101
|
Brijwal M, Dhawan B, Rawre J, Sebastian S, Kapil A. Clonal dissemination of linezolid-resistant Staphylococcus haemolyticus harbouring a G2576T mutation and the cfr gene in an Indian hospital. J Med Microbiol 2016; 65:698-700. [PMID: 27189831 DOI: 10.1099/jmm.0.000279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Megha Brijwal
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Benu Dhawan
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Jyoti Rawre
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujeesh Sebastian
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
102
|
Antibiotic resistance profiles of coagulase-negative staphylococci in livestock environments. Vet Microbiol 2016; 200:79-87. [PMID: 27185355 DOI: 10.1016/j.vetmic.2016.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2015] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 11/22/2022]
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) have globally emerged in animal husbandry. In addition to methicillin resistance, LA-MRSA may carry a variety of novel and uncommon antimicrobial resistance genes. Occurrence of the same resistance genes in coagulase-negative staphylococci (CoNS) and S. aureus suggests an ongoing genetic exchange between LA-MRSA and other staphylococci whose driving forces in the ecological niche of the farm environment are, however, still poorly understood. To assess the potential of CoNS as putative reservoirs for antibiotic resistance genes, we analysed the antimicrobial susceptibility of CoNS from dust and manure samples obtained in 41 pig farms in Germany, most of them (36 of 41) with a proven LA-MRSA/MSSA history. Among the 344 isolates analysed, 18 different CoNS species were identified and S. sciuri represented the most prevalent species (46%). High resistance rates were detected for tetracycline (71%), penicillin (65%) and oxacillin (64%) as well as fusidic acid (50%), which was mainly due to reduced susceptibility among S. sciuri isolates. S. sciuri exhibited pronounced multiresistance, and many isolates were characterised by the carriage of a number of uncommon (multi)resistance genes (e.g. cfr, apmA, fexA) and decreased susceptibility towards last resort antibiotics such as linezolid and daptomycin. The combined data suggest that S. sciuri harbours a significant resistance gene pool that requires further attention. We hypothesise that members of this species, due to their flexible lifestyle, might contribute to the spread of such genes in livestock environments.
Collapse
|
103
|
First Report of cfr-Carrying Plasmids in the Pandemic Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Staphylococcal Cassette Chromosome mec Type IV Clone. Antimicrob Agents Chemother 2016; 60:3007-15. [PMID: 26953212 PMCID: PMC4862533 DOI: 10.1128/aac.02949-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins; cfr, encoding phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A (PhLOPSA) resistance; its homologue cfr(B); or optrA, conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr is even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field gel electrophoresis (PFGE), plasmid curing, and conjugative transfer. Whole-genome sequencing was used for single-nucleotide variant (SNV) analysis, multilocus sequence typing, L protein mutation identification, cfr plasmid sequence analysis, and optrA and cfr(B) detection. Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles, compared to 1/5 in M13/0401. Both isolates were sequence type 22 MRSA staphylococcal cassette chromosome mec type IV (ST22-MRSA-IV)/spa type t032 isolates, harbored cfr, exhibited the PhLOPSA phenotype, and lacked optrA and cfr(B). They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harbored cfr and fexA on a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harbored cfr and lsa(B) on a novel 27-kb plasmid. This is the first report of cfr in the pandemic ST22-MRSA-IV clone. Different cfr plasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlight that prudent management of linezolid use is essential.
Collapse
|
104
|
Schwalm EL, Grove TL, Booker SJ, Boal AK. Crystallographic capture of a radical S-adenosylmethionine enzyme in the act of modifying tRNA. Science 2016; 352:309-12. [PMID: 27081063 PMCID: PMC5629962 DOI: 10.1126/science.aad5367] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2015] [Accepted: 02/23/2016] [Indexed: 01/02/2023]
Abstract
RlmN is a dual-specificity RNA methylase that modifies C2 of adenosine 2503 (A2503) in 23S rRNA and C2 of adenosine 37 (A37) in several Escherichia coli transfer RNAs (tRNAs). A related methylase, Cfr, modifies C8 of A2503 via a similar mechanism, conferring resistance to multiple classes of antibiotics. Here, we report the x-ray structure of a key intermediate in the RlmN reaction, in which a Cys(118)→Ala variant of the protein is cross-linked to a tRNA(Glu)substrate through the terminal methylene carbon of a formerly methylcysteinyl residue and C2 of A37. RlmN contacts the entire length of tRNA(Glu), accessing A37 by using an induced-fit strategy that completely unfolds the tRNA anticodon stem-loop, which is likely critical for recognition of both tRNA and ribosomal RNA substrates.
Collapse
Affiliation(s)
- Erica L Schwalm
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Tyler L Grove
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Squire J Booker
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA. Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA. Howard Hughes Medical Institute, Pennsylvania State University, University Park, PA 16802, USA.
