101
|
DeSantis ME, Shorter J. Hsp104 drives "protein-only" positive selection of Sup35 prion strains encoding strong [PSI(+)]. ACTA ACUST UNITED AC 2013. [PMID: 23177195 DOI: 10.1016/j.chembiol.2012.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Structurally distinct, self-templating prion "strains" can encode distinct phenotypes and amplify at different rates depending upon the environment. Indeed, prion strain ensembles can evolve in response to environmental challenges, which makes them highly challenging drug targets. It is not understood how the proteostasis network amplifies one prion strain at the expense of another. Here, we demonstrate that Hsp104 remodels the distinct intermolecular contacts of different synthetic Sup35 prion strains in a way that selectively amplifies prions encoding strong [PSI(+)] and simultaneously eliminates prions encoding weak [PSI(+)]. Hsp104 has reduced ability to fragment prions encoding weak [PSI(+)], but readily converts them to nontemplating forms. By contrast, Hsp104 readily fragments prions encoding strong [PSI(+)], but has reduced ability to eliminate their infectivity. Thus, we illuminate direct mechanisms underpinning how the proteostasis network can drive prion strain selection.
Collapse
Affiliation(s)
- Morgan E DeSantis
- Department of Biochemistry and Biophysics, 805b Stellar-Chance Laboratories, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
102
|
Xu LQ, Wu S, Buell AK, Cohen SIA, Chen LJ, Hu WH, Cusack SA, Itzhaki LS, Zhang H, Knowles TPJ, Dobson CM, Welland ME, Jones GW, Perrett S. Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110410. [PMID: 23530260 PMCID: PMC3638396 DOI: 10.1098/rstb.2011.0410] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Collapse
Affiliation(s)
- Li-Qiong Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, , 15 Datun Road, Chaoyang, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Wickner RB, Edskes HK, Bateman DA, Kelly AC, Gorkovskiy A, Dayani Y, Zhou A. Amyloids and yeast prion biology. Biochemistry 2013; 52:1514-27. [PMID: 23379365 DOI: 10.1021/bi301686a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prions (infectious proteins) of Saccharomyces cerevisiae are proteins acting as genes, by templating their conformation from one molecule to another in analogy to DNA templating its sequence. Most yeast prions are amyloid forms of normally soluble proteins, and a single protein sequence can have any of several self-propagating forms (called prion strains or variants), analogous to the different possible alleles of a DNA gene. A central issue in prion biology is the structural basis of this conformational templating process. The in-register parallel β sheet structure found for several infectious yeast prion amyloids naturally suggests an explanation for this conformational templating. While most prions are plainly diseases, the [Het-s] prion of Podospora anserina may be a functional amyloid, with important structural implications. Yeast prions are important models for human amyloid diseases in general, particularly because new evidence is showing infectious aspects of several human amyloidoses not previously classified as prions. We also review studies of the roles of chaperones, aggregate-collecting proteins, and other cellular components using yeast that have led the way in improving the understanding of similar processes that must be operating in many human amyloidoses.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| | | | | | | | | | | | | |
Collapse
|
104
|
Yang Z, Hong JY, Derkatch IL, Liebman SW. Heterologous gln/asn-rich proteins impede the propagation of yeast prions by altering chaperone availability. PLoS Genet 2013; 9:e1003236. [PMID: 23358669 PMCID: PMC3554615 DOI: 10.1371/journal.pgen.1003236] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022] Open
Abstract
Prions are self-propagating conformations of proteins that can cause heritable phenotypic traits. Most yeast prions contain glutamine (Q)/asparagine (N)-rich domains that facilitate the accumulation of the protein into amyloid-like aggregates. Efficient transmission of these infectious aggregates to daughter cells requires that chaperones, including Hsp104 and Sis1, continually sever the aggregates into smaller “seeds.” We previously identified 11 proteins with Q/N-rich domains that, when overproduced, facilitate the de novo aggregation of the Sup35 protein into the [PSI+] prion state. Here, we show that overexpression of many of the same 11 Q/N-rich proteins can also destabilize pre-existing [PSI+] or [URE3] prions. We explore in detail the events leading to the loss (curing) of [PSI+] by the overexpression of one of these proteins, the Q/N-rich domain of Pin4, which causes Sup35 aggregates to increase in size and decrease in transmissibility to daughter cells. We show that the Pin4 Q/N-rich domain sequesters Hsp104 and Sis1 chaperones away from the diffuse cytoplasmic pool. Thus, a mechanism by which heterologous Q/N-rich proteins impair prion propagation appears to be the loss of cytoplasmic Hsp104 and Sis1 available to sever [PSI+]. Certain proteins can occasionally misfold into infectious aggregates called prions. Once formed, these aggregates grow by attracting the soluble form of that protein to join them. The presence of these aggregates can cause profound effects on cells and, in humans, can cause diseases such as transmissible spongiform encephalopathies (TSEs). In yeast, the aggregates are efficiently transmitted to daughter cells because they are cut into small pieces by molecular scissors (chaperones). Here we show that heritable prion aggregates are frequently lost when we overproduce certain other proteins with curing activity. We analyzed one such protein in detail and found that when it is overproduced it forms aggregates that sequester chaperones. This sequestration appears to block the ability of the chaperones to cut the prion aggregates. The result is that the prions get too large to be transmitted to daughter cells. Such sequestration of molecular scissors provides a potential approach to thwart the propagation of disease-causing infectious protein aggregates.
Collapse
Affiliation(s)
- Zi Yang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joo Y. Hong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Irina L. Derkatch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Susan W. Liebman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
105
|
Summers DW, Wolfe KJ, Ren HY, Cyr DM. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein. PLoS One 2013; 8:e52099. [PMID: 23341891 PMCID: PMC3547041 DOI: 10.1371/journal.pone.0052099] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/09/2012] [Indexed: 01/18/2023] Open
Abstract
Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP). The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.
Collapse
Affiliation(s)
- Daniel W. Summers
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katie J. Wolfe
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hong Yu Ren
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Douglas M. Cyr
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
106
|
Winkler J, Tyedmers J, Bukau B, Mogk A. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. ACTA ACUST UNITED AC 2012; 198:387-404. [PMID: 22869599 PMCID: PMC3413357 DOI: 10.1083/jcb.201201074] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Hsp70 system recruits ClpB/Hsp104 to the surface of stress-induced protein aggregates and prion fibrils. Hsp100 and Hsp70 chaperones in bacteria, yeast, and plants cooperate to reactivate aggregated proteins. Disaggregation relies on Hsp70 function and on ATP-dependent threading of aggregated polypeptides through the pore of the Hsp100 AAA+ hexamer. In yeast, both chaperones also promote propagation of prions by fibril fragmentation, but their functional interplay is controversial. Here, we demonstrate that Hsp70 chaperones were essential for species-specific targeting of their Hsp100 partner chaperones ClpB and Hsp104, respectively, to heat-induced protein aggregates in vivo. Hsp70 inactivation in yeast also abrogated Hsp104 targeting to almost all prions tested and reduced fibril mobility, which indicates that fibril fragmentation by Hsp104 requires Hsp70. The Sup35 prion was unique in allowing Hsp70-independent association of Hsp104 via its N-terminal domain, which, however, was nonproductive. Hsp104 overproduction even outcompeted Hsp70 for Sup35 prion binding, which explains why this condition prevented Sup35 fragmentation and caused prion curing. Our findings indicate a conserved mechanism of Hsp70–Hsp100 cooperation at the surface of protein aggregates and prion fibrils.
