africa
| |
Collapse
|
103
|
Raimondi MV, Listro R, Cusimano MG, La Franca M, Faddetta T, Gallo G, Schillaci D, Collina S, Leonchiks A, Barone G. Pyrrolomycins as antimicrobial agents. Microwave-assisted organic synthesis and insights into their antimicrobial mechanism of action. Bioorg Med Chem 2019; 27:721-728. [PMID: 30711310 DOI: 10.1016/j.bmc.2019.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/23/2022]
Abstract
New compounds able to counteract staphylococcal biofilm formation are needed. In this study we investigate the mechanism of action of pyrrolomycins, whose potential as antimicrobial agents has been demonstrated. We performed a new efficient and easy method to use microwave organic synthesis suitable for obtaining pyrrolomycins in good yields and in suitable amount for their in vitro in-depth investigation. We evaluate the inhibitory activity towards Sortase A (SrtA), a transpeptidase responsible for covalent anchoring in Gram-positive peptidoglycan of many surface proteins involved in adhesion and in biofilm formation. All compounds show a good inhibitory activity toward SrtA, having IC50 values ranging from 130 to 300 µM comparable to berberine hydrochloride. Of note compound 1d shows a good affinity in docking experiment to SrtA and exhibits the highest capability to interfere with biofilm formation of S. aureus showing an IC50 of 3.4 nM. This compound is also effective in altering S. aureus murein hydrolase activity that is known to be responsible for degradation, turnover, and maturation of bacterial peptidoglycan and involved in the initial stages of S. aureus biofilm formation.
Collapse
Affiliation(s)
- Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Roberta Listro
- Drug Sciences Department, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| | - Maria Grazia Cusimano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Mery La Franca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Teresa Faddetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Simona Collina
- Drug Sciences Department, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| | - Ainars Leonchiks
- APP Latvian Biomedical Research and Study Centre (BMC), Rātsupītes iela 1, LV-1067 Rīga, Latvia.
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
104
|
Affiliation(s)
- Lin-Lin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| |
Collapse
|
105
|
Wu YP, Liu XY, Bai JR, Xie HC, Ye SL, Zhong K, Huang YN, Gao H. Inhibitory effect of a natural phenolic compound, 3-p-trans-coumaroyl-2-hydroxyquinic acid against the attachment phase of biofilm formation of Staphylococcus aureus through targeting sortase A. RSC Adv 2019; 9:32453-32461. [PMID: 35529766 PMCID: PMC9073164 DOI: 10.1039/c9ra05883d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
3-p-trans-Coumaroyl-2-hydroxyquinic acid (CHQA), a natural phenolic compound, prevented Staphylococcus aureus biofilm formation due to the inhibition of the initial attachment stage of biofilm development by targeting sortase A.
Collapse
Affiliation(s)
- Yan-Ping Wu
- Department of Food Science and Technology
- College of Biomass and Engineering and Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- China
| | - Xiao-Yan Liu
- Department of Food Science and Technology
- College of Biomass and Engineering and Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- China
| | - Jin-Rong Bai
- Department of Food Science and Technology
- College of Biomass and Engineering and Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- China
| | - Hong-Chen Xie
- Department of Public Health
- West China Medical School of Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Si-Liang Ye
- College of Animal Science
- Jilin University
- Changchun 130062
- People's Republic of China
| | - Kai Zhong
- Department of Food Science and Technology
- College of Biomass and Engineering and Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- China
| | - Yi-Na Huang
- Department of Public Health
- West China Medical School of Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Hong Gao
- Department of Food Science and Technology
- College of Biomass and Engineering and Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
106
|
Schneewind O, Missiakas D. Sortases, Surface Proteins, and Their Roles in Staphylococcus aureus Disease and Vaccine Development. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0004-2018. [PMID: 30737913 PMCID: PMC6386163 DOI: 10.1128/microbiolspec.psib-0004-2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Sortases cleave short peptide motif sequences at the C-terminal end of secreted surface protein precursors and either attach these polypeptides to the peptidoglycan of Gram-positive bacteria or promote their assembly into pilus structures that are also attached to peptidoglycan. Sortase A, the enzyme first identified in the human pathogen Staphylococcus aureus, binds LPXTG motif sorting signals, cleaves between threonine (T) and glycine (G) residues, and forms an acyl enzyme between its active-site cysteine thiol and the carboxyl group of threonine (T). Sortase A acyl enzyme is relieved by the nucleophilic attack of the cross bridge amino group within lipid II, thereby generating surface protein linked to peptidoglycan precursor. Such products are subsequently incorporated into the cell wall envelope by enzymes of the peptidoglycan synthesis pathway. Surface proteins linked to peptidoglycan may be released from the bacterial envelope to diffuse into host tissues and fulfill specific biological functions. S. aureus sortase A is essential for host colonization and for the pathogenesis of invasive diseases. Staphylococcal sortase-anchored surface proteins fulfill key functions during the infectious process, and vaccine-induced antibodies targeting surface proteins may provide protection against S. aureus. Alternatively, small-molecule inhibitors of sortase may be useful agents for the prevention of S. aureus colonization and invasive disease.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
107
|
Wang J, Song M, Pan J, Shen X, Liu W, Zhang X, Li H, Deng X. Quercetin impairs Streptococcus pneumoniae biofilm formation by inhibiting sortase A activity. J Cell Mol Med 2018; 22:6228-6237. [PMID: 30334338 PMCID: PMC6237587 DOI: 10.1111/jcmm.13910] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
Biofilm formation mediated by sortase A (srtA) is important for bacterial colonisation and resistance to antibiotics. Thus, the inhibitor of SrtA may represent a promising agent for bacterial infection. The structure of Streptococcus pneumoniae D39 srtA has been characterised by crystallisation. Site‐directed mutagenesis was used for the determination of the key residues for the activity of S. pneumoniae D39 srtA. An effective srtA inhibitor, quercetin, and its mechanism was further identified using srtA activity inhibition assay and molecular modelling. In this study, the crystal structure of S. pneumoniae D39 srtA has been solved and shown to contain a unique domain B. Additionally, its transpeptidase activity was evaluated in vitro. Based on the structure, we identified Cys207 as the catalytic residue, with His141 and Arg215 serving as binding sites for the peptide substrate. We found that quercetin can specifically compete with the natural substrate, leading to a significant decrease in the catalytic activity of this enzyme. In cells co‐cultured with this small molecule inhibitor, NanA cannot anchor to the cell wall effectively, and biofilm formation and biomass decrease significantly. Interestingly, when we supplemented cultures with sialic acid, a crucial signal for pneumococcal coloniation and the invasion of the host in the co‐culture system, biofilm loss did not occur. This result indicates that quercetin inhibits biofilm formation by affecting sialic acid production. In conclusion, the inhibition of pneumococcal srtA by the small molecule quercetin offers a novel strategy for pneumococcal preventative therapy.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Song
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Juan Pan
- Tianjin International Travel Healthcare Center, Tianjin, China
| | - Xue Shen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wentao Liu
- Heilongjiang Veterinary Drug and Feed Super Vision Institute, Haerbin, China
| | - Xueke Zhang
- Heilongjiang Veterinary Drug and Feed Super Vision Institute, Haerbin, China
| | - Hongen Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
108
|
Wójcik M, Eleftheriadis N, Zwinderman MRH, Dömling ASS, Dekker FJ, Boersma YL. Identification of potential antivirulence agents by substitution-oriented screening for inhibitors of Streptococcus pyogenes sortase A. Eur J Med Chem 2018; 161:93-100. [PMID: 30343193 DOI: 10.1016/j.ejmech.2018.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
Antimicrobial resistance resulting in ineffective treatment of infectious diseases is an increasing global problem, particularly in infections with pathogenic bacteria. In some bacteria, such as Streptococcus pyogenes, the pathogenicity is strongly linked to the attachment of virulence factors. Their attachment to the cellular membrane is a transpeptidation reaction, catalyzed by sortase enzymes. As such, sortases pose an interesting target for the development of new antivirulence strategies that could yield novel antimicrobial drugs. Using the substitution-oriented fragment screening (SOS) approach, we discovered a potent and specific inhibitor (C10) of sortase A from S. pyogenes. The inhibitor C10 showed high specificity towards S. pyogenes sortase A, with an IC50 value of 10 μM and a Kd of 60 μM. We envision that this inhibitor could be employed as a starting point for further exploration of sortase's potential as therapeutic target for antimicrobial drug development.