| | - Amie K Boal
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA. Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
105
|
Wei CF, Chang SK, Shien JH, Kuo HC, Chen WY, Chou CC. Synergism between two amphenicol of antibiotics, florfenicol and thiamphenicol, against Staphylococcus aureus. Vet Rec 2016; 178:319. [DOI: 10.1136/vr.103554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/18/2016] [Indexed: 02/04/2023]
Affiliation(s)
- C.-F. Wei
- Department of Veterinary Medicine; College of Veterinary Medicine, National Chung Hsing University; Taichung 402 Taiwan
| | - S.-K. Chang
- Graduate Institute of Veterinary Medicine, National Taiwan University; Taipei 106 Taiwan
| | - J.-H. Shien
- Department of Veterinary Medicine; College of Veterinary Medicine, National Chung Hsing University; Taichung 402 Taiwan
| | - H.-C. Kuo
- Department of Veterinary Medicine; National Chiayi University; Chiayi 600 Taiwan
| | - W.-Y. Chen
- Department of Veterinary Medicine; College of Veterinary Medicine, National Chung Hsing University; Taichung 402 Taiwan
| | - C.-C. Chou
- Department of Veterinary Medicine; College of Veterinary Medicine, National Chung Hsing University; Taichung 402 Taiwan
- Department and Graduate; Institute of Pharmacology, National Defense Medical Center; Taipei 114 Taiwan
| |
Collapse
|
106
|
Investigation of Linezolid Resistance in Staphylococci and Enterococci. J Clin Microbiol 2016; 54:1289-94. [PMID: 26935728 DOI: 10.1128/jcm.01929-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2015] [Accepted: 01/27/2016] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to investigate an apparent increase in linezolid-nonsusceptible staphylococci and enterococci following a laboratory change in antimicrobial susceptibility testing from disk diffusion to an automated susceptibility testing system. Isolates with nonsusceptible results (n = 27) from Vitek2 were subjected to a battery of confirmatory testing which included disk diffusion, Microscan broth microdilution, Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution, gradient diffusion (Etest), 23S rRNA gene sequencing, and cfr PCR. Our results show that there is poor correlation between methods and that only 70 to 75% of isolates were confirmed as linezolid resistant with alternative phenotypic testing methods (disk diffusion, Microscan broth microdilution, CLSI broth microdilution, and Etest). 23S rRNA gene sequencing identified mutations previously associated with linezolid resistance in 16 (59.3%) isolates, and the cfr gene was detected in 3 (11.1%) isolates. Mutations located at positions 2576 and 2534 of the 23S rRNA gene were most common. In addition, two previously undescribed variants (at positions 2083 and 2345 of the 23S rRNA gene) were also identified and may contribute to linezolid resistance.
Collapse
|
107
|
Roberts MC, Schwarz S. Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:576-592. [PMID: 27065405 DOI: 10.2134/jeq2015.04.0207] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2023]
Abstract
Recent reports have speculated on the future impact that antibiotic-resistant bacteria will have on food production, human health, and global economics. This review examines microbial resistance to tetracyclines and phenicols, antibiotics that are widely used in global food production. The mechanisms of resistance, mode of spread between agriculturally and human-impacted environments and ecosystems, distribution among bacteria, and the genes most likely to be associated with agricultural and environmental settings are included. Forty-six different tetracycline resistance () genes have been identified in 126 genera, with (M) having the broadest taxonomic distribution among all bacteria and (B) having the broadest coverage among the Gram-negative genera. Phenicol resistance genes are organized into 37 groups and have been identified in 70 bacterial genera. The review provides the latest information on tetracycline and phenicol resistance genes, including their association with mobile genetic elements in bacteria of environmental, medical, and veterinary relevance. Knowing what specific antibiotic-resistance genes (ARGs) are found in specific bacterial species and/or genera is critical when using a selective suite of ARGs for detection or surveillance studies. As detection methods move to molecular techniques, our knowledge about which type of bacteria carry which resistance gene(s) will become more important to ensure that the whole spectrum of bacteria are included in future surveillance studies. This review provides information needed to integrate the biology, taxonomy, and ecology of tetracycline- and phenicol-resistant bacteria and their resistance genes so that informative surveillance strategies can be developed and the correct genes selected.
Collapse
|
108
|
Osman KM, Amer AM, Badr JM, Helmy NM, Elhelw RA, Orabi A, Bakry M, Saad ASA. Antimicrobial Resistance, Biofilm Formation and mecA Characterization of Methicillin-Susceptible S. aureus and Non-S. aureus of Beef Meat Origin in Egypt. Front Microbiol 2016; 7:222. [PMID: 26973606 PMCID: PMC4770614 DOI: 10.3389/fmicb.2016.00222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2015] [Accepted: 02/11/2016] [Indexed: 11/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) have been found in various farm animal species throughout the world. Yet, methicillin-susceptible S. aureus (MSSA), methicillin-susceptible non-S. aureus (MS-NSA), and methicillin-resistant non-S. aureus (MR-NSA) were not investigated. Therefore, we persued to determine the diversity in their phenotypic virulence assay, phenotypic antimicrobial resistance profile and molecular characterization in one of the food chains in Egypt. Samples were collected during 2013 from beef meat at retail. Twenty seven isolates comprising five species (S. hyicus, S. aureus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus) were characterized for their antibiotic resistance phenotypic profile and antibiotic resistance genes (mecA, cfr, gyrA, gyrB, and grlA). Out of the 27 Staphylococcus isolates only one isolate was resistant to the 12 antibiotics representing nine classes. Raw beef meat sold across the Great Cairo zone, contains 66.7% of MRS, with highest prevalence was reported in S. aureus (66.7%), while the MRS non-S. aureus strains constituted 66.7% from which S. hyicus (60%), S. intermedius (33.3%), S. schleiferi subsp. coagulans (100%), and S. lentus (100%) were MRS. Seven S. aureus, six S. hyicus, four S. schleiferi subsp. coagulans, three S. intermedius, and one S. lentus isolates although being resistant to oxacillin yet, 11/27 (40.7%) carried the mecA gene. At the same time, the cfr gene was present in 2 of the nine S. aureus isolates, and totally undetectable in S. hyicus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus. Although, global researches largely focused into MRSA and MR-NSA in animals on pigs, the analysis of our results stipulates, that buffaloes and cattle could be MRSA dispersers and that this theme is not specific to pigs. Detection of MSSA virulence determinants is a must, as although oxacillin resistance may be absent yet, the MSSA may carry the virulence determinants which could be a source of perilous S. aureus for the human community.