Collapse
Affiliation(s)
- Juliane Winkler
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Universität Heidelberg, Heidelberg D-69120, Germany
| | | | | | | |
Collapse
|
107
|
Abstract
Evidence is now accumulating that damaged proteins are not randomly distributed but often concentrated in microscopically visible and functionally distinct inclusion bodies. How misfolded proteins are organized into these compartments, however, is still unknown. We have recently begun to investigate stress-inducible protein quality control (PQC) bodies in yeast cells. Surprisingly, we found that protein misfolding and aggregation were not sufficient to trigger body formation under mild heat stress conditions. Rather, compartment assembly also required the concerted action of molecular chaperones, protein-sorting factors and protein-sequestration factors, thus defining a minimal machinery for spatial PQC. Expression of this machinery was limited to times of acute stress through rapid changes in mRNA abundance and a proteasomal feedback mechanism. These findings demonstrate that yeast cells can control the amount of soluble misfolded proteins through regulated phase transitions in the cytoplasm, thus allowing them to rapidly adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
108
|
Alexandrov AI, Polyanskaya AB, Serpionov GV, Ter-Avanesyan MD, Kushnirov VV. The effects of amino acid composition of glutamine-rich domains on amyloid formation and fragmentation. PLoS One 2012; 7:e46458. [PMID: 23071575 PMCID: PMC3468588 DOI: 10.1371/journal.pone.0046458] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/30/2012] [Indexed: 12/04/2022] Open
Abstract
Fragmentation of amyloid polymers by the chaperone Hsp104 allows them to propagate as prions in yeast. The factors which determine the frequency of fragmentation are unclear, though it is often presumed to depend on the physical strength of prion polymers. Proteins with long polyglutamine stretches represent a tractable model for revealing sequence elements required for polymer fragmentation in yeast, since they form poorly fragmented amyloids. Here we show that interspersion of polyglutamine stretches with various amino acid residues differentially affects the in vivo formation and fragmentation of the respective amyloids. Aromatic residues tyrosine, tryptophan and phenylalanine strongly stimulated polymer fragmentation, leading to the appearance of oligomers as small as dimers. Alanine, methionine, cysteine, serine, threonine and histidine also enhanced fragmentation, while charged residues, proline, glycine and leucine inhibited polymerization. Our data indicate that fragmentation frequency primarily depends on the recognition of fragmentation-promoting residues by Hsp104 and/or its co-chaperones, rather than on the physical stability of polymers. This suggests that differential exposure of such residues to chaperones defines prion variant-specific differences in polymer fragmentation efficiency.
Collapse
|
109
|
Saibil HR, Seybert A, Habermann A, Winkler J, Eltsov M, Perkovic M, Castaño-Diez D, Scheffer MP, Haselmann U, Chlanda P, Lindquist S, Tyedmers J, Frangakis AS. Heritable yeast prions have a highly organized three-dimensional architecture with interfiber structures. Proc Natl Acad Sci U S A 2012; 109:14906-14911. [PMID: 22927413 PMCID: PMC3443181 DOI: 10.1073/pnas.1211976109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Yeast prions constitute a "protein-only" mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI(+)], is governed by a conformational change in the prion domain of Sup35, a translation-termination factor. When this domain switches from its normal soluble form to an insoluble amyloid, the ensuing change in protein synthesis creates new traits. Two factors make these traits heritable: (i) the amyloid conformation is self-templating; and (ii) the protein-remodeling factor heat-shock protein (Hsp)104 (acting together with Hsp70 chaperones) partitions the template to daughter cells with high fidelity. Prions formed by several other yeast proteins create their own phenotypes but share the same mechanistic basis of inheritance. Except for the amyloid fibril itself, the cellular architecture underlying these protein-based elements of inheritance is unknown. To study the 3D arrangement of prion assemblies in their cellular context, we examined yeast [PSI(+)] prions in the native, hydrated state in situ, taking advantage of recently developed methods for cryosectioning of vitrified cells. Cryo-electron tomography of the vitrified sections revealed the prion assemblies as aligned bundles of regularly spaced fibrils in the cytoplasm with no bounding structures. Although the fibers were widely spaced, other cellular complexes, such as ribosomes, were excluded from the fibril arrays. Subtomogram image averaging, made possible by the organized nature of the assemblies, uncovered the presence of an additional array of densities between the fibers. We suggest these structures constitute a self-organizing mechanism that coordinates fiber deposition and the regulation of prion inheritance.
Collapse
Affiliation(s)
- Helen R. Saibil
- Crystallography and Institute for Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Anja Seybert
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
| | - Anja Habermann
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
| | - Juliane Winkler
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Mikhail Eltsov
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Mario Perkovic
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
| | - Daniel Castaño-Diez
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Margot P. Scheffer
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Uta Haselmann
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Petr Chlanda
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Susan Lindquist
- Whitehead Institute and Howard Hughes Medical Institute (HHMI), Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Jens Tyedmers
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Achilleas S. Frangakis
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| |
Collapse
|
110
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
111
|
Tyedmers J. Patterns of [PSI (+) ] aggregation allow insights into cellular organization of yeast prion aggregates. Prion 2012; 6:191-200. [PMID: 22449721 DOI: 10.4161/pri.18986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI (+) ] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates.
Collapse
Affiliation(s)
- Jens Tyedmers
- Center for Molecular Biology of the University of Heidelberg (ZMBH, Heidelberg, Germany.
| |
Collapse
|
112
|
Prokaryotic chaperones support yeast prions and thermotolerance and define disaggregation machinery interactions. Genetics 2012; 192:185-93. [PMID: 22732191 DOI: 10.1534/genetics.112.142307] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Saccharomyces cerevisiae Hsp104 and Escherichia coli ClpB are Hsp100 family AAA+ chaperones that provide stress tolerance by cooperating with Hsp70 and Hsp40 to solubilize aggregated protein. Hsp104 also remodels amyloid in vitro and promotes propagation of amyloid prions in yeast, but ClpB does neither, leading to a view that Hsp104 evolved these activities. Although biochemical analyses identified disaggregation machinery components required for resolubilizing proteins, interactions among these components required for in vivo functions are not clearly defined. We express prokaryotic chaperones in yeast to address these issues and find ClpB supports both prion propagation and thermotolerance in yeast if it is modified to interact with yeast Hsp70 or if E. coli Hsp70 and its cognate nucleotide exchange factor (NEF) are present. Our findings show prion propagation and thermotolerance in yeast minimally require cooperation of species-specific Hsp100, Hsp70, and NEF with yeast Hsp40. The functions of this machinery in prion propagation were directed primarily by Hsp40 Sis1p, while thermotolerance relied mainly on Hsp40 Ydj1p. Our results define cooperative interactions among these components that are specific or interchangeable across life kingdoms and imply Hsp100 family disaggregases possess intrinsic amyloid remodeling activity.