Collapse
Affiliation(s)
- Magdalena Wójcik
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| | - Nikolaos Eleftheriadis
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands; University of Groningen, Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| | - Martijn R H Zwinderman
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| | - Alexander S S Dömling
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Drug Design, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| | - Frank J Dekker
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| | - Ykelien L Boersma
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
109
|
Erianin against Staphylococcus aureus Infection via Inhibiting Sortase A. Toxins (Basel) 2018; 10:toxins10100385. [PMID: 30249042 PMCID: PMC6215257 DOI: 10.3390/toxins10100385] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/08/2018] [Accepted: 09/20/2018] [Indexed: 02/04/2023] Open
Abstract
With continuous emergence and widespread of multidrug-resistant Staphylococcus aureus infections, common antibiotics have become ineffective in treating these infections in the clinical setting. Anti-virulence strategies could be novel, effective therapeutic strategies against drug-resistant bacterial infections. Sortase A (srtA), a transpeptidase in gram-positive bacteria, can anchor surface proteins that play a vital role in pathogenesis of these bacteria. SrtA is known as a potential antivirulent drug target to treat bacterial infections. In this study, we found that erianin, a natural bibenzyl compound, could inhibit the activity of srtA in vitro (half maximal inhibitory concentration-IC50 = 20.91 ± 2.31 μg/mL, 65.7 ± 7.2 μM) at subminimum inhibitory concentrations (minimum inhibitory concentrations-MIC = 512 μg/mL against S. aureus). The molecular mechanism underlying the inhibition of srtA by erianin was identified using molecular dynamics simulation: erianin binds to srtA residues Ile182, Val193, Trp194, Arg197, and Ile199, forming a stable bond via hydrophobic interactions. In addition, the activities of S. aureus binding to fibronectin and biofilm formation were inhibited by erianin, when co-culture with S. aureus. In vivo, erianin could improve the survival in mice that infected with S. aureus by tail vein injection. Experimental results showed that erianin is a potential novel therapeutic compound against S. aureus infections via affecting srtA.
Collapse
|
110
|
Stanborough T, Suryadinata R, Fegan N, Powell SM, Tamplin M, Nuttall SD, Chandry PS. Characterisation of the Brochothrix thermosphacta sortase A enzyme. FEMS Microbiol Lett 2018; 365:5056718. [PMID: 30052925 DOI: 10.1093/femsle/fny184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Gram-positive bacteria utilise class A sortases to coat the surface of their cells with a diversity of proteins that facilitate interactions with their environment and play fundamental roles in cell physiology and virulence. A putative sortase A gene was identified in the genome of the poorly studied meat spoilage bacterium Brochothrix thermosphacta. To understand how this bacterium mediates interactions with its environment, an N-terminal truncated, His-tagged variant of this protein (His6-BtSrtA) was expressed and purified. Catalytic activity of recombinant His6-BtSrtA was investigated, including sorting motif recognition of target proteins and bioconjugation activity. Further, the B. thermosphacta genome was examined for the presence of sortase A (SrtA) protein substrates. His6-BtSrtA readily formed intermediate complexes with LPXTG-tagged proteins. Although the reaction was inefficient, nucleophilic attack of the resultant thioacyl intermediates by tri-glycine was observed. Genome examination identified 11 potential SrtA substrates, two of which contained protein domains associated with adherence of pathogens to host extracellular matrix proteins and cells, suggesting the B. thermosphacta SrtA may be indirectly involved in its attachment to meat surfaces. Thus, further work in this area could provide crucial insight into molecular mechanisms involved in the colonisation of meat by B. thermosphacta.
Collapse
Affiliation(s)
- Tamsyn Stanborough
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia.,CSIRO Manufacturing, Parkville, VIC 3030, Australia
| | | | - Narelle Fegan
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia
| | - Shane M Powell
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mark Tamplin
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | | | | |
Collapse
|
111
|
Challagundla L, Reyes J, Rafiqullah I, Sordelli DO, Echaniz-Aviles G, Velazquez-Meza ME, Castillo-Ramírez S, Fittipaldi N, Feldgarden M, Chapman SB, Calderwood MS, Carvajal LP, Rincon S, Hanson B, Planet PJ, Arias CA, Diaz L, Robinson DA. Phylogenomic Classification and the Evolution of Clonal Complex 5 Methicillin-Resistant Staphylococcus aureus in the Western Hemisphere. Front Microbiol 2018; 9:1901. [PMID: 30186248 PMCID: PMC6113392 DOI: 10.3389/fmicb.2018.01901] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Clonal complex 5 methicillin-resistant Staphylococcus aureus (CC5-MRSA) includes multiple prevalent clones that cause hospital-associated infections in the Western Hemisphere. Here, we present a phylogenomic study of these MRSA to reveal their phylogeny, spatial and temporal population structure, and the evolution of selected traits. We studied 598 genome sequences, including 409 newly generated sequences, from 11 countries in Central, North, and South America, and references from Asia and Europe. An early-branching CC5-Basal clade is well-dispersed geographically, is methicillin-susceptible and MRSA predominantly of ST5-IV such as the USA800 clone, and includes separate subclades for avian and porcine strains. In the early 1970s and early 1960s, respectively, two clades appeared that subsequently underwent major expansions in the Western Hemisphere: a CC5-I clade in South America and a CC5-II clade largely in Central and North America. The CC5-I clade includes the ST5-I Chilean/Cordobes clone, and the ST228-I South German clone as an early offshoot, but is distinct from other ST5-I clones from Europe that nest within CC5-Basal. The CC5-II clade includes divergent strains of the ST5-II USA100 clone, various other clones, and most known vancomycin-resistant strains of S. aureus, but is distinct from ST5-II strain N315 from Japan that nests within CC5-Basal. The recombination rate of CC5 was much lower than has been reported for other S. aureus genetic backgrounds, which indicates that recurrence of vancomycin resistance in CC5 is not likely due to an enhanced promiscuity. An increased number of antibiotic resistances and decreased number of toxins with distance from the CC5 tree root were observed. Of note, the expansions of the CC5-I and CC5-II clades in the Western Hemisphere were preceded by convergent gains of resistance to fluoroquinolone, macrolide, and lincosamide antibiotics, and convergent losses of the staphylococcal enterotoxin p (sep) gene from the immune evasion gene cluster of phage ϕSa3. Unique losses of surface proteins were also noted for these two clades. In summary, our study has determined the relationships of different clades and clones of CC5 and has revealed genomic changes for increased antibiotic resistance and decreased virulence associated with the expansions of these MRSA in the Western Hemisphere.
Collapse
Affiliation(s)
- Lavanya Challagundla
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Iftekhar Rafiqullah
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Daniel O. Sordelli
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Ciencias y Tecnicas, Buenos Aires, Argentina
| | | | | | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Michael Feldgarden
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, United States
| | | | - Michael S. Calderwood
- Section of Infectious Disease and International Health, Dartmouth–Hitchcock Medical Center, Lebanon, NH, United States
| | - Lina P. Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Sandra Rincon
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Blake Hanson
- Division of Infectious Diseases and Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, TX, United States
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Paul J. Planet
- Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cesar A. Arias
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
- Division of Infectious Diseases and Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, TX, United States
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - D. Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
112
|
|
113
|
Lentz CS, Sheldon JR, Crawford LA, Cooper R, Garland M, Amieva MR, Weerapana E, Skaar EP, Bogyo M. Identification of a S. aureus virulence factor by activity-based protein profiling (ABPP). Nat Chem Biol 2018; 14:609-617. [PMID: 29769740 PMCID: PMC6202179 DOI: 10.1038/s41589-018-0060-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
Serine hydrolases play diverse roles in regulating host-pathogen interactions in a number of organisms, yet few have been characterized in the human pathogen Staphylococcus aureus. Here we describe a chemical proteomic screen that identified ten previously uncharacterized S. aureus serine hydrolases that mostly lack human homologs. We termed these enzymes fluorophosphonate-binding hydrolases (FphA-J). One hydrolase, FphB, can process short fatty acid esters, exhibits increased activity in response to host cell factors, is located predominantly on the bacterial cell surface in a subset of cells, and is concentrated in the division septum. Genetic disruption of fphB confirmed that the enzyme is dispensable for bacterial growth in culture but crucial for establishing infection in distinct sites in vivo. A selective small molecule inhibitor of FphB effectively reduced infectivity in vivo, suggesting that it may be a viable therapeutic target for the treatment or management of Staphylococcus infections.