Collapse
Affiliation(s)
- Kamelia M Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University Giza, Egypt
| | - Aziza M Amer
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University Giza, Egypt
| | - Jihan M Badr
- Department of Poultry Diseases, Animal Health Research Institute Cairo, Egypt
| | - Nashwa M Helmy
- Departments of Biotechnology, Animal Health Research Institute Giza, Egypt
| | - Rehab A Elhelw
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University Giza, Egypt
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University Giza, Egypt
| | - Magdy Bakry
- Department of Microbiology, National Research Center Cairo, Egypt
| | - Aalaa S A Saad
- Department of Poultry Diseases, Animal Health Research Institute Cairo, Egypt
| |
Collapse
|
109
|
Nomenclature and functionality of the so-called cfr gene from Clostridium difficile. Antimicrob Agents Chemother 2016; 59:2476-7. [PMID: 25762794 DOI: 10.1128/aac.04893-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
|
110
|
Abstract
In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.
Collapse
|
111
|
Michael GB, Freitag C, Wendlandt S, Eidam C, Feßler AT, Lopes GV, Kadlec K, Schwarz S. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol 2016; 10:427-43. [PMID: 25812464 DOI: 10.2217/fmb.14.93] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
During the last decade, antimicrobial resistance in bacteria from food-producing animals has become a major research topic. In this review, different emerging resistance properties related to bacteria of food-producing animals are highlighted. These include: extended-spectrum β-lactamase-producing Enterobacteriaceae; carbapenemase-producing bacteria; bovine respiratory tract pathogens, such as Pasteurella multocida and Mannheimia haemolytica, which harbor the multiresistance mediating integrative and conjugative element ICEPmu1; Gram-positive and Gram-negative bacteria that carry the multiresistance gene cfr; and the occurrence of numerous novel antimicrobial resistance genes in livestock-associated methicillin-resistant Staphylococcus aureus. The emergence of the aforementioned resistance properties is mainly based on the exchange of mobile genetic elements that carry the respective resistance genes.
Collapse
|
112
|
Ntokou E, Hansen LH, Kongsted J, Vester B. Biochemical and Computational Analysis of the Substrate Specificities of Cfr and RlmN Methyltransferases. PLoS One 2015; 10:e0145655. [PMID: 26700482 PMCID: PMC4689488 DOI: 10.1371/journal.pone.0145655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022] Open
Abstract
Cfr and RlmN methyltransferases both modify adenine 2503 in 23S rRNA (Escherichia coli numbering). RlmN methylates position C2 of adenine while Cfr methylates position C8, and to a lesser extent C2, conferring antibiotic resistance to peptidyl transferase inhibitors. Cfr and RlmN show high sequence homology and may be evolutionarily linked to a common ancestor. To explore their individual specificity and similarity we performed two sets of experiments. We created a homology model of Cfr and explored the C2/C8 specificity using docking and binding energy calculations on the Cfr homology model and an X-ray structure of RlmN. We used a trinucleotide as target sequence and assessed its positioning at the active site for methylation. The calculations are in accordance with different poses of the trinucleotide in the two enzymes indicating major evolutionary changes to shift the C2/C8 specificities. To explore interchangeability between Cfr and RlmN we constructed various combinations of their genes. The function of the mixed genes was investigated by RNA primer extension analysis to reveal methylation at 23S rRNA position A2503 and by MIC analysis to reveal antibiotic resistance. The catalytic site is expected to be responsible for the C2/C8 specificity and most of the combinations involve interchanging segments at this site. Almost all replacements showed no function in the primer extension assay, apart from a few that had a weak effect. Thus Cfr and RlmN appear to be much less similar than expected from their sequence similarity and common target.
Collapse
Affiliation(s)
- Eleni Ntokou
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- * E-mail:
| | - Lykke Haastrup Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Birte Vester
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
113
|
Abstract
Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen.
Collapse
|
114
|
Cafini F, Nguyen LTT, Higashide M, Román F, Prieto J, Morikawa K. Horizontal gene transmission of thecfrgene to MRSA andEnterococcus: role ofStaphylococcus epidermidisas a reservoir and alternative pathway for the spread of linezolid resistance. J Antimicrob Chemother 2015; 71:587-92. [DOI: 10.1093/jac/dkv391] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2015] [Accepted: 10/17/2015] [Indexed: 11/13/2022] Open
|
115
|
Ishiwada N, Takaya A, Kimura A, Watanabe M, Hino M, Ochiai H, Matsui M, Shibayama K, Yamamoto T. Linezolid-resistant Staphylococcus epidermidis associated with long-term, repeated linezolid use in a pediatric patient. J Infect Chemother 2015; 22:187-90. [PMID: 26603427 DOI: 10.1016/j.jiac.2015.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2015] [Revised: 09/29/2015] [Accepted: 10/17/2015] [Indexed: 11/29/2022]
Abstract
We report an 8-year-old patient with catheter-related bacteremia caused by linezolid-resistant Staphylococcus epidermidis that was isolated after the long-term, repeated use of linezolid. Three S. epidermidis strains isolated from this patient were bacteriologically analyzed. While the strain isolated prior to linezolid initiation was susceptible to linezolid, two strains after linezolid therapy displayed low-level linezolid susceptibility (MIC, 4 mg/L) and linezolid resistance (MIC, 16 mg/L). T2500A mutation in two copies and G2575T mutations in three copies of 23S rRNA were detected in the low-susceptible strain and the resistant strain, respectively. Linezolid-resistant S. epidermidis infection is rare, but may occur with the long-term administration of linezolid.