Collapse
|
113
|
Malinovska L, Kroschwald S, Munder MC, Richter D, Alberti S. Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol Biol Cell 2012; 23:3041-56. [PMID: 22718905 PMCID: PMC3418301 DOI: 10.1091/mbc.e12-03-0194] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The deposition of misfolded proteins in cytoplasmic protein bodies requires the concerted action of stress-inducible protein-sorting factors and molecular chaperones. Protein sequestration during acute stress is a cellular strategy that adjusts the flux of misfolded proteins to the capacities of the protein quality control system. Acute stress causes a rapid redistribution of protein quality control components and aggregation-prone proteins to diverse subcellular compartments. How these remarkable changes come about is not well understood. Using a phenotypic reporter for a synthetic yeast prion, we identified two protein-sorting factors of the Hook family, termed Btn2 and Cur1, as key regulators of spatial protein quality control in Saccharomyces cerevisiae. Btn2 and Cur1 are undetectable under normal growth conditions but accumulate in stressed cells due to increased gene expression and reduced proteasomal turnover. Newly synthesized Btn2 can associate with the small heat shock protein Hsp42 to promote the sorting of misfolded proteins to a peripheral protein deposition site. Alternatively, Btn2 can bind to the chaperone Sis1 to facilitate the targeting of misfolded proteins to a juxtanuclear compartment. Protein redistribution by Btn2 is accompanied by a gradual depletion of Sis1 from the cytosol, which is mediated by the sorting factor Cur1. On the basis of these findings, we propose a dynamic model that explains the subcellular distribution of misfolded proteins as a function of the cytosolic concentrations of molecular chaperones and protein-sorting factors. Our model suggests that protein aggregation is not a haphazard process but rather an orchestrated cellular response that adjusts the flux of misfolded proteins to the capacities of the protein quality control system.
Collapse
Affiliation(s)
- Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
114
|
Winkler J, Tyedmers J, Bukau B, Mogk A. Chaperone networks in protein disaggregation and prion propagation. J Struct Biol 2012; 179:152-60. [PMID: 22580344 DOI: 10.1016/j.jsb.2012.05.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/30/2022]
Abstract
The oligomeric AAA+ chaperones Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 cooperate with cognate Hsp70/Hsp40 chaperone machineries in the reactivation of aggregated proteins in E. coli and S. cerevisiae. In addition, Hsp104 and Hsp70/Hsp40 are crucial for the maintenance of prion aggregates in yeast cells. While the bichaperone system efficiently solubilizes stress-generated amorphous aggregates, structurally highly ordered prion fibrils are only partially processed, resulting in the generation of fragmented prion seeds that can be transmitted to daughter cells for stable inheritance. Here, we describe and discuss the most recent mechanistic findings on yeast Hsp104 and Hsp70/Hsp40 cooperation in the remodeling of both types of aggregates, emphasizing similarities in the mechanism but also differences in the sensitivities towards chaperone activities.
Collapse
Affiliation(s)
- Juliane Winkler
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | | | |
Collapse
|
115
|
Staniforth GL, Tuite MF. Fungal prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:417-56. [PMID: 22482457 DOI: 10.1016/b978-0-12-385883-2.00007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For both mammalian and fungal prion proteins, conformational templating drives the phenomenon of protein-only infectivity. The conformational conversion of a protein to its transmissible prion state is associated with changes to host cellular physiology. In mammals, this change is synonymous with disease, whereas in fungi no notable detrimental effect on the host is typically observed. Instead, fungal prions can serve as epigenetic regulators of inheritance in the form of partial loss-of-function phenotypes. In the presence of environmental challenges, the prion state [PRION(+)], with its resource for phenotypic plasticity, can be associated with a growth advantage. The growing number of yeast proteins that can switch to a heritable [PRION(+)] form represents diverse and metabolically penetrating cellular functions, suggesting that the [PRION(+)] state in yeast is a functional one, albeit rarely found in nature. In this chapter, we introduce the biochemical and genetic properties of fungal prions, many of which are shared by the mammalian prion protein PrP, and then outline the major contributions that studies on fungal prions have made to prion biology.
Collapse
Affiliation(s)
- Gemma L Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
116
|
Localization of HET-S to the cell periphery, not to [Het-s] aggregates, is associated with [Het-s]-HET-S toxicity. Mol Cell Biol 2011; 32:139-53. [PMID: 22037764 DOI: 10.1128/mcb.06125-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are associated with accumulation of the amyloid form of the prion protein, but the mechanisms of toxicity are unknown. Amyloid toxicity is also associated with fungal prions. In Podospora anserina, the simultaneous presence of [Het-s] prion and its allelic protein HET-S causes cell death in a self-/nonself-discrimination process. Here, using the prion form of a fragment of HET-s ([PrD(157)(+)]), we show that [Het-s]-HET-S toxicity can be faithfully recapitulated in yeast. Overexpression of Hsp40 chaperone, Sis1, rescues this toxicity by curing cells of [PrD(157)(+)]. We find no evidence for toxic [PrD(157)(+)] conformers in the presence of HET-S. Instead, [PrD(157)(+)] appears to seed HET-S to accumulate at the cell periphery and to form aggregates distinct from visible [PrD(157)(+)] aggregates. Furthermore, HET-S mutants that cause HET-S to be sequestered into [PrD(157)(+)] prion aggregates are not toxic. The localization of HET-S at the cell periphery and its association with cell death was also observed in the native host Podospora anserina. Thus, upon interaction with [Het-s], HET-S localizes to the cell periphery, and this relocalization, rather than the formation of mixed HET-s/HET-S aggregates, is associated with toxicity.
Collapse
|
117
|
Stein KC, True HL. The [RNQ+] prion: a model of both functional and pathological amyloid. Prion 2011; 5:291-8. [PMID: 22052347 DOI: 10.4161/pri.18213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of fibrillar amyloid is most often associated with protein conformational disorders such as prion diseases, Alzheimer disease and Huntington disease. Interestingly, however, an increasing number of studies suggest that amyloid structures can sometimes play a functional role in normal biology. Several proteins form self-propagating amyloids called prions in the budding yeast Saccharomyces cerevisiae. These unique elements operate by creating a reversible, epigenetic change in phenotype. While the function of the non-prion conformation of the Rnq1 protein is unclear, the prion form, [RNQ+], acts to facilitate the de novo formation of other prions to influence cellular phenotypes. The [RNQ+] prion itself does not adversely affect the growth of yeast, but the overexpression of Rnq1p can form toxic aggregated structures that are not necessarily prions. The [RNQ+] prion is also involved in dictating the aggregation and toxicity of polyglutamine proteins ectopically expressed in yeast. Thus, the [RNQ+] prion provides a tractable model that has the potential to reveal significant insight into the factors that dictate how amyloid structures are initiated and propagated in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Kevin C Stein
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
118
|
Hines JK, Higurashi T, Srinivasan M, Craig EA. Influence of prion variant and yeast strain variation on prion-molecular chaperone requirements. Prion 2011; 5:238-44. [PMID: 22156732 DOI: 10.4161/pri.17818] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions of budding yeast serve as a tractable model of amyloid behavior. Here we address the issue of the effect of yeast strain variation on prion stability, focusing also on the effect of amyloid conformation and the involvement of the co-chaperone Sis1, an essential J-protein partner of Hsp70. We found, despite an initial report to the contrary, that yeast strain background has little effect on the requirement for particular Sis1 domains for stable propagation of the prion [RNQ+], if the level of Sis1 expression is controlled. On the other hand, some variation in prion behavior was observed between yeast strains, in particular, the stability of certain [PSI+] variants. Future examination of such yeast strain-specific phenomena may provide useful insights into the basis of prion/chaperone dynamics.
Collapse
Affiliation(s)
- Justin K Hines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
119
|
Hines JK, Higurashi T, Srinivasan M, Craig EA. Influence of prion variant and yeast strain variation on prion-molecular chaperone requirements. Prion 2011. [PMID: 22156732 DOI: 10.4161/pri.5.4.17818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions of budding yeast serve as a tractable model of amyloid behavior. Here we address the issue of the effect of yeast strain variation on prion stability, focusing also on the effect of amyloid conformation and the involvement of the co-chaperone Sis1, an essential J-protein partner of Hsp70. We found, despite an initial report to the contrary, that yeast strain background has little effect on the requirement for particular Sis1 domains for stable propagation of the prion [RNQ+], if the level of Sis1 expression is controlled. On the other hand, some variation in prion behavior was observed between yeast strains, in particular, the stability of certain [PSI+] variants. Future examination of such yeast strain-specific phenomena may provide useful insights into the basis of prion/chaperone dynamics.