Collapse
Affiliation(s)
- Christian S Lentz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica R Sheldon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa A Crawford
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Rachel Cooper
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manuel R Amieva
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
114
|
Krishnamoorthy R, Athinarayanan J, Periasamy VS, Adisa AR, Al-Shuniaber MA, Gassem MA, Alshatwi AA. Antimicrobial activity of nanoemulsion on drug-resistant bacterial pathogens. Microb Pathog 2018; 120:85-96. [PMID: 29684541 DOI: 10.1016/j.micpath.2018.04.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 02/02/2023]
Abstract
The appearance of drug-resistant (DR) bacteria in the community is a crucial development, and is associated with increased morbidity, mortality, healthcare costs, and antibiotic use. Natural oil nanoemulsions (NEs) have potential for antimicrobial applications. In the present study, we determined the antimicrobial activity of an NE against DR bacterial pathogens in vitro. The NE comprised Cleome viscosa essential oil, Tween 80 nonionic surfactant, and water. We found that an NE with a droplet size of 7 nm and an oil:surfactant (v/v) ratio of 1:3 was effective against methicillin-resistant Staphylococcus aureus (MRSA), DR Streptococcus pyogenes, and DR extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Fourier-transform infrared (FTIR) spectroscopy revealed that NE treatment modified the functional groups of lipids, proteins, and nucleic acids in DR bacterial cells. Scanning electron microscopy (SEM) showed damage to the cell membranes and walls of NE-treated DR bacteria. These alterations were caused by bioactive compounds with wide-spectrum enzyme-inhibiting activity in the NE, such as β-sitosterol, demecolcine, campesterol, and heneicosyl formate. The results suggest that the nanoemulsion is effective against DR bacteria, and acts by inhibiting the drug efflux mechanism of DR strains.
Collapse
Affiliation(s)
- Rajapandiyan Krishnamoorthy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Abdulraheem R Adisa
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Mohammed A Al-Shuniaber
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Mustafa A Gassem
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia.
| |
Collapse
|
115
|
Staphylococcal Protein A Contributes to Persistent Colonization of Mice with Staphylococcus aureus. J Bacteriol 2018; 200:JB.00735-17. [PMID: 29440258 DOI: 10.1128/jb.00735-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus persistently colonizes the nasopharynx in humans, which increases the risk for invasive diseases, such as skin infection and bacteremia. Nasal colonization triggers IgG responses against staphylococcal surface antigens; however, these antibodies cannot prevent subsequent colonization or disease. Here, we describe S. aureus WU1, a multilocus sequence type 88 (ST88) isolate that persistently colonizes the nasopharynx in mice. We report that staphylococcal protein A (SpA) is required for persistence of S. aureus WU1 in the nasopharynx. Compared to animals colonized by wild-type S. aureus, mice colonized with the Δspa variant mount increased IgG responses against staphylococcal colonization determinants. Immunization of mice with a nontoxigenic SpA variant, which cannot cross-link B cell receptors and divert antibody responses, elicits protein A-neutralizing antibodies that promote IgG responses against colonizing S. aureus and diminish pathogen persistence.IMPORTANCE Staphylococcus aureus persistently colonizes the nasopharynx in about one-third of the human population, thereby promoting community- and hospital-acquired infections. Antibiotics are currently used for decolonization of individuals at increased risk of infection. However, the efficacy of antibiotics is limited by recolonization and selection for drug-resistant strains. Here, we propose a model of how staphylococcal protein A (SpA), a B cell superantigen, modifies host immune responses during colonization to support continued persistence of S. aureus in the nasopharynx. We show that this mechanism can be thwarted by vaccine-induced anti-SpA antibodies that promote IgG responses against staphylococcal antigens and diminish colonization.
Collapse
|
116
|
Hou X, Wang M, Wen Y, Ni T, Guan X, Lan L, Zhang N, Zhang A, Yang CG. Quinone skeleton as a new class of irreversible inhibitors against Staphylococcus aureus sortase A. Bioorg Med Chem Lett 2018; 28:1864-1869. [PMID: 29650293 DOI: 10.1016/j.bmcl.2018.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023]
Abstract
Sortase A (SrtA) anchors surface proteins to the cell wall and aids biofilm formation during infection, which functions as a key virulence factor of important Gram-positive pathogens, such as Staphylococcus aureus. At present researchers need a way in which to validate whether or not SrtA is a druggable target alternative to the conventional antibiotic targets in the mechanism. In this study, we performed a high-throughput screening and identified a new class of potential inhibitors of S. aureus SrtA, which are derived from natural products and contain the quinone skeleton. Compound 283 functions as an irreversible inhibitor that covalently alkylates the active site Cys184 of SrtA. NMR analysis confirms the direct interaction of the small-molecule inhibitor towards SrtA protein. The anchoring of protein A (SpA) to the cell wall and the biofilm formation are significantly attenuated when the S. aureus Newman strain is cultured in the presence of inhibitor. Our study indicates that compound 283 could be a potential hit for the development of new anti-virulence agents against S. aureus infections by covalently targeting SrtA.
Collapse
Affiliation(s)
- Xiaochen Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Meining Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Yi Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Tengfeng Ni
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Xiangna Guan
- Ministry of Education, School of Pharmacy, Fudan University, 826 ZhangHeng Road, Shanghai 201203, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China
| | - Naixia Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai 201203, China.
| |
Collapse
|
117
|
Niu X, Gao Y, Yu Y, Yang Y, Wang G, Sun L, Wang H. Molecular Modelling reveals the inhibition mechanism and structure-activity relationship of curcumin and its analogues to Staphylococcal aureus Sortase A. J Biomol Struct Dyn 2018; 37:1220-1230. [PMID: 29546799 DOI: 10.1080/07391102.2018.1453380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies found that the activity of Sortase A, a bacterial surface protein from Staphylococcus aureus, was inhibited by curcumin and its analogues. To explore this inhibitory mechanism, Sortase A and its inhibitors in complex systems were studied by molecular docking, molecular modelling, binding energy decomposition calculation and steered molecular dynamics simulations. Energy decomposition analysis indicated that PRO-163, LEU-169, GLN-172, ILE-182 and ILE-199 are key residues in Sortase A-inhibitor complexes. Furthermore, interactions between the methoxyl group on the benzene ring in the conjugated molecule (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and VAL-168, LEU-169 and GLN-172 induce the inhibitory activity based on the energy decomposition and distance analyses between the whole residues and inhibitors. However, because of its coiled structure, the non-conjugated molecule, tetrahydrocurcumin, with key residues in the binding sites of Sortase A, interacted weakly with SrtA, leading to the loss of inhibitory activity. Based on these results, the methoxyl group on the benzene ring in the conjugated molecule largely influenced the inhibitory activity of the Sortase A inhibitors.
Collapse
Affiliation(s)
- Xiaodi Niu
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Yawen Gao
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Yiding Yu
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Yanan Yang
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Guizhen Wang
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Lin Sun
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Hongsu Wang
- a College of Food Science and Engineering , Jilin University , Changchun , China
| |
Collapse
|
118
|
Wang J, Li H, Pan J, Dong J, Zhou X, Niu X, Deng X. Oligopeptide Targeting Sortase A as Potential Anti-infective Therapy for Staphylococcus aureus. Front Microbiol 2018; 9:245. [PMID: 29491861 PMCID: PMC5817083 DOI: 10.3389/fmicb.2018.00245] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/31/2018] [Indexed: 01/13/2023] Open
Abstract
Sortase A (SrtA)-catalyzed anchorage of surface proteins in most Gram-positive bacteria is indispensable for their virulence, suggesting that this transpeptidase is a promising target for antivirulence therapy. Here, an oligopeptide, LPRDA, was identified as an effective inhibitor of SrtA via virtual screening based on the LPXTG substrate sequence, and it was found to inhibit SrtA activity in vitro and in vivo (IC50 = 10.61 μM) by competitively occupying the active site of SrtA. Further, the oligopeptide treatment had no anti-Staphylococcus aureus activity, but it provided protection against S. aureus-induced mastitis in a mouse model. These findings indicate that the oligopeptide could be used as an effective anti-infective agent for the treatment of infection caused by S. aureus or other Gram-positive bacteria via the targeting of SrtA.
Collapse
Affiliation(s)
- Jianfeng Wang
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongen Li
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Juan Pan
- Tianjin International Travel Healthcare Center, Tianjin, China
| | - Jing Dong
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuan Zhou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
119
|
Isolation of a Membrane Protein Complex for Type VII Secretion in Staphylococcus aureus. J Bacteriol 2017; 199:JB.00482-17. [PMID: 28874412 DOI: 10.1128/jb.00482-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/29/2017] [Indexed: 11/20/2022] Open
Abstract
The ESAT6-like secretion system (ESS) of Staphylococcus aureus promotes effector protein transport across the bacterial envelope. Genes in the ESS cluster are required for S. aureus establishment of persistent abscess lesions and the modulation of immune responses during bloodstream infections. However, the biochemical functions of most of the ESS gene products, specifically the identity of secretion machine components, are unknown. Earlier work demonstrated that deletion of essB, which encodes a membrane protein, abolishes S. aureus ESS secretion. Loss-of-function mutations truncating the essB gene product cause dominant-negative phenotypes on ESS secretion, suggesting that EssB is a central component of the secretion machinery. To test this prediction, we purified native and affinity-tagged EssB from staphylococcal membranes via dodecyl-maltoside extraction, identifying a complex assembled from five proteins, EsaA, EssA, EssB, EssD, and EsxA. All five proteins are essential for secretion, as knockout mutations in the corresponding genes abolish ESS transport. Biochemical and bacterial two-hybrid analyses revealed a direct interaction between EssB and EsaA that, by engaging a mobile machine component, EsxA, may also recruit EssA and EssD.IMPORTANCE Type VII secretion systems support the lifestyle of Gram-positive bacteria, including important human pathogens such as Bacillus anthracis, Mycobacterium tuberculosis, and Staphylococcus aureus Genes encoding SpoIIIE-FtsK-like ATPases and WXG100-secreted products are conserved features of type VII secretion pathways; however, most of the genes in T7SS clusters are not conserved between different bacterial species. Here, we isolate a complex of proteins from the membranes of S. aureus that appears to represent the core secretion machinery, designated ESS. These results suggest that three membrane proteins, EsaA, EssB, and EssA, form a secretion complex that associates with EssC, the SpoIIIE-FtsK-like ATPase, and with EsxA, a mobile machine component and member of the WXG100 protein family.