Collapse
Affiliation(s)
- Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.
| | - Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Asahi Kimura
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Masaharu Watanabe
- Division of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan
| | - Moeko Hino
- Department of Pediatrics, Chiba University Hospital, Chiba 260-8677, Japan
| | - Hidemasa Ochiai
- Department of Pediatrics, Chiba University Hospital, Chiba 260-8677, Japan
| | - Mari Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Tomoko Yamamoto
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan; Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
116
|
Characterization of a cfr-Carrying Plasmid from Porcine Escherichia coli That Closely Resembles Plasmid pEA3 from the Plant Pathogen Erwinia amylovora. Antimicrob Agents Chemother 2015; 60:658-61. [PMID: 26525796 DOI: 10.1128/aac.02114-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022] Open
Abstract
The multiresistance gene cfr was found in two porcine Escherichia coli isolates, one harboring it on the conjugative 33,885-bp plasmid pFSEC-01, the other harboring it in the chromosomal DNA. Sequence analysis of pFSEC-01 revealed that a 6,769-bp fragment containing the cfr gene bracketed by two IS26 elements was inserted into a plasmid closely related to pEA3 from the plant pathogen Erwinia amylovora, suggesting that pFSEC-01 may be transferred between different bacterial genera of both animal and plant origin.
Collapse
|
117
|
Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S, Zimmerman E, Rozenberg H, Bashan A, Yonath A. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad Sci U S A 2015; 112:E5805-14. [PMID: 26464510 PMCID: PMC4629319 DOI: 10.1073/pnas.1517952112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of bacterial multidrug resistance to antibiotics threatens to cause regression to the preantibiotic era. Here we present the crystal structure of the large ribosomal subunit from Staphylococcus aureus, a versatile Gram-positive aggressive pathogen, and its complexes with the known antibiotics linezolid and telithromycin, as well as with a new, highly potent pleuromutilin derivative, BC-3205. These crystal structures shed light on specific structural motifs of the S. aureus ribosome and the binding modes of the aforementioned antibiotics. Moreover, by analyzing the ribosome structure and comparing it with those of nonpathogenic bacterial models, we identified some unique internal and peripheral structural motifs that may be potential candidates for improving known antibiotics and for use in the design of selective antibiotic drugs against S. aureus.
Collapse
Affiliation(s)
- Zohar Eyal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miri Krupkin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Itai Wekselman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Ella Zimmerman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
118
|
Brenciani A, Morroni G, Pollini S, Tiberi E, Mingoia M, Varaldo PE, Rossolini GM, Giovanetti E. Characterization of novel conjugative multiresistance plasmids carrying cfr from linezolid-resistant Staphylococcus epidermidis clinical isolates from Italy. J Antimicrob Chemother 2015; 71:307-13. [PMID: 26472766 DOI: 10.1093/jac/dkv341] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2015] [Accepted: 09/18/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The objective of this study was to investigate the genetic environment of the cfr gene from two linezolid-resistant clinical isolates of Staphylococcus epidermidis from Italy. METHODS The two strains (SP1 and SP2) were phenotypically and genotypically characterized. Transferability of cfr was assessed by electrotransformation and conjugation. The genetic contexts of cfr were investigated by PCR mapping, sequencing and comparative sequence analyses. RESULTS SP1 and SP2 belonged to ST23 and ST83, respectively. In both strains, the cfr gene was located on a plasmid, which could be transferred to Staphylococcus aureus by transformation and conjugation. In isolate SP1, linezolid resistance mediated by mutations in 23S rRNA and the L3 ribosomal protein was also detected. pSP01, the cfr-carrying plasmid from strain SP1, had a larger number of additional resistance genes and was sequenced (76 991 bp). It disclosed a distinctive mosaic structure, with four cargo regions interpolated into a backbone 95% identical to that of S. aureus plasmid pPR9. Besides cfr, resistance genes distributed in the cargo regions included blaZ, lsa(B), msr(A) and aad, and a gene cluster for resistance to heavy metals. A closely related cfr plasmid (pSP01.1, ∼ 49 kb), differing from pSP01 by the lack of a large cargo region with some resistance genes, was detected in strain SP2. CONCLUSIONS The conjugative multiresistance plasmid pSP01 is the first cfr-carrying plasmid to be sequenced in Italy. This is the first time cfr has been found: (i) in association with blaZ, msr(A) and heavy metal resistance genes; and (ii) in an S. epidermidis strain (SP2) belonging to ST83.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Simona Pollini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Erika Tiberi
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Marina Mingoia
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Pietro E Varaldo
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gian Maria Rossolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
119
|
A cfr-like gene from Clostridium difficile confers multiple antibiotic resistance by the same mechanism as the cfr gene. Antimicrob Agents Chemother 2015; 59:5841-3. [PMID: 26149991 DOI: 10.1128/aac.01274-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022] Open
Abstract
The Cfr RNA methyltransferase causes multiple resistances to peptidyl transferase inhibitors by methylation of A2503 23S rRNA. Many cfr-like gene sequences in the databases code for unknown functions. This study confirms that a Cfr-like protein from a Peptoclostridium difficile (formerly Clostridium difficile) strain does function as a Cfr protein. The enzyme is expressed in Escherichia coli and shows elevated MICs for five classes of antibiotics. A primer extension stop indicates a modification at A2503 in 23S rRNA.
Collapse
|
120
|
Li S, Zhao L, Zheng B, Shen P, Ji J, Lv J, Li L, Xiao Y. Identification and characterization of cfr-positive Staphylococcus aureus isolates from community-onset infectious patients in a county hospital in China. J Med Microbiol 2015; 64:910-915. [PMID: 26066634 DOI: 10.1099/jmm.0.000096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
The cfr gene was detected in 14 meticillin-susceptible Staphylococcus aureus isolates recovered from outpatients with community-onset infections in a county hospital in China. The MIC of linezolid was 4 μg ml- 1 in eight isolates and 2 μg ml- 1 in six isolates. All isolates were susceptible to vancomycin and teicoplanin, but had elevated MICs for penicillin (0.5-128 μg ml- 1), chloramphenicol (2-32 μg ml- 1), clindamycin (0.5-128 μg ml- 1) and erythromycin (4-128 μg ml- 1). Nine isolates had mutations on domain V of 23S rRNA and/or the ribosomal L proteins that were not located close to the linezolid-binding pocket. Southern blotting experiments demonstrated that the cfr genes in all 14 isolates resided on plasmids. Sequence analysis of the 5.6 kb cfr-carrying plasmid segment revealed 99 % identity to the corresponding sequences in plasmid pSS-01 from animal staphylococci and plasmid pRM-01 from human staphylococci. Five isolates belonged to sequence type (ST)188 and three to ST965; the two ST types were previously reported in isolates of animal origin in some areas of China. These results indicate that the cfr-carrying plasmids in this study are likely of animal origin. The present study shows that cfr-harbouring S. aureus isolates have emerged in some areas of China and that cfr-carrying isolates may be transmitted between animals and humans.