Collapse
Affiliation(s)
- Justin K Hines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
120
|
Reidy M, Masison DC. Modulation and elimination of yeast prions by protein chaperones and co-chaperones. Prion 2011; 5:245-9. [PMID: 22052352 DOI: 10.4161/pri.17749] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The yeast system has provided considerable insight into the biology of amyloid and prions. Here we focus on how alterations in abundance or function of protein chaperones and co-chaperones affect propagation of yeast prions. In spite of a considerable amount of information, a clear understanding of the molecular mechanisms underlying these effects remains wanting.
Collapse
Affiliation(s)
- Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
121
|
Desantis ME, Shorter J. The elusive middle domain of Hsp104 and ClpB: location and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:29-39. [PMID: 21843558 DOI: 10.1016/j.bbamcr.2011.07.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 12/17/2022]
Abstract
Hsp104 in yeast and ClpB in bacteria are homologous, hexameric AAA+ proteins and Hsp100 chaperones, which function in the stress response as ring-translocases that drive protein disaggregation and reactivation. Both Hsp104 and ClpB contain a distinctive coiled-coil middle domain (MD) inserted in the first AAA+ domain, which distinguishes them from other AAA+ proteins and Hsp100 family members. Here, we focus on recent developments concerning the location and function of the MD in these hexameric molecular machines, which remains an outstanding question. While the atomic structure of the hexameric assembly of Hsp104 and ClpB remains uncertain, recent advances have illuminated that the MD is critical for the intrinsic disaggregase activity of the hexamer and mediates key functional interactions with the Hsp70 chaperone system (Hsp70 and Hsp40) that empower protein disaggregation.
Collapse
Affiliation(s)
- Morgan E Desantis
- Department of Biochemistry and Biophysics, Perelman School of Medicine at The University of Pennsylvania, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
122
|
Hines JK, Craig EA. The sensitive [SWI (+)] prion: new perspectives on yeast prion diversity. Prion 2011; 5:164-8. [PMID: 21811098 DOI: 10.4161/pri.5.3.16895] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Yeast prions are heritable protein-based genetic elements which rely on molecular chaperone proteins for stable transmission to cell progeny. Within the past few years, five new prions have been validated and 18 additional putative prions identified in Saccharomyces cerevisiae. The exploration of the physical and biological properties of these "nouveau prions" has begun to reveal the extent of prion diversity in yeast. We recently reported that one such prion, [SWI(+)], differs from the best studied, archetypal prion [PSI(+)] in several significant ways. ( 1) Notably, [SWI(+)] is highly sensitive to alterations in Hsp70 system chaperone activity and is lost upon growth at elevated temperatures. In that report we briefly noted a correlation amongst prions regarding amino acid composition, seed number and sensitivity to the activity of the Hsp70 chaperone system. Here we extend that analysis and put forth the idea that [SWI(+)] may be representative of a class of asparagine-rich yeast prions which also includes [URE3], [MOT3(+)] and [ISP(+)], distinct from the glutamine-rich prions such as [PSI(+)] and [RNQ(+)]. While much work remains, it is apparent that our understanding of the extent of the diversity of prion characteristics is in its infancy.
Collapse
Affiliation(s)
- Justin K Hines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
123
|
A small, glutamine-free domain propagates the [SWI(+)] prion in budding yeast. Mol Cell Biol 2011; 31:3436-44. [PMID: 21670156 DOI: 10.1128/mcb.05338-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast prions are self-propagating protein conformations that transmit heritable phenotypes in an epigenetic manner. The recently identified yeast prion [SWI(+)] is an alternative conformation of Swi1, a component of the evolutionarily conserved SWI/SNF chromatin-remodeling complex. Formation of the [SWI(+)] prion results in a partial loss-of-function phenotype for Swi1. The amino-terminal region of Swi1 is dispensable for its normal function but is required for [SWI(+)] formation and propagation; however, the precise prion domain (PrD) of Swi1 has not been elucidated. Here, we define the minimal Swi1 PrD as the first 37 amino acids of the protein. This region is extremely asparagine rich but, unexpectedly, contains no glutamine residues. This unusually small prion domain is sufficient for aggregation, propagation, and transmission of the [SWI(+)] prion. Because of its unusual size and composition, the Swi1 prion domain defined here has important implications for describing and identifying novel prions.
Collapse
|
124
|
Functions of yeast Hsp40 chaperone Sis1p dispensable for prion propagation but important for prion curing and protection from prion toxicity. Genetics 2011; 188:565-77. [PMID: 21555396 DOI: 10.1534/genetics.111.129460] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Replication of amyloid-based yeast prions [PSI(+)], [URE3], and [PIN(+)] depends on the protein disaggregation machinery that includes Hsp104, Hsp70, and Hsp40 molecular chaperones. Yet, overexpressing Hsp104 cures cells of [PSI(+)] prions. An Hsp70 mutant (Ssa1-21p) antagonizes propagation of [PSI(+)] in a manner resembling elevated Hsp104. The major cytosolic Hsp40 Sis1p is the only Hsp40 required for replication of these prions, but its role in [PSI(+)] curing is unknown. Here we find that all nonessential functional regions of Sis1p are dispensable for [PSI(+)] propagation, suggesting that other Hsp40's might provide Hsp40 functions required for [PSI(+)] replication. Conversely, several Sis1p functions were important for promoting antiprion effects of both Ssa1-21p and Hsp104, which implies a link between the antiprion effects of these chaperones and suggests that Sis1p is a specific Hsp40 important for [PSI(+)] curing. These contrasting findings suggest that the functions of Hsp104 that are important for propagation and elimination of [PSI(+)] are either distinct or specified by different Hsp40's. This work also uncovered a growth inhibition caused by [PSI(+)] when certain functions of Sis1p were absent, suggesting that Sis1p protects cells from cytotoxicity caused by [PSI(+)] prions.
Collapse
|
125
|
Abstract
[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism in Saccharomyces cerevisiae. The Ure2p of the human pathogen Candida albicans can also be a prion in S. cerevisiae. We find that overproduction of the disaggregating chaperone, Hsp104, increases the frequency of de novo [URE3] prion formation by the Ure2p of S. cerevisiae and that of C. albicans. This stimulation is strongly dependent on the presence of the [PIN(+)] prion, known from previous work to enhance [URE3] prion generation. Our data suggest that transient Hsp104 overproduction enhances prion generation through persistent effects on Rnq1 amyloid, as well as during overproduction by disassembly of amorphous Ure2 aggregates (generated during Ure2p overproduction), driving the aggregation toward the amyloid pathway. Overproduction of other major cytosolic chaperones of the Hsp70 and Hsp40 families (Ssa1p, Sse1p, and Ydj1p) inhibit prion formation, whereas another yeast Hsp40, Sis1p, modulates the effects of Hsp104p on both prion induction and prion curing in a prion-specific manner. The same factor may both enhance de novo prion generation and destabilize existing prion variants, suggesting that prion variants may be selected by changes in the chaperone network.