Collapse
|
120
|
Identification of Staphylococcus aureus Cellular Pathways Affected by the Stilbenoid Lead Drug SK-03-92 Using a Microarray. Antibiotics (Basel) 2017; 6:antibiotics6030017. [PMID: 28892020 PMCID: PMC5617981 DOI: 10.3390/antibiotics6030017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 09/07/2017] [Indexed: 12/16/2022] Open
Abstract
The mechanism of action for a new lead stilbene compound coded SK-03-92 with bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) is unknown. To gain insight into the killing process, transcriptional profiling was performed on SK-03-92 treated vs. untreated S. aureus. Fourteen genes were upregulated and 38 genes downregulated by SK-03-92 treatment. Genes involved in sortase A production, protein metabolism, and transcriptional regulation were upregulated, whereas genes encoding transporters, purine synthesis proteins, and a putative two-component system (SACOL2360 (MW2284) and SACOL2361 (MW2285)) were downregulated by SK-03-92 treatment. Quantitative real-time polymerase chain reaction analyses validated upregulation of srtA and tdk as well as downregulation of the MW2284/MW2285 and purine biosynthesis genes in the drug-treated population. A quantitative real-time polymerase chain reaction analysis of MW2284 and MW2285 mutants compared to wild-type cells demonstrated that the srtA gene was upregulated by both putative two-component regulatory gene mutants compared to the wild-type strain. Using a transcription profiling technique, we have identified several cellular pathways regulated by SK-03-92 treatment, including a putative two-component system that may regulate srtA and other genes that could be tied to the SK-03-92 mechanism of action, biofilm formation, and drug persisters.
Collapse
|
121
|
Zhang B, Teng Z, Li X, Lu G, Deng X, Niu X, Wang J. Chalcone Attenuates Staphylococcus aureus Virulence by Targeting Sortase A and Alpha-Hemolysin. Front Microbiol 2017; 8:1715. [PMID: 28932220 PMCID: PMC5592744 DOI: 10.3389/fmicb.2017.01715] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus (S.aureus) resistance, considered a dilemma for the clinical treatment of this bacterial infection, is becoming increasingly intractable. Novel anti-virulence strategies will undoubtedly provide a path forward in combating these resistant bacterial infections. Sortase A (SrtA), an enzyme responsible for anchoring virulence-related surface proteins, and alpha-hemolysin (Hla), a pore-forming cytotoxin, have aroused great scientific interest, as they have been regarded as targets for promising agents against S. aureus infection. In this study, we discovered that chalcone, a natural small compound with little anti-S. aureus activity, could significantly inhibit SrtA activity with an IC50 of 53.15 μM and Hla hemolysis activity with an IC50 of 17.63 μM using a fluorescence resonance energy transfer (FRET) assay and a hemolysis assay, respectively. In addition, chalcone was proven to reduce protein A (SpA) display in intact bacteria, binding to fibronectin, formation of biofilm and S. aureus invasion. Chalcone could down-regulate the transcriptional levels of the hla gene and the agrA gene, thus leading to a reduction in the expression of Hla and significant protection against Hla-mediated A549 cell injury; more importantly, chalcone could also reduce mortality in infected mice. Additionally, molecular dynamics simulations and mutagenesis assays were used to identify the mechanism of chalcone against SrtA, which implied that the inhibitory activity lies in the bond between chalcone and SrtA residues Val168, Ile182, and Arg197. Taken together, the in vivo and in vitro experiments suggest that chalcone is a potential novel therapeutic compound for S. aureus infection via targeting SrtA and Hla.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Center of Infection and Immunity, The First Hospital, Jilin UniversityChangchun, China
| | - Zihao Teng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xianhe Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Center of Infection and Immunity, The First Hospital, Jilin UniversityChangchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Center of Infection and Immunity, The First Hospital, Jilin UniversityChangchun, China
| |
Collapse
|
122
|
Suliman M, Santosh V, Seegar TCM, Dalton AC, Schultz KM, Klug CS, Barton WA. Directed evolution provides insight into conformational substrate sampling by SrtA. PLoS One 2017; 12:e0184271. [PMID: 28859178 PMCID: PMC5578623 DOI: 10.1371/journal.pone.0184271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
The Sortase family of transpeptidases are found in numerous gram-positive bacteria and involved in divergent physiological processes including anchoring of surface proteins to the cell wall as well as pili assembly. As essential proteins, sortase enzymes have been the focus of considerable interest for the development of novel anti-microbials, however, more recently their function as unique transpeptidases has been exploited for the synthesis of novel bio-conjugates. Yet, for synthetic purposes, SrtA-mediated conjugation suffers from the enzyme's inherently poor catalytic efficiency. Therefore, to identify SrtA variants with improved catalytic efficiency, we used directed evolution to select a catalytically enhanced SrtA enzyme. An analysis of improved SrtA variants in the context of sequence conservation, NMR and x-ray crystal structures, and kinetic data suggests a novel mechanism for catalysis involving large conformational changes that delivers substrate to the active site pocket. Indeed, using DEER-EPR spectroscopy, we reveal that upon substrate binding, SrtA undergoes a large scissors-like conformational change that simultaneously translates the sort-tag substrate to the active site in addition to repositioning key catalytic residues for esterification. A better understanding of Sortase dynamics will significantly enhance future engineering and drug discovery efforts.
Collapse
Affiliation(s)
- Muna Suliman
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vishaka Santosh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tom C. M. Seegar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Annamarie C. Dalton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kathryn M. Schultz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - William A. Barton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
123
|
Disparate subcellular location of putative sortase substrates in Clostridium difficile. Sci Rep 2017; 7:9204. [PMID: 28835650 PMCID: PMC5569036 DOI: 10.1038/s41598-017-08322-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a gastrointestinal pathogen but how the bacterium colonises this niche is still little understood. Sortase enzymes covalently attach specific bacterial proteins to the peptidoglycan cell wall and are often involved in colonisation by pathogens. Here we show C. difficile proteins CD2537 and CD3392 are functional substrates of sortase SrtB. Through manipulation of the C-terminal regions of these proteins we show the SPKTG motif is essential for covalent attachment to the cell wall. Two additional putative substrates, CD0183 which contains an SPSTG motif, and CD2768 which contains an SPQTG motif, are not cleaved or anchored to the cell wall by sortase. Finally, using an in vivo asymmetric cleavage assay, we show that despite containing a conserved SPKTG motif, in the absence of SrtB these proteins are localised to disparate cellular compartments.
Collapse
|
124
|
Anchoring of LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope. Curr Top Microbiol Immunol 2017; 404:159-175. [PMID: 27097813 DOI: 10.1007/82_2016_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Gram-positive bacteria, protein precursors with a signal peptide and a cell wall sorting signal (CWSS)-which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues-are targeted to the cell envelope by a transpeptidase enzyme call sortase. Evolution and selective pressure gave rise to six classes of sortase, i.e., SrtA-F. Only class C sortases are capable of polymerizing substrates harboring the pilin motif and CWSS into protein polymers known as pili or fimbriae, whereas the others perform cell wall anchoring functions. Regardless of the products generated from these sortases, the basic principle of sortase-catalyzed transpeptidation is the same. It begins with the cleavage of the LPXTG motif, followed by the cross-linking of this cleaved product at the threonine residue to a nucleophile, i.e., an active amino group of the peptidoglycan stem peptide or the lysine residue of the pilin motif. This chapter will summarize the efforts to identify and characterize sortases and their associated pathways with emphasis on the cell wall anchoring function.