Collapse
Affiliation(s)
- Sujuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, PR China
| | - Lina Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, PR China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, PR China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, PR China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, PR China
| | - Jifang Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, PR China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, PR China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, PR China
| |
Collapse
|
121
|
Polikanov YS, Starosta AL, Juette MF, Altman RB, Terry DS, Lu W, Burnett BJ, Dinos G, Reynolds KA, Blanchard SC, Steitz TA, Wilson DN. Distinct tRNA Accommodation Intermediates Observed on the Ribosome with the Antibiotics Hygromycin A and A201A. Mol Cell 2015; 58:832-44. [PMID: 26028538 DOI: 10.1016/j.molcel.2015.04.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2015] [Revised: 02/23/2015] [Accepted: 04/07/2015] [Indexed: 01/12/2023]
Abstract
The increase in multi-drug-resistant bacteria is limiting the effectiveness of currently approved antibiotics, leading to a renewed interest in antibiotics with distinct chemical scaffolds. We have solved the structures of the Thermus thermophilus 70S ribosome with A-, P-, and E-site tRNAs bound and in complex with either the aminocyclitol-containing antibiotic hygromycin A (HygA) or the nucleoside antibiotic A201A. Both antibiotics bind at the peptidyl transferase center and sterically occlude the CCA-end of the A-tRNA from entering the A site of the peptidyl transferase center. Single-molecule Förster resonance energy transfer (smFRET) experiments reveal that HygA and A201A specifically interfere with full accommodation of the A-tRNA, leading to the presence of tRNA accommodation intermediates and thereby inhibiting peptide bond formation. Thus, our results provide not only insight into the mechanism of action of HygA and A201A, but also into the fundamental process of tRNA accommodation during protein synthesis.
Collapse
Affiliation(s)
- Yury S Polikanov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Agata L Starosta
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Wanli Lu
- Department of Chemistry, Portland State University, Portland, OR 97207, USA
| | - Benjamin J Burnett
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - George Dinos
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | - Kevin A Reynolds
- Department of Chemistry, Portland State University, Portland, OR 97207, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA; Tri-Institutional Training Program in Chemical Biology, New York, NY 10065, USA.
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Daniel N Wilson
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany; Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany.
| |
Collapse
|
122
|
Bauerle MR, Schwalm EL, Booker SJ. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. J Biol Chem 2015; 290:3995-4002. [PMID: 25477520 PMCID: PMC4326810 DOI: 10.1074/jbc.r114.607044] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Radical S-adenosylmethionine (SAM) enzymes use the oxidizing power of a 5'-deoxyadenosyl 5'-radical to initiate an amazing array of transformations, usually through the abstraction of a target substrate hydrogen atom. A common reaction of radical SAM (RS) enzymes is the methylation of unactivated carbon or phosphorous atoms found in numerous primary and secondary metabolites, as well as in proteins, sugars, lipids, and RNA. However, neither the chemical mechanisms by which these unactivated atoms obtain methyl groups nor the actual methyl donors are conserved. In fact, RS methylases have been grouped into three classes based on protein architecture, cofactor requirement, and predicted mechanism of catalysis. Class A methylases use two cysteine residues to methylate sp(2)-hybridized carbon centers. Class B methylases require a cobalamin cofactor to methylate both sp(2)-hybridized and sp(3)-hybridized carbon centers as well as phosphinate phosphorous atoms. Class C methylases share significant sequence homology with the RS enzyme, HemN, and may bind two SAM molecules simultaneously to methylate sp(2)-hybridized carbon centers. Lastly, we describe a new class of recently discovered RS methylases. These Class D methylases, unlike Class A, B, and C enzymes, which use SAM as the source of the donated methyl carbon, are proposed to methylate sp(2)-hybridized carbon centers using methylenetetrahydrofolate as the source of the appended methyl carbon.
Collapse
Affiliation(s)
- Matthew R Bauerle
- From the Department of Chemistry and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Erica L Schwalm
- From the Department of Chemistry and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Squire J Booker
- From the Department of Chemistry and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802
| |
Collapse
|
123
|
Wendlandt S, Shen J, Kadlec K, Wang Y, Li B, Zhang WJ, Feßler AT, Wu C, Schwarz S. Multidrug resistance genes in staphylococci from animals that confer resistance to critically and highly important antimicrobial agents in human medicine. Trends Microbiol 2015; 23:44-54. [DOI: 10.1016/j.tim.2014.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
124
|
Valdes N, Espinoza C, Sanhueza L, Gonzalez A, Corsini G, Tello M. Draft genome sequence of the Chilean isolate Aeromonas salmonicida strain CBA100. FEMS Microbiol Lett 2014; 362:fnu062. [PMID: 25743070 DOI: 10.1093/femsle/fnu062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
We report the draft genome sequence from Aeromonas salmonicida sp. strain CBA100, which was characterized as an antibiotic-resistant bacterium isolated from infected rainbow trout. The total size of the genome is 4,788,109 bp, with a G + C content of 60.55%. Comparison of its open reading frames shows that the closest homologue to one third of the genes of strain CBA100 are found in A. hydrophila. The strain contains several efflux pumps and putative genes that confer resistance to multiclass antibiotics, including macrolide, β-lactamics, florfenicol and quinolones. The antibiogram profile suggests that efflux pumps are the main mechanism of resistance to non-β-lactamic antibiotics. This is the first genome of a Chilean isolate of A. salmonicida, which should shed light on the design of strain-specific vaccines against this pathogen and reduce the use of antibiotics for preventive treatment in Chilean aquaculture.