Collapse
|
126
|
Kurahashi H, Pack CG, Shibata S, Oishi K, Sako Y, Nakamura Y. [PSI(+)] aggregate enlargement in rnq1 nonprion domain mutants, leading to a loss of prion in yeast. Genes Cells 2011; 16:576-89. [PMID: 21453425 DOI: 10.1111/j.1365-2443.2011.01511.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[PIN(+)] is the prion form of the Rnq1 protein of unknown function in Saccharomyces cerevisiae. A glutamine/asparagine (Q/N)-rich C-terminal domain is necessary for the propagation of [PIN(+)], whereas the N-terminal region is non-Q/N-rich and considered the nonprion domain. Here, we isolated numerous single-amino-acid mutations in Rnq1, phenotypically similar to Rnq1Δ100, which inhibit [PSI(+)] propagation in the [PIN(+)] state, but not in the [pin(-)] state, when overproduced. The dynamics of the prion aggregates was analyzed by semi-denaturing detergent-agarose gel electrophoresis and fluorescence correlation spectroscopy. The results indicated that [PSI(+)] aggregates were enlarged in mother cells and, instead, not apparently transmitted into daughter cells. Under these conditions, the activity of Hsp104, a known prion disaggregase, was not affected when monitored for the thermotolerance of the rnq1 mutants. These [PSI(+)]-inhibitory rnq1 mutations did not affect [PIN(+)] propagation itself when over-expressed from a strong promoter, but instead destabilized [PIN(+)] when expressed from the weak authentic RNQ1 promoter. The majority of these mutated residues are mapped to the surface, and on one side, of contiguous α-helices of the nonprion domain of Rnq1, suggesting its involvement in interactions with a prion or a factor necessary for prion development.
Collapse
Affiliation(s)
- Hiroshi Kurahashi
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Crow ET, Li L. Newly identified prions in budding yeast, and their possible functions. Semin Cell Dev Biol 2011; 22:452-9. [PMID: 21397710 DOI: 10.1016/j.semcdb.2011.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
Yeast prions are atypical genetic elements that are transmitted as heritable protein conformations. [PSI+], [URE3], and [PIN+] are three well-studied prions in the budding yeast, Saccharomyces cerevisiae. In the last three years, several additional prions have been reported in yeast, including [SWI+], [OCT+], [MCA], [GAR+], [MOT3+], [ISP+], and [NSI+]. The growing number of yeast prions suggests that protein-based inheritance might be a widespread biological phenomenon. In this review, we summarize the characteristics of each prion element, and discuss their potential functional roles in yeast biology.
Collapse
Affiliation(s)
- Emily T Crow
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA.
| | | |
Collapse
|
128
|
Strain conformation, primary structure and the propagation of the yeast prion [PSI+]. Nat Struct Mol Biol 2011; 18:493-9. [PMID: 21423194 PMCID: PMC3490428 DOI: 10.1038/nsmb.2030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 02/03/2011] [Indexed: 11/23/2022]
Abstract
Prion proteins can adopt multiple different infectious strain conformations. Here we examine how the sequence of a prion protein affects its capacity to propagate specific conformations by exploiting our ability to create two distinct infectious conformations of the yeast [PSI+] prion protein Sup35p, termed Sc4 and Sc37. PNM2, a Sup35p (G58D) point mutant originally identified for its dominant interference with prion propagation, leads to rapid, recessive loss of Sc4 but does not interfere with Sc37 propagation. PNM2 destabilizes the amyloid core of Sc37 causing compensatory effects that slow prion growth but aid prion division and result in robust Sc37 propagation. In contrast, PNM2 does not affect the structure or chaperone-mediated division of Sc4, but interferes with its delivery to daughter cells. Thus, effective delivery of infectious particles during cell division is a critical and conformation-dependent step in prion inheritance.
Collapse
|
129
|
Dominant prion mutants induce curing through pathways that promote chaperone-mediated disaggregation. Nat Struct Mol Biol 2011; 18:486-92. [PMID: 21423195 PMCID: PMC3082495 DOI: 10.1038/nsmb.2031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/16/2010] [Indexed: 12/15/2022]
Abstract
Protein misfolding underlies many neurodegenerative diseases, including the transmissible spongiform encephalopathies (prion diseases). Although cells typically recognize and process misfolded proteins, prion proteins evade protective measures by forming stable, self-replicating aggregates. However, coexpression of dominant-negative prion mutants can overcome aggregate accumulation and disease progression through currently unknown pathways. Here we determine the mechanisms by which two mutants of the Saccharomyces cerevisiae Sup35 protein cure the [PSI(+)] prion. We show that both mutants incorporate into wild-type aggregates and alter their physical properties in different ways, diminishing either their assembly rate or their thermodynamic stability. Whereas wild-type aggregates are recalcitrant to cellular intervention, mixed aggregates are disassembled by the molecular chaperone Hsp104. Thus, rather than simply blocking misfolding, dominant-negative prion mutants target multiple events in aggregate biogenesis to enhance their susceptibility to endogenous quality-control pathways.
Collapse
|
130
|
Newnam GP, Birchmore JL, Chernoff YO. Destabilization and recovery of a yeast prion after mild heat shock. J Mol Biol 2011; 408:432-48. [PMID: 21392508 DOI: 10.1016/j.jmb.2011.02.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/03/2011] [Accepted: 02/09/2011] [Indexed: 11/28/2022]
Abstract
Yeast prion [PSI(+)] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI(+)] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI(+)]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI(+)] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI(+)] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI(+)] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant.
Collapse
Affiliation(s)
- Gary P Newnam
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | |
Collapse
|
131
|
Hines JK, Li X, Du Z, Higurashi T, Li L, Craig EA. [SWI], the prion formed by the chromatin remodeling factor Swi1, is highly sensitive to alterations in Hsp70 chaperone system activity. PLoS Genet 2011; 7:e1001309. [PMID: 21379326 PMCID: PMC3040656 DOI: 10.1371/journal.pgen.1001309] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/12/2011] [Indexed: 11/24/2022] Open
Abstract
The yeast prion [SWI+], formed of heritable amyloid aggregates of the Swi1 protein, results in a partial loss of function of the SWI/SNF chromatin-remodeling complex, required for the regulation of a diverse set of genes. Our genetic analysis revealed that [SWI+] propagation is highly dependent upon the action of members of the Hsp70 molecular chaperone system, specifically the Hsp70 Ssa, two of its J-protein co-chaperones, Sis1 and Ydj1, and the nucleotide exchange factors of the Hsp110 family (Sse1/2). Notably, while all yeast prions tested thus far require Sis1, [SWI+] is the only one known to require the activity of Ydj1, the most abundant J-protein in yeast. The C-terminal region of Ydj1, which contains the client protein interaction domain, is required for [SWI+] propagation. However, Ydj1 is not unique in this regard, as another, closely related J-protein, Apj1, can substitute for it when expressed at a level approaching that of Ydj1. While dependent upon Ydj1 and Sis1 for propagation, [SWI+] is also highly sensitive to overexpression of both J-proteins. However, this increased prion-loss requires only the highly conserved 70 amino acid J-domain, which serves to stimulate the ATPase activity of Hsp70 and thus to stabilize its interaction with client protein. Overexpression of the J-domain from Sis1, Ydj1, or Apj1 is sufficient to destabilize [SWI+]. In addition, [SWI+] is lost upon overexpression of Sse nucleotide exchange factors, which act to destabilize Hsp70's interaction with client proteins. Given the plethora of genes affected by the activity of the SWI/SNF chromatin-remodeling complex, it is possible that this sensitivity of [SWI+] to the activity of Hsp70 chaperone machinery may serve a regulatory role, keeping this prion in an easily-lost, meta-stable state. Such sensitivity may provide a means to reach an optimal balance of phenotypic diversity within a cell population to better adapt to stressful environments. Yeast prions are heritable genetic elements, formed spontaneously by aggregation of a single protein. Prions can thus generate diverse phenotypes in a dominant, non-Mendelian fashion, without a corresponding change in chromosomal gene structure. Since the phenotypes caused by the presence of a prion are thought to affect the ability of cells to survive under different environmental conditions, those that have global effects on cell physiology are of particular interest. Here we report the results of a study of one such prion, [SWI+], formed by a component of the SWI/SNF chromatin-remodeling complex, which is required for the regulation of a diverse set of genes. We found that, compared to previously well-studied prions, [SWI+] is highly sensitive to changes in the activities of molecular chaperones, particularly components of the Hsp70 machinery. Both under- and over-expression of components of this system initiated rapid loss of the prion from the cell population. Since expression of molecular chaperones, often known as heat shock proteins, are known to vary under diverse environmental conditions, such “chaperone sensitivity” may allow alteration of traits that under particular environmental conditions convey a selective advantage and may be a common characteristic of prions formed from proteins involved in global gene regulation.