Collapse
|
125
|
O'Gara JP. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections. Environ Microbiol 2017. [PMID: 28631399 DOI: 10.1111/1462-2920.13833] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Colonisation of the human skin by Staphylococcus aureus is a precursor for a variety of infections ranging from boils to sepsis and pneumonia. The rapid emergence of methicillin-resistant S. aureus following the clinical introduction of this antimicrobial drug and reports of resistance to all currently used anti-staphylococcal drugs has added to its formidable reputation. S. aureus survival on the skin and in vivo virulence is underpinned by a remarkable environmental adaptability, made possible by highly orchestrated regulation of gene expression and a capacity to undertake genome remodelling. Depending on the ecological or infection niche, controlled expression of a variety of adhesins can be initiated to facilitate adherence to extracellular matrix proteins, survival against desiccation or biofilm accumulation on implanted medical devices and host tissue. These adherence mechanisms complement toxin and enzyme production, immune evasion strategies, and antibiotic resistance and tolerance to collectively thwart efforts to develop reliable antimicrobial drug regimens and an effective S. aureus vaccine.
Collapse
Affiliation(s)
- James P O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
126
|
Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections. Microbiol Spectr 2017; 4. [PMID: 27227305 DOI: 10.1128/microbiolspec.vmbf-0023-2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies.
Collapse
|
127
|
Dickey SW, Cheung GY, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457-471. [PMID: 28337021 PMCID: PMC11849574 DOI: 10.1038/nrd.2017.23] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.
Collapse
Affiliation(s)
- Seth W. Dickey
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Gordon Y.C. Cheung
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
128
|
Silva LN, Da Hora GCA, Soares TA, Bojer MS, Ingmer H, Macedo AJ, Trentin DS. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci Rep 2017; 7:2823. [PMID: 28588273 PMCID: PMC5460262 DOI: 10.1038/s41598-017-02712-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen related to a variety of life-threatening infections but for which antimicrobial resistance is liming the treatment options. We report here that myricetin, but not its glycosylated form, can remarkably decrease the production of several S. aureus virulence factors, including adhesion, biofilm formation, hemolysis and staphyloxanthin production, without interfering with growth. Myricetin affects both surface proteins and secreted proteins which indicate that its action is unrelated to inhibition of the agr quorum sensing system. Analysis of virulence related gene expression and computational simulations of pivotal proteins involved in pathogenesis demonstrate that myricetin downregulates the saeR global regulator and interacts with sortase A and α-hemolysin. Furthermore, Myr confers a significant degree of protection against staphylococcal infection in the Galleria mellonella model. The present findings reveal the potential of Myr as an alternative multi-target antivirulence candidate to control S. aureus pathogenicity.
Collapse
Affiliation(s)
- L N Silva
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil
| | - G C A Da Hora
- Departmento de Química Fundamental, Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil
| | - T A Soares
- Departmento de Química Fundamental, Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - M S Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | - H Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | - A J Macedo
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil.
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil.
| | - D S Trentin
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre-RS, 90050-170, Brazil
| |
Collapse
|
129
|
Dong X, Jin Y, Ming D, Li B, Dong H, Wang L, Wang T, Wang D. CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus. J Microbiol Methods 2017; 139:79-86. [PMID: 28522389 DOI: 10.1016/j.mimet.2017.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022]
Abstract
The understanding of the genetic mechanism of Staphylococcus aureus requires efficient tools, however, genetic manipulation in S. aureus is always laborious and time-consuming. Here we proposed a novel CRISPR/dCas9 interference method for the rapid knockdown of target genes. Furthermore, multiple genes can be repressed simultaneously by using this method.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yingli Jin
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, China.
| | - Di Ming
- Department of Biochemistry and Molecular Biology, College of Animal Science, Jilin University, Changchun, China
| | - Bangbang Li
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Haisi Dong
- Department of Biochemistry and Molecular Biology, College of Animal Science, Jilin University, Changchun, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Tiedong Wang
- Department of Biochemistry and Molecular Biology, College of Animal Science, Jilin University, Changchun, China.
| | - Dacheng Wang
- Department of Biochemistry and Molecular Biology, College of Animal Science, Jilin University, Changchun, China.
| |
Collapse
|
130
|
Lapirattanakul J, Takashima Y, Tantivitayakul P, Maudcheingka T, Leelataweewud P, Nakano K, Matsumoto-Nakano M. Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects. Arch Oral Biol 2017; 81:7-14. [PMID: 28458044 DOI: 10.1016/j.archoralbio.2017.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/27/2017] [Accepted: 04/17/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. DESIGN Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. RESULTS Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. CONCLUSIONS Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them.
Collapse
Affiliation(s)
- Jinthana Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.
| | - Yukiko Takashima
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Thaniya Maudcheingka
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | | | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| |
Collapse
|
131
|
Claes J, Liesenborghs L, Peetermans M, Veloso TR, Missiakas D, Schneewind O, Mancini S, Entenza JM, Hoylaerts MF, Heying R, Verhamme P, Vanassche T. Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall. J Thromb Haemost 2017; 15:1009-1019. [PMID: 28182324 PMCID: PMC6232194 DOI: 10.1111/jth.13653] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 01/10/2023]
Abstract
Essentials Staphylococcus aureus (S. aureus) binds to endothelium via von Willebrand factor (VWF). Secreted VWF-binding protein (vWbp) mediates S. aureus adhesion to VWF under shear stress. vWbp interacts with VWF and the Sortase A-dependent surface protein Clumping factor A (ClfA). VWF-vWbp-ClfA anchor S. aureus to vascular endothelium under shear stress. SUMMARY Objective When establishing endovascular infections, Staphylococcus aureus (S. aureus) overcomes shear forces of flowing blood by binding to von Willebrand factor (VWF). Staphylococcal VWF-binding protein (vWbp) interacts with VWF, but it is unknown how this secreted protein binds to the bacterial cell wall. We hypothesized that vWbp interacts with a staphylococcal surface protein, mediating the adhesion of S. aureus to VWF and vascular endothelium under shear stress. Methods We studied the binding of S. aureus to vWbp, VWF and endothelial cells in a micro-parallel flow chamber using various mutants deficient in Sortase A (SrtA) and SrtA-dependent surface proteins, and Lactococcus lactis expressing single staphylococcal surface proteins. In vivo adhesion of bacteria was evaluated in the murine mesenteric circulation using real-time intravital vascular microscopy. Results vWbp bridges the bacterial cell wall and VWF, allowing shear-resistant binding of S. aureus to inflamed or damaged endothelium. Absence of SrtA and Clumping factor A (ClfA) reduced adhesion of S. aureus to vWbp, VWF and activated endothelial cells. ADAMTS-13 and an anti-VWF A1 domain antibody, when combined, reduced S. aureus adhesion to activated endothelial cells by 90%. Selective overexpression of ClfA in the membrane of Lactococcus lactis enabled these bacteria to bind to VWF and activated endothelial cells but only in the presence of vWbp. Absence of ClfA abolished bacterial adhesion to the activated murine vessel wall. Conclusions vWbp interacts with VWF and with the SrtA-dependent staphylococcal surface protein ClfA. The complex formed by VWF, secreted vWbp and bacterial ClfA anchors S. aureus to vascular endothelium under shear stress.
Collapse
Affiliation(s)
- J Claes
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - L Liesenborghs
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - M Peetermans
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - T R Veloso
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - D Missiakas
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - O Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - S Mancini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - J M Entenza
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - M F Hoylaerts
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - R Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - P Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - T Vanassche
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
132
|
Song M, Teng Z, Li M, Niu X, Wang J, Deng X. Epigallocatechin gallate inhibits Streptococcus pneumoniae virulence by simultaneously targeting pneumolysin and sortase A. J Cell Mol Med 2017; 21:2586-2598. [PMID: 28402019 PMCID: PMC5618700 DOI: 10.1111/jcmm.13179] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus), the causative agent of several human diseases, possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. Pneumolysin (PLY), an important virulence factor, is a member of the cholesterol-dependent cytolysin family and has cytolytic activity. Sortase A (SrtA), another crucial pneumococcal virulence determinate, contributes greatly to the anchoring of many virulence-associated surface proteins to the cell wall. In this study, epigallocatechin gallate (EGCG), a natural compound with little known antipneumococcal activity, was shown to directly inhibit PLY-mediated haemolysis and cytolysis by blocking the oligomerization of PLY and simultaneously reduce the peptidase activity of SrtA. The biofilm formation, production of neuraminidase A (NanA, the pneumococcal surface protein anchored by SrtA), and bacterial adhesion to human epithelial cells (Hep2) were inhibited effectively when S. pneumoniae D39 was cocultured with EGCG. The results from molecular dynamics simulations and mutational analysis confirmed the interaction of EGCG with PLY and SrtA, and EGCG binds to Glu277, Tyr358, and Arg359 in PLY and Thr169, Lys171, and Phe239 in SrtA. In vivo studies further demonstrated that EGCG protected mice against S. pneumoniae pneumonia. Our results imply that EGCG is an effective inhibitor of both PLY and SrtA and that an antivirulence strategy that directly targets PLY and SrtA using EGCG is a promising therapeutic option for S. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Meng Song
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Teng
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Li
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China
| |
Collapse
|
133
|
Das S, Pawale VS, Dadireddy V, Singh AK, Ramakumar S, Roy RP. Structure and specificity of a new class of Ca 2+-independent housekeeping sortase from Streptomyces avermitilis provide insights into its non-canonical substrate preference. J Biol Chem 2017; 292:7244-7257. [PMID: 28270507 DOI: 10.1074/jbc.m117.782037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/06/2017] [Indexed: 11/06/2022] Open
Abstract
Surface proteins in Gram-positive bacteria are incorporated into the cell wall through a peptide ligation reaction catalyzed by transpeptidase sortase. Six main classes (A-F) of sortase have been identified of which class A sortase is meant for housekeeping functions. The prototypic housekeeping sortase A (SaSrtA) from Staphylococcus aureus cleaves LPXTG-containing proteins at the scissile T-G peptide bond and ligates protein-LPXT to the terminal Gly residue of the nascent cross-bridge of peptidoglycan lipid II precursor. Sortase-mediated ligation ("sortagging") of LPXTG-containing substrates and Gly-terminated nucleophiles occurs in vitro as well as in cellulo in the presence of Ca2+ and has been applied extensively for protein conjugations. Although the majority of applications emanate from SaSrtA, low catalytic efficiency, LPXTG specificity restriction, and Ca2+ requirement (particularly for in cellulo applications) remain a drawback. Given that Gram-positive bacteria genomes encode a variety of sortases, natural sortase mining can be a viable complementary approach akin to engineering of wild-type SaSrtA. Here, we describe the structure and specificity of a new class E sortase (SavSrtE) annotated to perform housekeeping roles in Streptomyces avermitilis Biochemical experiments define the attributes of an optimum peptide substrate, demonstrate Ca2+-independent activity, and provide insights about contrasting functional characteristics of SavSrtE and SaSrtA. Crystal structure, substrate docking, and mutagenesis experiments have identified a critical residue that dictates the preference for a non-canonical LAXTG recognition motif over LPXTG. These results have implications for rational tailoring of substrate tolerance in sortases. Besides, Ca2+-independent orthogonal specificity of SavSrtE is likely to expand the sortagging toolkit.