Collapse
Affiliation(s)
- Natalia Valdes
- Unidad de Apoyo Bioinformático, Departamento de Biología, Facultad de Química y Biología, USACH, Alameda 3363, Santiago, Chile
| | - Carolina Espinoza
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, USACH, Alameda 3363, Santiago, Chile
| | - Loreto Sanhueza
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, USACH, Alameda 3363, Santiago, Chile
| | - Alex Gonzalez
- Laboratorio de Microbiología Ambiental y Extremófilos, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de los Lagos, Fuchslocher 1305, Osorno, Chile
| | - Gino Corsini
- Centro de Investigation Biomédica, Universidad Autónoma de Chile, Llano Subercaseaux 2801, Santiago, Chile
| | - Mario Tello
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, USACH, Alameda 3363, Santiago, Chile
| |
Collapse
|
125
|
Iron-sulfur proteins responsible for RNA modifications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1272-83. [PMID: 25533083 DOI: 10.1016/j.bbamcr.2014.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/16/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022]
Abstract
RNA molecules are decorated with various chemical modifications, which are introduced post-transcriptionally by RNA-modifying enzymes. These modifications are required for proper RNA function. Among more than 100 known species of RNA modifications, several modified bases in tRNAs and rRNAs are introduced by RNA-modifying enzymes containing iron-sulfur (Fe/S) clusters. Most Fe/S-containing RNA-modifying enzymes contain radical SAM domains that catalyze a variety of chemical reactions, including methylation, methylthiolation, carboxymethylation, tricyclic purine formation, and deazaguanine formation. Lack of these modifications can cause pathological consequences. Here, we review recent studies on the biogenesis and function of RNA modifications mediated by Fe/S proteins. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
|
126
|
Sergeeva OV, Bogdanov AA, Sergiev PV. What do we know about ribosomal RNA methylation in Escherichia coli? Biochimie 2014; 117:110-8. [PMID: 25511423 DOI: 10.1016/j.biochi.2014.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
Abstract
A ribosome is a ribonucleoprotein that performs the synthesis of proteins. Ribosomal RNA of all organisms includes a number of modified nucleotides, such as base or ribose methylated and pseudouridines. Methylated nucleotides are highly conserved in bacteria and some even universally. In this review we discuss available data on a set of modification sites in the most studied bacteria, Escherichia coli. While most rRNA modification enzymes are known for this organism, the function of the modified nucleotides is rarely identified.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Methylation
- Methyltransferases/chemistry
- Methyltransferases/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- O V Sergeeva
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Moscow 143025, Russia.
| | - A A Bogdanov
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - P V Sergiev
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
127
|
Tian Y, Li T, Zhu Y, Wang B, Zou X, Li M. Mechanisms of linezolid resistance in staphylococci and enterococci isolated from two teaching hospitals in Shanghai, China. BMC Microbiol 2014; 14:292. [PMID: 25420718 PMCID: PMC4245736 DOI: 10.1186/s12866-014-0292-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2014] [Accepted: 11/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linezolid is one of the most effective treatments against Gram-positive pathogens. However, linezolid-resistant/intermediate strains have recently emerged in worldwide. The purpose of this study was to analyse the prevalence and resistance mechanisms of linezolid-resistant/intermediate staphylococci and enterococci in Shanghai, China. RESULTS Thirty-two linezolid-resistant/intermediate strains, including 14 Staphylococcus capitis, three Staphylococcus aureus, 14 Enterococcus faecalis and one Enterococcus faecium clinical isolates, were collected in this study which displayed linezolid MICs of 8 to 512 μg/ml, 8-32 μg/ml, 4-8 μg/ml and 4 μg/ml, respectively. All linezolid-resistant S. capitis isolates had a novel C2131T mutation and a G2603T mutation in the 23S rRNA region, and some had a C316T (Arg106Cys) substitution in protein L4 and/or harboured cfr. Linezolid-resistant S. aureus isolates carried a C389G (Ala130Gly) substitution in protein L3, and/or harboured cfr. The cfr gene was flanked by two copies of the IS256-like element, with a downstream orf1 gene. Linezolid-resistant/intermediate enterococci lacked major resistance mechanisms. The semi-quantitative biofilm assay showed that 14 linezolid-resistant E. faecalis isolates produced a larger biofilm than linezolid-susceptible E. faecalis strains. Transmission electron microscopy showed the cell walls of linezolid-resistant/intermediate strains were thicker than linezolid-susceptible strains. CONCLUSION Our data indicated that major resistance mechanisms, such as mutations in 23S rRNA and ribosomal proteins L3 and L4, along with cfr acquisition, played an important role in linezolid resistance. Secondary resistance mechanisms, such as biofilm formation and cell wall thickness, should also be taken into account.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Li
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
128
|
Takaya A, Kimura A, Sato Y, Ishiwada N, Watanabe M, Matsui M, Shibayama K, Yamamoto T. Molecular characterization of linezolid-resistant CoNS isolates in Japan. J Antimicrob Chemother 2014; 70:658-63. [PMID: 25381168 DOI: 10.1093/jac/dku443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Linezolid has been reported to remain active against 98% of staphylococci with resistance identified in 0.05% of Staphylococcus aureus and 1.4% of CoNS. The objective of this study was to characterize the linezolid-resistance mechanisms in the linezolid-resistant CoNS strains isolated in Japan. METHODS Staphylococcus capitis strains exhibiting linezolid MICs >8 mg/L isolated from inpatients between 2012 and 2014 were screened for cfr and mutations in 23S rRNA, L3 and L4 by PCR/sequencing. Isolates were also examined for mutations in the rlmN gene. RESULTS S. capitis had six 23S rRNA alleles. Five S. capitis isolates displayed linezolid MICs of 8, 16 and 32 mg/L. G2576U mutations were detected in three, four or five copies of 23S rRNA in all isolates. In two isolates exhibiting the highest linezolid MIC (32 mg/L) there was a large deletion in a single copy of 23S rRNA. Repeated 10 bp sequences were found in both 16S and 23S rRNAs, suggesting deletion by recombination between the repeats. One isolate had the mutation Ala-142→Thr in the ribosomal protein L3. All linezolid-resistant isolates also demonstrated mutations in the gene encoding RlmN methyltransferase, leading to Thr-62→Met and Gly-148→Ser. CONCLUSIONS Multiple mechanisms appeared to be responsible for the elevated linezolid resistance in S. capitis isolates: a G2576U mutation in different numbers of copies of 23S rRNA, loss of a single copy of 23S rRNA and a mutation in the ribosomal protein L3, suggesting the accumulation of independent mutational events.