Collapse
Affiliation(s)
- Justin K. Hines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Xiaomo Li
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Zhiqiang Du
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Takashi Higurashi
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Liming Li
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (EAC); (LL)
| | - Elizabeth A. Craig
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail: (EAC); (LL)
| |
Collapse
|
132
|
Tuite MF, Marchante R, Kushnirov V. Fungal prions: structure, function and propagation. Top Curr Chem (Cham) 2011; 305:257-98. [PMID: 21717344 DOI: 10.1007/128_2011_172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prions are not uniquely associated with rare fatal neurodegenerative diseases in the animal kingdom; prions are also found in fungi and in particular the yeast Saccharomyces cerevisiae. As with animal prions, fungal prions are proteins able to exist in one or more self-propagating alternative conformations, but show little primary sequence relationship with the mammalian prion protein PrP. Rather, fungal prions represent a relatively diverse collection of proteins that participate in key cellular processes such as transcription and translation. Upon switching to their prion form, these proteins can generate stable, sometimes beneficial, changes in the host cell phenotype. Much has already been learnt about prion structure, and propagation and de novo generation of the prion state through studies in yeast and these findings are reviewed here.
Collapse
Affiliation(s)
- Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | | | | |
Collapse
|
133
|
Stein KC, True HL. The [RNQ+] prion: a model of both functional and pathological amyloid. Prion 2011; 5. [PMID: 22052347 PMCID: PMC4012398 DOI: 10.4161/pri.5.4.18213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The formation of fibrillar amyloid is most often associated with protein conformational disorders such as prion diseases, Alzheimer disease and Huntington disease. Interestingly, however, an increasing number of studies suggest that amyloid structures can sometimes play a functional role in normal biology. Several proteins form self-propagating amyloids called prions in the budding yeast Saccharomyces cerevisiae. These unique elements operate by creating a reversible, epigenetic change in phenotype. While the function of the non-prion conformation of the Rnq1 protein is unclear, the prion form, [RNQ+], acts to facilitate the de novo formation of other prions to influence cellular phenotypes. The [RNQ+] prion itself does not adversely affect the growth of yeast, but the overexpression of Rnq1p can form toxic aggregated structures that are not necessarily prions. The [RNQ+] prion is also involved in dictating the aggregation and toxicity of polyglutamine proteins ectopically expressed in yeast. Thus, the [RNQ+] prion provides a tractable model that has the potential to reveal significant insight into the factors that dictate how amyloid structures are initiated and propagated in both physiological and pathological contexts.
Collapse
|
134
|
Reidy M, Masison DC. Modulation and elimination of yeast prions by protein chaperones and co-chaperones. Prion 2011. [PMID: 22052352 PMCID: PMC4012410 DOI: 10.4161/pri.5.4.17749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The yeast system has provided considerable insight into the biology of amyloid and prions. Here we focus on how alterations in abundance or function of protein chaperones and co-chaperones affect propagation of yeast prions. In spite of a considerable amount of information, a clear understanding of the molecular mechanisms underlying these effects remains wanting.
Collapse
|
135
|
Chen L, Chen LJ, Wang HY, Wang YQ, Perrett S. Deletion of a Ure2 C-terminal prion-inhibiting region promotes the rate of fibril seed formation and alters interaction with Hsp40. Protein Eng Des Sel 2010; 24:69-78. [PMID: 21076138 DOI: 10.1093/protein/gzq100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prions are proteins that can undergo a heritable conformational change to an aggregated amyloid-like state, which is then transmitted to other similar molecules. Ure2, the nitrogen metabolism regulation factor of Saccharomyces cerevisiae, shows prion properties in vivo and forms amyloid fibrils in vitro. Ure2 consists of an N-terminal prion-inducing domain and a C-terminal functional domain. Previous studies have shown that mutations affecting the prion properties of Ure2 are not restricted to the N-terminal prion domain: the deletion of residues 151-158 in the C-domain increases the in vivo prion-inducing propensity of Ure2. Here, we characterized this mutant in vitro and found that the 151-158 deletion has minimal effect on the thermodynamic stability or folding properties of the protein. However, deletion of residues 151-158 accelerates the nucleation, growth and fragmentation of amyloid-like aggregates in vitro, and the aggregates formed are able to seed formation of fibrils of the wild-type protein. In addition, the absence of 151-158 was found to disrupt the inhibitory effect of the Hsp40 chaperone Ydj1 on Ure2 fibril formation. These results suggest that the enhanced in vivo prion-inducing ability of the 151-158 deletion mutant is due to its enhanced ability to generate prion seeds.
Collapse
Affiliation(s)
- Li Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | |
Collapse
|
136
|
Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 2010; 11:579-92. [PMID: 20651708 PMCID: PMC3003299 DOI: 10.1038/nrm2941] [Citation(s) in RCA: 1242] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein-protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Cell Biology, University of Groningen, University Medical Center, 713 AV Groningen, The Netherlands.
| | | |
Collapse
|
137
|
Sielaff B, Tsai FTF. The M-domain controls Hsp104 protein remodeling activity in an Hsp70/Hsp40-dependent manner. J Mol Biol 2010; 402:30-7. [PMID: 20654624 DOI: 10.1016/j.jmb.2010.07.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/09/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Yeast Hsp104 is a ring-forming ATP-dependent protein disaggregase that, together with the cognate Hsp70 chaperone system, has the remarkable ability to rescue stress-damaged proteins from a previously aggregated state. Both upstream and downstream functions for the Hsp70 system have been reported, but it remains unclear how Hsp70/Hsp40 is coupled to Hsp104 protein remodeling activity. Hsp104 is a multidomain protein that possesses an N-terminal domain, an M-domain, and two tandem AAA(+) domains. The M-domain forms an 85-A long coiled coil and is a hallmark of the Hsp104 chaperone family. While the three-dimensional structure of Hsp104 has been determined, the function of the M-domain is unclear. Here, we demonstrate that the M-domain is essential for protein disaggregation, but dispensable for Hsp104 ATPase- and substrate-translocating activities. Remarkably, replacing the Hsp104 M-domain with that of bacterial ClpB, and vice versa, switches species specificity so that our chimeras now cooperate with the noncognate Hsp70/DnaK chaperone system. Our results demonstrate that the M-domain controls Hsp104 protein remodeling activities in an Hsp70/Hsp40-dependent manner, which is required to unleash Hsp104 protein disaggregating activity.