Collapse
Affiliation(s)
- Sreetama Das
- From the Department of Physics, Indian Institute of Science, Bangalore 560012, and
| | | | | | | | | | - Rajendra P Roy
- the National Institute of Immunology, Delhi 110067, India
| |
Collapse
|
134
|
Chan AH, Yi SW, Weiner EM, Amer BR, Sue CK, Wereszczynski J, Dillen CA, Senese S, Torres JZ, McCammon JA, Miller LS, Jung ME, Clubb RT. NMR structure-based optimization of Staphylococcus aureus sortase A pyridazinone inhibitors. Chem Biol Drug Des 2017; 90:327-344. [PMID: 28160417 DOI: 10.1111/cbdd.12962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus is a leading cause of hospital-acquired infections in the USA and is a major health concern as methicillin-resistant S. aureus and other antibiotic-resistant strains are common. Compounds that inhibit the S. aureus sortase (SrtA) cysteine transpeptidase may function as potent anti-infective agents as this enzyme attaches virulence factors to the bacterial cell wall. While a variety of SrtA inhibitors have been discovered, the vast majority of these small molecules have not been optimized using structure-based approaches. Here we have used NMR spectroscopy to determine the molecular basis through which pyridazinone-based small molecules inhibit SrtA. These inhibitors covalently modify the active cysteine thiol and partially mimic the natural substrate of SrtA by inducing the closure of an active site loop. Computational and synthetic chemistry methods led to second-generation analogues that are ~70-fold more potent than the lead molecule. These optimized molecules exhibit broad-spectrum activity against other types of class A sortases, have reduced cytotoxicity, and impair SrtA-mediated protein display on S. aureus cell surface. Our work shows that pyridazinone analogues are attractive candidates for further development into anti-infective agents, and highlights the utility of employing NMR spectroscopy and solubility-optimized small molecules in structure-based drug discovery.
Collapse
Affiliation(s)
- Albert H Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ethan M Weiner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brendan R Amer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher K Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Silvia Senese
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.,Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
135
|
Cho H, Chung B, Kim CK, Oh DC, Oh KB, Shin J. Spatholobus suberectus Dunn. constituents inhibit sortase A and Staphylococcus aureus cell clumping to fibrinogen. Arch Pharm Res 2017; 40:518-523. [PMID: 28101737 DOI: 10.1007/s12272-016-0884-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/26/2016] [Indexed: 11/25/2022]
Abstract
Sortases are a family of Gram-positive transpeptidases responsible for anchoring surface protein virulence factors to the peptidoglycan cell wall layer. In Staphylococcus aureus (S. aureus), deletion of sortase isoform results in a significant reduction in virulence and infection potential. Twenty flavonoids were isolated from the stem of the folk medicinal plant Spatholobus suberectus Dunn. These compounds were tested against S. aureus-derived sortase A (SrtA), a key transpeptidase for bacterial virulence. Among these active flavonoids, 7-hydroxy-6-methoxy-flavanone (3) and formononetin (10) were identified as compounds with promising SrtA inhibitory activity. These compounds also exhibited inhibitory activity against S. aureus cell clumping to fibrinogen. The suppression of cell-clumping activity indicates the potential of these compounds in the treatment of S. aureus infections via the inhibition of SrtA.
Collapse
Affiliation(s)
- Hyunjoo Cho
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - Beomkoo Chung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Chang-Kwon Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea.
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea.
| |
Collapse
|
136
|
Bowman L, Zeden MS, Schuster CF, Kaever V, Gründling A. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus. J Biol Chem 2016; 291:26970-26986. [PMID: 27834680 PMCID: PMC5207132 DOI: 10.1074/jbc.m116.747709] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/09/2016] [Indexed: 12/02/2022] Open
Abstract
Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5'-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism.
Collapse
Affiliation(s)
- Lisa Bowman
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Merve S Zeden
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Christopher F Schuster
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Volkhard Kaever
- the Research Core Unit Metabolomics, Hannover Medical School, Hannover D-306625, Germany
| | - Angelika Gründling
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| |
Collapse
|
137
|
Serine-Aspartate Repeat Protein D Increases Staphylococcus aureus Virulence and Survival in Blood. Infect Immun 2016; 85:IAI.00559-16. [PMID: 27795358 PMCID: PMC5203653 DOI: 10.1128/iai.00559-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/08/2016] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus expresses a panel of cell wall-anchored adhesins, including proteins belonging to the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) family, exemplified by the serine-aspartate repeat protein D (SdrD), which serve key roles in colonization and infection. Deletion of sdrD from S. aureus subsp. aureus strain NCTC8325-4 attenuated bacterial survival in human whole blood ex vivo, which was associated with increased killing by human neutrophils. Remarkably, SdrD was able to inhibit innate immune-mediated bacterial killing independently of other S. aureus proteins, since addition of recombinant SdrD protein and heterologous expression of SdrD in Lactococcus lactis promoted bacterial survival in human blood. SdrD contributes to bacterial virulence in vivo, since fewer S. aureus subsp. aureus NCTC8325-4 ΔsdrD bacteria than bacteria of the parent strain were recovered from blood and several organs using a murine intravenous infection model. Collectively, our findings reveal a new property of SdrD as an important key contributor to S. aureus survival and the ability to escape the innate immune system in blood.
Collapse
|
138
|
Ulrich V, Cryle MJ. SNaPe: a versatile method to generate multiplexed protein fusions using synthetic linker peptides for in vitro applications. J Pept Sci 2016; 23:16-27. [PMID: 27910178 DOI: 10.1002/psc.2943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 11/06/2016] [Indexed: 11/10/2022]
Abstract
Understanding the structure and function of protein complexes and multi-domain proteins is highly important in biology, although the in vitro characterization of these systems is often complicated by their size or the transient nature of protein/protein interactions. To assist in the characterization of such protein complexes, we have developed a modular approach to fusion protein generation that relies upon Sortase-mediated and Native chemical ligation using synthetic Peptide linkers (SNaPe) to link two separately expressed proteins. In this approach, we utilize two separate linking steps - sortase-mediated and native chemical ligation - together with a library of peptide linkers to generate libraries of fusion proteins. We have demonstrated the viability of SNaPe to generate libraries from fusion protein constructs taken from the biosynthetic enzymes responsible for late stage aglycone assembly during glycopeptide antibiotic biosynthesis. Crucially, SNaPe was able to generate fusion proteins that are inaccessible via direct expression of the fusion construct itself. This highlights the advantages of SNaPe to not only access fusion proteins that have been previously unavailable for biochemical and structural characterization but also to do so in a manner that enables the linker itself to be controlled as an experimental parameter of fusion protein generation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Veronika Ulrich
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.,EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia.,The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
139
|
Yin JC, Fei CH, Lo YC, Hsiao YY, Chang JC, Nix JC, Chang YY, Yang LW, Huang IH, Wang S. Structural Insights into Substrate Recognition by Clostridium difficile Sortase. Front Cell Infect Microbiol 2016; 6:160. [PMID: 27921010 PMCID: PMC5118464 DOI: 10.3389/fcimb.2016.00160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 01/07/2023] Open
Abstract
Sortases function as cysteine transpeptidases that catalyze the covalent attachment of virulence-associated surface proteins into the cell wall peptidoglycan in Gram-positive bacteria. The substrate proteins targeted by sortase enzymes have a cell wall sorting signal (CWSS) located at the C-terminus. Up to date, it is still not well understood how sortases with structural resemblance among different classes and diverse species of bacteria achieve substrate specificity. In this study, we focus on elucidating the molecular basis for specific recognition of peptide substrate PPKTG by Clostridium difficile sortase B (Cd-SrtB). Combining structural studies, biochemical assays and molecular dynamics simulations, we have constructed a computational model of Cd-SrtBΔN26-PPKTG complex and have validated the model by site-directed mutagensis studies and fluorescence resonance energy transfer (FRET)-based assay. Furthermore, we have revealed that the fourth amino acid in the N-terminal direction from cleavage site of PPKTG forms specific interaction with Cd-SrtB and plays an essential role in configuring the peptide to allow more efficient substrate-specific cleavage by Cd-SrtB.