Collapse
Affiliation(s)
- Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Asahi Kimura
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yoshiharu Sato
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naruhiko Ishiwada
- Division of Control and Treatment of Infectious Diseases, Chiba University Hospital, Chiba 260-8677, Japan
| | - Masaharu Watanabe
- Division of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan
| | - Mari Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Tomoko Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
129
|
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:25-64. [PMID: 25232278 PMCID: PMC4159373 DOI: 10.4137/pmc.s14459] [Citation(s) in RCA: 871] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/25/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.
Collapse
Affiliation(s)
- Richard J Fair
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Berlin, Germany
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
130
|
Linezolid-resistant Staphylococcus aureus strain 1128105, the first known clinical isolate possessing the cfr multidrug resistance gene. Antimicrob Agents Chemother 2014; 58:6592-8. [PMID: 25155597 DOI: 10.1128/aac.03493-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023] Open
Abstract
The Cfr methyltransferase confers resistance to six classes of drugs which target the peptidyl transferase center of the 50S ribosomal subunit, including some oxazolidinones, such as linezolid (LZD). The mobile cfr gene was identified in European veterinary isolates from the late 1990s, although the earliest report of a clinical cfr-positive strain was the 2005 Colombian methicillin-resistant Staphylococcus aureus (MRSA) isolate CM05. Here, through retrospective analysis of LZD(r) clinical strains from a U.S. surveillance program, we identified a cfr-positive MRSA isolate, 1128105, from January 2005, predating CM05 by 5 months. Molecular typing of 1128105 revealed a unique pulsed-field gel electrophoresis (PFGE) profile most similar to that of USA100, spa type t002, and multilocus sequence type 5 (ST5). In addition to cfr, LZD resistance in 1128105 is partially attributed to the presence of a single copy of the 23S rRNA gene mutation T2500A. Transformation of the ∼37-kb conjugative p1128105 cfr-bearing plasmid from 1128105 into S. aureus ATCC 29213 background strains was successful in recapitulating the Cfr antibiogram, as well as resistance to aminoglycosides and trimethoprim. A 7-kb cfr-containing region of p1128105 possessed sequence nearly identical to that found in the Chinese veterinary Proteus vulgaris isolate PV-01 and in U.S. clinical S. aureus isolate 1900, although the presence of IS431-like sequences is unique to p1128105. The cfr gene environment in this early clinical cfr-positive isolate has now been identified in Gram-positive and Gram-negative strains of clinical and veterinary origin and has been associated with multiple mobile elements, highlighting the versatility of this multidrug resistance gene and its potential for further dissemination.
Collapse
|
131
|
Mosquera-Rendón J, Cárdenas-Brito S, Pineda JD, Corredor M, Benítez-Páez A. Evolutionary and sequence-based relationships in bacterial AdoMet-dependent non-coding RNA methyltransferases. BMC Res Notes 2014; 7:440. [PMID: 25012753 PMCID: PMC4119055 DOI: 10.1186/1756-0500-7-440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022] Open
Abstract
Background RNA post-transcriptional modification is an exciting field of research that has evidenced this editing process as a sophisticated epigenetic mechanism to fine tune the ribosome function and to control gene expression. Although tRNA modifications seem to be more relevant for the ribosome function and cell physiology as a whole, some rRNA modifications have also been seen to play pivotal roles, essentially those located in central ribosome regions. RNA methylation at nucleobases and ribose moieties of nucleotides appear to frequently modulate its chemistry and structure. RNA methyltransferases comprise a superfamily of highly specialized enzymes that accomplish a wide variety of modifications. These enzymes exhibit a poor degree of sequence similarity in spite of using a common reaction cofactor and modifying the same substrate type. Results Relationships and lineages of RNA methyltransferases have been extensively discussed, but no consensus has been reached. To shed light on this topic, we performed amino acid and codon-based sequence analyses to determine phylogenetic relationships and molecular evolution. We found that most Class I RNA MTases are evolutionarily related to protein and cofactor/vitamin biosynthesis methyltransferases. Additionally, we found that at least nine lineages explain the diversity of RNA MTases. We evidenced that RNA methyltransferases have high content of polar and positively charged amino acid, which coincides with the electrochemistry of their substrates. Conclusions After studying almost 12,000 bacterial genomes and 2,000 patho-pangenomes, we revealed that molecular evolution of Class I methyltransferases matches the different rates of synonymous and non-synonymous substitutions along the coding region. Consequently, evolution on Class I methyltransferases selects against amino acid changes affecting the structure conformation.