Collapse
Affiliation(s)
- Bernhard Sielaff
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
138
|
Conversion of a yeast prion protein to an infectious form in bacteria. Proc Natl Acad Sci U S A 2010; 107:10596-601. [PMID: 20484678 DOI: 10.1073/pnas.0913280107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prions are infectious, self-propagating protein aggregates that have been identified in evolutionarily divergent members of the eukaryotic domain of life. Nevertheless, it is not yet known whether prokaryotes can support the formation of prion aggregates. Here we demonstrate that the yeast prion protein Sup35 can access an infectious conformation in Escherichia coli cells and that formation of this material is greatly stimulated by the presence of a transplanted [PSI(+)] inducibility factor, a distinct prion that is required for Sup35 to undergo spontaneous conversion to the prion form in yeast. Our results establish that the bacterial cytoplasm can support the formation of infectious prion aggregates, providing a heterologous system in which to study prion biology.
Collapse
|
139
|
Manogaran AL, Fajardo VM, Reid RJD, Rothstein R, Liebman SW. Most, but not all, yeast strains in the deletion library contain the [PIN(+)] prion. Yeast 2010; 27:159-66. [PMID: 20014044 DOI: 10.1002/yea.1740] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast deletion library is a collection of over 5100 single gene deletions that has been widely used by the yeast community. The presence of a non-Mendelian element, such as a prion, within this library could affect the outcome of many large-scale genomic studies. We previously showed that the deletion library parent strain contained the [PIN(+)] prion. [PIN(+)] is the misfolded infectious prion form of the Rnq1 protein that displays distinct fluorescent foci in the presence of RNQ1-GFP and exists in different physical conformations, called variants. Here, we show that over 97% of the library deletion strains are [PIN(+)]. Of the 141 remaining strains that have completely (58) or partially (83) lost [PIN(+)], 139 deletions were able to efficiently maintain three different [PIN(+)] variants despite extensive growth and storage at 4 degrees C. One strain, cue2Delta, displayed an alteration in the RNQ1-GFP fluorescent shape, but the Rnq1p prion aggregate shows no biochemical differences from the wild-type. Only strains containing a deletion of either HSP104 or RNQ1 are unable to maintain [PIN(+)], indicating that 5153 non-essential genes are not required for [PIN(+)] propagation.
Collapse
Affiliation(s)
- Anita L Manogaran
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
140
|
Yagi H, Ozawa D, Sakurai K, Kawakami T, Kuyama H, Nishimura O, Shimanouchi T, Kuboi R, Naiki H, Goto Y. Laser-induced propagation and destruction of amyloid beta fibrils. J Biol Chem 2010; 285:19660-7. [PMID: 20406822 DOI: 10.1074/jbc.m109.076505] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.
Collapse
Affiliation(s)
- Hisashi Yagi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Vashist S, Cushman M, Shorter J. Applying Hsp104 to protein-misfolding disorders. Biochem Cell Biol 2010; 88:1-13. [PMID: 20130674 DOI: 10.1139/o09-121] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hsp104, a hexameric AAA+ ATPase found in yeast, transduces energy from cycles of ATP binding and hydrolysis to resolve disordered protein aggregates and cross-beta amyloid conformers. These disaggregation activities are often co-ordinated by the Hsp70 chaperone system and confer considerable selective advantages. First, renaturation of aggregated conformers by Hsp104 is critical for yeast survival after various environmental stresses. Second, amyloid remodeling by Hsp104 enables yeast to exploit multifarious prions as a reservoir of beneficial and heritable phenotypic variation. Curiously, although highly conserved in plants, fungi and bacteria, Hsp104 orthologues are absent from metazoa. Indeed, metazoan proteostasis seems devoid of a system that couples protein disaggregation to renaturation. Here, we review recent endeavors to enhance metazoan proteostasis by applying Hsp104 to the specific protein-misfolding events that underpin two deadly neurodegenerative amyloidoses. Hsp104 potently inhibits Abeta42 amyloidogenesis, which is connected with Alzheimer's disease, but appears unable to disaggregate preformed Abeta42 fibers. By contrast, Hsp104 inhibits and reverses the formation of alpha-synuclein oligomers and fibers, which are connected to Parkinson's disease. Importantly, Hsp104 antagonizes the degeneration of dopaminergic neurons induced by alpha-synuclein misfolding in the rat substantia nigra. These studies raise hopes for developing Hsp104 as a therapeutic agent.
Collapse
Affiliation(s)
- Shilpa Vashist
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
142
|
Haslberger T, Bukau B, Mogk A. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem Cell Biol 2010; 88:63-75. [PMID: 20130680 DOI: 10.1139/o09-118] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The oligomeric AAA+ chaperones ClpB/Hsp104 mediate the reactivation of aggregated proteins, an activity that is crucial for the survival of cells during severe stress. Hsp104 is also essential for the propagation of yeast prions by severing prion fibres. Protein disaggregation depends on the cooperation of ClpB/Hsp104 with a cognate Hsp70 chaperone system. While Hsp70 chaperones are also involved in prion propagation, their precise role is much less well defined compared with its function in aggregate solubilization. Therefore, it remained unclear whether both ClpB/Hsp104 activities are based on common or different mechanisms. Novel data show that ClpB/Hsp104 uses a motor threading activity to remodel both protein aggregates and prion fibrils. Moreover, transfer of both types of substrates to the ClpB/Hsp104 processing pore site requires initial substrate interaction of Hsp70. Together these data emphasize the similarity of thermotolerance and prion propagation pathways and point to a shared mechanistic principle of Hsp70-ClpB/Hsp104-mediated solubilization of amorphous and ordered aggregates.
Collapse
Affiliation(s)
- Tobias Haslberger
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | |
Collapse
|
143
|
Moosavi B, Wongwigkarn J, Tuite MF. Hsp70/Hsp90 co-chaperones are required for efficient Hsp104-mediated elimination of the yeast [PSI(+)] prion but not for prion propagation. Yeast 2010; 27:167-79. [PMID: 20014008 DOI: 10.1002/yea.1742] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The continued propagation of the yeast [PSI(+)] prion requires the molecular chaperone Hsp104 yet in cells engineered to overexpress Hsp104; prion propagation is impaired leading to the rapid appearance of prion-free [psi(-)] cells. The underlying mechanism of prion loss in such cells is unknown but is assumed to be due to the complete dissolution of the prion aggregates by the ATP-dependent disaggregase activity of this chaperone. To further explore the mechanism, we have sought to identify cellular factors required for prion loss in such cells. Sti1p and Cpr7p are co-chaperones that modulate the activity of Hsp70/Ssa and Hsp90 chaperones and bind to the C-terminus of Hsp104. Neither Sti1p nor Cpr7p is necessary for prion propagation but we show that deletion of the STI1 and CPR7 genes leads to a significant reduction in the generation of [psi(-)] cells by Hsp104 overexpression. Deletion of the STI1 and CPR7 genes does not modify the elimination of [PSI(+)] by guanidine hydrochloride, which inhibits the ATPase activity of Hsp104 but does block elimination of [PSI(+)] by overexpression of either an ATPase-defective mutant of Hsp104 (hsp104(K218T/K620T)) or a 'trap' mutant Hsp104 (hsp104(E285Q/E687Q)) that can bind its substrate but can not release it. These results provide support for the hypothesis that [PSI(+)] elimination by Hsp104 overexpression is not simply a consequence of complete dissolution of the prion aggregates but rather is through a mechanism distinct from the remodelling activity of Hsp104.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, UK
| | | | | |
Collapse
|
144
|
Bardill JP, Dulle JE, Fisher JR, True HL. Requirements of Hsp104p activity and Sis1p binding for propagation of the [RNQ(+)] prion. Prion 2009; 3:151-60. [PMID: 19770577 DOI: 10.4161/pri.3.3.9662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation and maintenance of prions in the yeast Saccharomyces cerevisiae is highly regulated by the cellular chaperone machinery. The most important player in this regulation is Hsp104p, which is required for the maintenance of all known prions. The requirements for other chaperones, such as members of the Hsp40 or Hsp70 families, vary with each individual prion. [RNQ(+)] cells do not have a phenotype that is amenable to genetic screens to identify cellular factors important in prion propagation. Therefore, we used a chimeric construct that reports the [RNQ(+)] status of cells to perform a screen for mutants that are unable to maintain [RNQ(+)]. We found eight separate mutations in Hsp104p that caused [RNQ(+)] cells to become [rnq(-)]. These mutations also caused the loss of the [PSI(+)] prion. The expression of one of these mutants, Hsp104p-E190K, showed differential loss of the [RNQ(+)] and [PSI(+)] prions in the presence of wild type Hsp104p. Hsp104p-E190K inefficiently propagated [RNQ(+)] and was unable to maintain [PSI(+)]. The mutant was unable to act on other in vivo substrates, as strains carrying it were not thermotolerant. Purified recombinant Hsp104p-E190K showed a reduced level of ATP hydrolysis as compared to wild type protein. This is likely the cause of both prion loss and lack of in vivo function. Furthermore, it suggests that [RNQ(+)] requires less Hsp104p activity to maintain transmissible protein aggregates than Sup35p. Additionally, we show that the L94A mutation in Rnq1p, which reduces its interaction with Sis1p, prevents Rnq1p from maintaining a prion and inducing [PSI(+)].