Collapse
Affiliation(s)
- Jui-Chieh Yin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chun-Hsien Fei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yen-Chen Lo
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchu, Taiwan,Bioinformatics Program, Taiwan International Graduate Program, Academia SinicaTaipei, Taiwan
| | - Yu-Yuan Hsiao
- Department of Biological Science and Technology, National Chiao Tung UniversityHsinchu, Taiwan
| | - Jyun-Cyuan Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Yuan-Yu Chang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchu, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchu, Taiwan,Physics Division, National Center for Theoretical SciencesHsinchu, Taiwan,*Correspondence: Lee-Wei Yang
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan,I-Hsiu Huang
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan,Shuying Wang
| |
Collapse
|
140
|
Molecular Mechanism of the Flavonoid Natural Product Dryocrassin ABBA against Staphylococcus aureus Sortase A. Molecules 2016; 21:molecules21111428. [PMID: 27792196 PMCID: PMC6273746 DOI: 10.3390/molecules21111428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/14/2016] [Accepted: 10/23/2016] [Indexed: 11/21/2022] Open
Abstract
The intractability of bacterial resistance presents a dilemma for therapies against Staphylococcus aureus (S. aureus) infection. Effective anti-virulence strategies are urgently needed, reflecting the proliferation of resistant strains. Inhibitors of sortase A (SrtA), enzymes that anchor virulence-related surface proteins, are regarded as promising candidates for countermeasures against bacterial infections. In the present study, the inhibitory effect of dryocrassin ABBA (ABBA) against SrtA and its molecular basis has been examined. Fluorescence resonance energy transfer (FRET) assays were used to determine the inhibitory activity of ABBA against SrtA. To identify the mechanism underlying this activity, molecular dynamics simulations and mutagenesis assays were applied, and the results revealed that the direct engagement of SrtA via ABBA through binding to V166 and V168 significantly attenuated the catalytic activity of SrtA. Taken together, these findings indicated that ABBA is a potential novel antimicrobial agent for S. aureus infection via targeting SrtA.
Collapse
|
141
|
Staphylococcus epidermidis ΔSortase A strain elicits protective immunity against Staphylococcus aureus infection. Antonie van Leeuwenhoek 2016; 110:133-143. [PMID: 27757703 DOI: 10.1007/s10482-016-0784-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are two of the most significant opportunistic human pathogens, causing medical implant and nosocomial infections worldwide. These bacteria contain surface proteins that play crucial roles in multiple biological processes. It has become apparent that they have evolved a number of unique mechanisms by which they can immobilise proteins on their surface. Notably, a conserved cell membrane-anchored enzyme, sortase A (SrtA), can catalyse the covalent attachment of precursor bacterial cell wall-attached proteins to peptidoglycan. Considering its indispensable role in anchoring substrates to the cell wall and its effects on virulence, SrtA has attracted great attention. In this study, a 549-bp gene was cloned from a pathogenic S. epidermidis strain, YC-1, which shared high identity with srtA from other Staphylococcus spp. A mutant strain, YC-1ΔsrtA, was then constructed by allelic exchange mutagenesis. The direct survival rate assay suggested that YC-1ΔsrtA had a lower survival capacity in healthy mice blood compare with the wild-type strain, indicating that the deletion of srtA affects the virulence and infectious capacity of S. epidermidis YC-1. YC-1ΔsrtA was then administered via intraperitoneal injection and it provided a relative percent survival value of 72.7 % in mice against S. aureus TC-1 challenge. These findings demonstrate the possbility that YC-1ΔsrtA might be used as a live attenuated vaccine to produce cross-protection against S. aureus.
Collapse
|
142
|
Acacetin Protects Mice from Staphylococcus aureus Bloodstream Infection by Inhibiting the Activity of Sortase A. Molecules 2016; 21:molecules21101285. [PMID: 27681715 PMCID: PMC6272931 DOI: 10.3390/molecules21101285] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a major cause of infection in hospitals and communities. Widespread dissemination of multi-drug resistant S. aureus is a serious threat to the health of humans and animals. An anti-virulence strategy has been widely considered as an alternative therapeutic approach. Inhibitors of virulence factors are able to treat S. aureus infections without influencing the growth or viability of bacteria and rarely lead to bacterial resistance. Sortase A (SrtA) is a membrane-associated cysteine transpeptidase that catalyzes up to 25 surface proteins that covalently bind to cell wall peptidoglycans. In S. aureus, most of these surface proteins have been identified as important virulence factors that are vital in bacterial pathogenesis. In the present study, we show that acacetin, a natural flavonoid compound, inhibits the activity of SrtA in S. aureus (IC50 = 36.46 ± 4.69 μg/mL, 128 μM) which affects the assembly of protein A (SpA) to cell walls and reduces the binding of S. aureus to fibrinogen (Fg). The mechanism of the interaction between acacetin and SrtA were preliminarily discussed using molecular dynamics simulations. The results suggested that acacetin adopted a compact conformation binding at the pocket of the SrtA via residues Arg-139 and Lys-140. By performing an animal infection model, we demonstrated that acacetin was able to protect mice from renal abscess formation induced by S. aureus and significantly increased survival rates. Taken together, these findings suggest that acacetin may be a promising candidate for the development of anti-S. aureus drugs.
Collapse
|
143
|
A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property. Sci Rep 2016; 6:30966. [PMID: 27492581 PMCID: PMC4974636 DOI: 10.1038/srep30966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase.
Collapse
|
144
|
Formosa-Dague C, Fu ZH, Feuillie C, Derclaye S, Foster TJ, Geoghegan JA, Dufrêne YF. Forces between Staphylococcus aureus and human skin. NANOSCALE HORIZONS 2016; 1:298-303. [PMID: 32260649 DOI: 10.1039/c6nh00057f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Characterization of the molecular interactions between microbial cells and the human skin is essential to understand the functions of the skin microbiome, and to gain insight into the molecular basis of skin disorders. Although various molecular approaches have been used to study microbe-skin interactions, the underlying molecular forces were not accessible to study. Here we present a novel atomic force microscopy approach to localize and quantify the nanoscale interaction forces between the bacterial pathogen Staphylococcus aureus and human skin. A method combining nanoscale multiparametric imaging with single bacterial probes is developed to map simultaneously the topography and bacterial-binding properties of corneocytes at high spatiotemporal resolution. Further quantification of the forces between bacteria and corneocytes is achieved using single-cell force spectroscopy. The results show that the S. aureus-skin adhesion is strong (∼500 pN) and originates from multiple specific bonds between adhesins on the bacterial cell surface and target ligands on the corneocyte surface. Applicable to a wide variety of microbes and skin cells, our methodology offers exciting prospects for understanding the molecular details of skin colonization and infection.
Collapse
Affiliation(s)
- Cécile Formosa-Dague
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | |
Collapse
|
145
|
Rentero Rebollo I, McCallin S, Bertoldo D, Entenza JM, Moreillon P, Heinis C. Development of Potent and Selective S. aureus Sortase A Inhibitors Based on Peptide Macrocycles. ACS Med Chem Lett 2016; 7:606-11. [PMID: 27326335 DOI: 10.1021/acsmedchemlett.6b00045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/14/2016] [Indexed: 11/30/2022] Open
Abstract
Sortases are transpeptidase enzymes that anchor surface proteins, including virulence factors, to the cell wall of Gram-positive bacteria, and they are potential targets for the development of anti-infective agents. While several large compound libraries were searched by high-throughput screening, no high-affinity inhibitors of sortases could be developed to date. Here, we applied phage display to screen billions of peptide macrocycles against sortase A (SrtA) of Staphylococcus aureus (S. aureus). We were able to identify potent and selective inhibitors of SrtA that blocked SrtA-mediated anchoring of synthetic substrates to the surface of live S. aureus cells. A region present in all inhibitory peptides (Leu-Pro-Pro) resembled the natural substrates of SrtA (Leu-Pro-Xaa-Thr-Gly), suggesting that the macrocycles bind to the enzyme's active site and that they form similar molecular contacts as natural substrates. The evolved peptide macrocycles may be used as lead structures for the development of potent peptidomimetic SrtA inhibitors.