Collapse
Affiliation(s)
- J Patrick Bardill
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | |
Collapse
|
145
|
Mathur V, Hong JY, Liebman SW. Ssa1 overexpression and [PIN(+)] variants cure [PSI(+)] by dilution of aggregates. J Mol Biol 2009; 390:155-67. [PMID: 19422835 DOI: 10.1016/j.jmb.2009.04.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/16/2009] [Accepted: 04/27/2009] [Indexed: 11/15/2022]
Abstract
Several cellular chaperones have been shown to affect the propagation of the yeast prions [PSI(+)], [PIN(+)] and [URE3]. Ssa1 and Ssa2 are Hsp70 family chaperones that generally cause pro-[PSI(+)] effects, since dominant-negative mutants of Ssa1 or Ssa2 cure [PSI(+)], and overexpression of Ssa1 enhances de novo [PSI(+)] appearance and prevents curing by excess Hsp104. In contrast, Ssa1 was shown to have anti-[URE3] effects, since overexpression of Ssa1 cures [URE3]. Here we show that excess Ssa1 or Ssa2 can also cure [PSI(+)]. This curing is enhanced in the presence of [PIN(+)]. During curing, Sup35-GFP fluorescent aggregates get bigger and fewer in number, which leads to their being diluted out during cell division, a phenotype that was also observed during the curing of [PSI(+)] by certain variants of [PIN(+)]. The sizes of the detergent-resistant [PSI(+)] prion oligomers increase during [PSI(+)] curing by excess Ssa1. Excess Ssa1 likewise leads to an increase in oligomer sizes of low, medium and very high [PIN(+)] variants. While these phenotypes are also caused by inhibition of Hsp104 or Sis1, the overexpression of Ssa1 did not cause any change in Hsp104 or Sis1 levels.
Collapse
Affiliation(s)
- Vidhu Mathur
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA
| | | | | |
Collapse
|
146
|
Masison DC, Kirkland PA, Sharma D. Influence of Hsp70s and their regulators on yeast prion propagation. Prion 2009; 3:65-73. [PMID: 19556854 DOI: 10.4161/pri.3.2.9134] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Propagation of yeast prions requires normal abundance and activity of many protein chaperones. Central among them is Hsp70, a ubiquitous and essential chaperone involved in many diverse cellular processes that helps promote proper protein folding and acts as a critical component of several chaperone machines. Hsp70 is regulated by a large cohort of co-chaperones, whose effects on prions are likely mediated through Hsp70. Hsp104 is another chaperone, absent from mammalian cells, that resolubilizes proteins from aggregates. This activity, which minimally requires Hsp70 and its co-chaperone Hsp40, is essential for yeast prion replication. Although much is known about how yeast prions can be affected by altering protein chaperones, mechanistic explanations for these effects are uncertain. We discuss the variety of effects Hsp70 and its regulators have on different prions and how the effects might be due to the many ways chaperones interact with each other and with amyloid.
Collapse
Affiliation(s)
- Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | | | | |
Collapse
|
147
|
Abstract
Molecular chaperones regulate essential steps in the propagation of yeast prions. Yeast prions possess domains enriched in glutamines and asparagines that act as templates to drive the assembly of native proteins into beta-sheet-rich, amyloid-like fibrils. Several recent studies highlight a significant and complex function for Hsp40 co-chaperones in propagation of prion elements in yeast. Hsp40 co-chaperones bind non-native polypeptides and transfer these clients to Hsp70s for refolding or degradation. How Hsp40 co-chaperones bind amyloid-like prion conformers that are enriched in hydrophilic residues such as glutamines and asparagines is a significant question in the field. Interestingly, selective recognition of amyloid-like conformers by distinct Hsp40s appears to confer opposing actions on prion assembly. For example, the Type I Hsp40 Ydj1 and Type II Hsp40 Sis1 bind different regions within the prion protein Rnq1 and function respectively to inhibit or promote [RNQ(+)] prion assembly. Thus, substrate selectivity enables distinct Hsp40s to act at unique steps in prion propagation.
Collapse
Affiliation(s)
- Daniel W Summers
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|
148
|
Abstract
[URE3] is a prion of the yeast Ure2 protein. Hsp40 is a cochaperone that regulates Hsp70 chaperone activity. When overexpressed, the Hsp40 Ydj1p cures yeast of [URE3], but the Hsp40 Sis1p does not. On the basis of biochemical data Ydj1p has been proposed to cure [URE3] by binding soluble Ure2p and preventing it from joining prion aggregates. Here, we mutagenized Ydj1p and find that disrupting substrate binding, dimerization, membrane association, or ability to transfer substrate to Hsp70 had little or no effect on curing. J-domain point mutations that disrupt functional interactions of Ydj1p with Hsp70 abolished curing, and the J domain alone cured [URE3]. Consistent with heterologous J domains possessing similar Hsp70 regulatory activity, the Sis1p J domain also cured [URE3]. We further show that Ydj1p is not essential for [URE3] propagation and that depletion of Ure2p is lethal in cells lacking Ydj1p. Our data imply that curing of [URE3] by overproduced Ydj1p does not involve direct interaction of Ydj1p with Ure2p but rather works through regulation of Hsp70 through a specific J-protein/Hsp70 interaction.
Collapse
|
149
|
Abstract
Infectious amyloid forms of the release factor, Sup35, comprise the yeast prion [PSI+]. This protein-based unit of inheritance is an evolutionary capacitor able to release cryptic genetic variation during environmental stress and generate potentially beneficial phenotypes. Genetic data have uncovered a sophisticated proteostasis network that tightly regulates [PSI+] formation, propagation and elimination. Central to this network, is the AAA+ ATPase and protein disaggregase, Hsp104. Shifting the balance of the cytosolic Hsp70:Hsp40 chaperone machinery and associated nucleotide exchange factors also influences the [PSI+] prion cycle. Yet, a precise understanding of how these systems co-operate to directly modulate the protein folding events required for sustainable Sup35 prionogenesis has remained elusive. Here, we spotlight recent advances that begin to clarify this issue. We suggest that the Hsp70:Hsp40 chaperone machinery functions collectively as a rheostat that adjusts Hsp104's basic prion-remodeling activities.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
150
|
Current awareness on yeast. Yeast 1990. [DOI: 10.1002/yea.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|