Collapse
Affiliation(s)
- Inmaculada Rentero Rebollo
- Institute
of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Shawna McCallin
- Department
of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Davide Bertoldo
- Institute
of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - José Manuel Entenza
- Department
of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Philippe Moreillon
- Department
of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Heinis
- Institute
of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
146
|
Si L, Li P, Liu X, Luo L. Chinese herb medicine against Sortase A catalyzed transformations, a key role in gram-positive bacterial infection progress. J Enzyme Inhib Med Chem 2016; 31:184-196. [PMID: 27162091 DOI: 10.1080/14756366.2016.1178639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many Gram-positive bacteria can anchor their surface proteins to the cell wall peptidoglycan covalently by a common mechanism with Sortase A (SrtA), thus escaping from the host's identification of immune cells. SrtA can complete this anchoring process by cleaving LPXTG motif conserved among these surface proteins and thus these proteins anchor on the cell wall. Moreover, those SrtA mutants lose this capability to anchor these relative proteins, with these bacteria no longer infectious. Therefore, SrtA inhibitors can be promising anti-infective agents to cure bacterial infections. Chinese herb medicines (CHMs) (chosen from Science Citation Index) have exhibited inhibition on SrtA of Gram-positive pathogens irreversibly or reversibly. In general, CHMs are likely to have important long-term impact as new antibacterial compounds and sought after by academia and the pharmaceutical industry. This review mainly focuses on SrtA inhibitors from CHMs and the potential inhibiting mechanism related to chemical structures of compounds in CHMs.
Collapse
Affiliation(s)
- Lifang Si
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| | - Pan Li
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| | - Xiong Liu
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| | - Lixin Luo
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| |
Collapse
|
147
|
Bi C, Wang L, Niu X, Cai H, Zhong X, Deng X, Wang T, Wang D. The use of chlorogenic acid and its analogues as inhibitors: an investigation of the inhibition of sortase A of Staphylococcus aureus using molecular docking and dynamic simulation. Biotechnol Lett 2016; 38:1341-7. [PMID: 27146210 DOI: 10.1007/s10529-016-2112-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To use molecular docking and dynamic simulation to investigate the inhibitory action of chlorogenic acid (CHA) and its analogues against sortase A of Staphylococcus aureus. RESULTS Five novel, natural inhibitors with different activities were discovered for sortase A (SrtA). The inhibition mechanism of the novel inhibitors was consistent with the mechanism of CHA, which was reported previously by Wang et al. (Front Microbiol 6:1031, 2015). Based on structure-activity relationship analysis, the hydroxyl moiety (C1) of the inhibitors is critical in the catalytic region of SrtA, which could be confirmed by the calculation of the binding free energy between SrtA and the inhibitors. CONCLUSIONS The mechanism obtained by molecular dynamics simulation is thus useful for the development of novel, selective SrtA inhibitors.
Collapse
Affiliation(s)
- Chongwei Bi
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis Research, Ministry of Education/Department of Food Quality and Safety/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongjun Cai
- The College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaobo Zhong
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
148
|
Romero-Espejel ME, Rodríguez MA, Chávez-Munguía B, Ríos-Castro E, Olivares-Trejo JDJ. Characterization of Spbhp-37, a Hemoglobin-Binding Protein of Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:47. [PMID: 27200302 PMCID: PMC4854876 DOI: 10.3389/fcimb.2016.00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-positive microorganism that is the cause of bacterial pneumonia, sinusitis and otitis media. This human pathogen also can cause invasive diseases such as meningitis, bacteremia and septicemia. Hemoglobin (Hb) and haem can support the growth and viability of S. pneumoniae as sole iron sources. Unfortunately, the acquisition mechanism of Hb and haem in this bacterium has been poorly studied. Previously we identified two proteins of 37 and 22 kDa as putative Hb- and haem-binding proteins (Spbhp-37 and Spbhp-22, respectively). The sequence of Spbhp-37 protein was database annotated as lipoprotein without any function or localization. Here it was immunolocalized in the surface cell by transmission electron microscopy using specific antibodies produced against the recombinant protein. The expression of Spbhp-37 was increased when bacteria were grown in media culture supplied with Hb. In addition, the affinity of Sphbp-37 for Hb was determined. Thus, in this work we are presenting new findings that attempt to explain the mechanism involved in iron acquisition of this pathogen. In the future these results could help to develop new therapy targets in order to avoid the secondary effects caused by the traditional therapies.
Collapse
Affiliation(s)
- María E Romero-Espejel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica. LaNSE-CINVESTAV, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - José de Jesús Olivares-Trejo
- Laboratorio de Bacteriología y Nanomedicina, Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México México, México
| |
Collapse
|
149
|
Shrestha P, Wereszczynski J. Discerning the catalytic mechanism of Staphylococcus aureus sortase A with QM/MM free energy calculations. J Mol Graph Model 2016; 67:33-43. [PMID: 27172839 DOI: 10.1016/j.jmgm.2016.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
Abstract
Sortases are key virulence factors in Gram-positive bacteria. These enzymes embed surface proteins in the cell wall through a transpeptidation reaction that involves recognizing a penta-peptide "sorting signal" in a target protein, cleaving it, and covalently attaching it to a second substrate that is later inserted into the cell wall. Although well studied, several aspects of the mechanism by which sortases perform these functions remains unclear. In particular, experiments have revealed two potential sorting signal binding motifs: a "Threonine-Out" (Thr-Out) structure in which the catalytically critical threonine residues protrudes into solution, and a "Threonine-In" (Thr-In) configuration in which this residue inserts into the binding site. To determine which of these is the biologically relevant state, we have performed a series of conventional and hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations of the Staphylococcus aureus sortase A (SrtA) enzyme bound to a sorting signal substrate. Through the use of multi-dimensional metadynamics, our simulations were able to both map the acylation mechanism of SrtA in the Thr-In and Thr-Out states, as well as determine the free energy minima and barriers along these reactions. Results indicate that in both states the catalytic mechanisms are similar, however the free energy barriers are lower in the Thr-In configuration, suggesting that Thr-In is the catalytically relevant state. This has important implications for advancing our understanding of the mechanisms of sortase enzymes, as well we for future structure based drug design efforts aimed at inhibiting sortase function in vivo.
Collapse
Affiliation(s)
- Pooja Shrestha
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 3440 S Dearborn St., Chicago, IL 60616, USA
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, 3440 S Dearborn St., Chicago, IL 60616, USA.
| |
Collapse
|
150
|
Yajjala VK, Thomas VC, Bauer C, Scherr TD, Fischer KJ, Fey PD, Bayles KW, Kielian T, Sun K. Resistance to Acute Macrophage Killing Promotes Airway Fitness of Prevalent Community-Acquired Staphylococcus aureus Strains. THE JOURNAL OF IMMUNOLOGY 2016; 196:4196-203. [PMID: 27053759 DOI: 10.4049/jimmunol.1600081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/13/2016] [Indexed: 11/19/2022]
Abstract
The incidence of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia in otherwise healthy individuals is increasing. To investigate the mechanism underlying the epidemiological success of predominant community-associated (CA)-MRSA strains, we examined their fitness traits during the initial interaction between bacteria and the host occurring in the lower airway. Using a mouse respiratory infection model, we show that clinical isolates often responsible for CA infections are highly resistant to clearance from healthy airways, whereas S. aureus strains not as prevalent or traditionally associated with hospital-associated infections are relatively susceptible. Mechanistically, the competitive fitness of S. aureus is a result of both agr-dependent and -independent resistance to innate bacterial killing. Furthermore, we show that rather than evasion from neutrophil-dependent bactericidal process, the observed S. aureus fitness in the lower airways is due to its intrinsic resistance to resident alveolar macrophage-mediated intracellular killing. Importantly, we demonstrate that the virulence determinants responsible for bacterial persistence in immune-competent mice are dispensable in mice with predisposing conditions such as influenza infection. Taken together, these novel findings of the improved competence of predominant CA-MRSA strains to survive innate killing in healthy hosts, particularly at the very beginning stage of infection, provide a unique insight into their epidemiological success.
Collapse
Affiliation(s)
- Vijaya Kumar Yajjala
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Vinai Chittezham Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Christopher Bauer
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tyler D Scherr
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Karl J Fischer
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Keer Sun
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|