Collapse
Affiliation(s)
| | | | | | | | - Alfonso Benítez-Páez
- Bioinformatics Analysis Group - GABi, Centro de Investigación y Desarrollo en Biotecnología - CIDBIO, 111221 Bogotá, D,C, Colombia.
| |
Collapse
|
132
|
Silakov A, Grove TL, Radle MI, Bauerle M, Green MT, Rosenzweig AC, Boal AK, Booker SJ. Characterization of a cross-linked protein-nucleic acid substrate radical in the reaction catalyzed by RlmN. J Am Chem Soc 2014; 136:8221-8. [PMID: 24806349 PMCID: PMC4227720 DOI: 10.1021/ja410560p] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2013] [Indexed: 11/28/2022]
Abstract
RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein-nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, (13)C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-(13)C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process.
Collapse
Affiliation(s)
- Alexey Silakov
- Department of Chemistry, and Department of
Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tyler L. Grove
- Department of Chemistry, and Department of
Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew I. Radle
- Department of Chemistry, and Department of
Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew
R. Bauerle
- Department of Chemistry, and Department of
Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael T. Green
- Department of Chemistry, and Department of
Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amy C. Rosenzweig
- Departments
of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amie K. Boal
- Department of Chemistry, and Department of
Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Departments
of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Squire J. Booker
- Department of Chemistry, and Department of
Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
133
|
Zeng ZL, Wei HK, Wang J, Lin DC, Liu XQ, Liu JH. High prevalence of Cfr-producing Staphylococcus species in retail meat in Guangzhou, China. BMC Microbiol 2014; 14:151. [PMID: 24913069 PMCID: PMC4059476 DOI: 10.1186/1471-2180-14-151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2014] [Accepted: 05/30/2014] [Indexed: 11/13/2022] Open
Abstract
Background The emergence and wide distribution of the transferable gene for linezolid resistance, cfr, in staphylococci of human and animal origins is of great concern as it poses a serious threat to the public health. In the present study, we investigated the emergence and presence of the multiresistance gene, cfr, in retail meat sourced from supermarkets and free markets of Guangzhou, China. Results A total of 118 pork and chicken samples, collected from Guangzhou markets, were screened by PCR for cfr. Twenty-two Staphylococcus isolates obtained from 12 pork and 10 chicken samples harbored cfr. The 22 cfr-positive staphylococci isolates, including Staphylococcus equorum (n = 8), Staphylococcus simulans (n = 7), Staphylococcus cohnii (n = 4), and Staphylococcus sciuri (n = 3), exhibited 17 major SmaI pulsed-field gel electrophoresis (PFGE) patterns. In 14 isolates, cfr was located on the plasmids. Sequence analysis revealed that the genetic structures (including ΔtnpA of Tn558, IS21-558, ΔtnpB, and tnpC of Tn558, orf138, fexA) of cfr in plasmid pHNTLD18 of a S. sciuri strain and in the plasmid pHNLKJC2 (including rep, Δpre/mob, cfr, pre/mob and partial ermC) of a S. equorum strain were identical or similar to the corresponding regions of some plasmids in staphylococcal species of animal and human origins. Conclusions To the best of our knowledge, this is the first study to report the presence of the multiresistance gene, cfr, in animal meat. A high occurrence of cfr was observed in the tested retail meat samples. Thus, it is important to monitor the presence of cfr in animal foods in China.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian-Hua Liu
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China.
| |
Collapse
|
134
|
Liu Y, Wang Y, Dai L, Wu C, Shen J. First report of multiresistance gene cfr in Enterococcus species casseliflavus and gallinarum of swine origin. Vet Microbiol 2014; 170:352-7. [DOI: 10.1016/j.vetmic.2014.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
|
135
|
Abstract
Linezolid resistance is uncommon among staphylococci, but approximately 2% of clinical isolates of coagulase-negative staphylococci (CoNS) may exhibit resistance to linezolid (MIC, ≥8 µg/ml). We performed whole-genome sequencing (WGS) to characterize the resistance mechanisms and genetic backgrounds of 28 linezolid-resistant CoNS (21 Staphylococcus epidermidis isolates and 7 Staphylococcus haemolyticus isolates) obtained from blood cultures at a large teaching health system in California between 2007 and 2012. The following well-characterized mutations associated with linezolid resistance were identified in the 23S rRNA: G2576U, G2447U, and U2504A, along with the mutation C2534U. Mutations in the L3 and L4 riboproteins, at sites previously associated with linezolid resistance, were also identified in 20 isolates. The majority of isolates harbored more than one mutation in the 23S rRNA and L3 and L4 genes. In addition, the cfr methylase gene was found in almost half (48%) of S. epidermidis isolates. cfr had been only rarely identified in staphylococci in the United States prior to this study. Isolates of the same sequence type were identified with unique mutations associated with linezolid resistance, suggesting independent acquisition of linezolid resistance in each isolate. Linezolid is one of a limited number of antimicrobials available to treat drug-resistant Gram-positive bacteria, but resistance has begun to emerge. We evaluated the genomes of 28 linezolid-resistant staphylococci isolated from patients. Multiple mutations in the rRNA and associated proteins previously associated with linezolid resistance were found in the isolates investigated, underscoring the multifocal nature of resistance to linezolid in Staphylococcus. Importantly, almost half the S. epidermidis isolates studied harbored a plasmid-borne cfr RNA methylase gene, suggesting that the incidence of cfr may be higher in the United States than previously documented. This finding has important implications for infection control practices in the United States. Further, cfr is commonly detected in bacteria isolated from livestock, where the use of phenicols, lincosamides, and pleuromutilins in veterinary medicine may provide selective pressure and lead to maintenance of this gene in animal bacteria.
Collapse
|
136
|
Affiliation(s)
- Joan B. Broderick
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Benjamin
R. Duffus
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Kaitlin S. Duschene
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Eric M. Shepard
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
137
|
A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7. Appl Microbiol Biotechnol 2014; 98:4625-36. [PMID: 24573606 DOI: 10.1007/s00253-014-5574-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2013] [Revised: 01/23/2014] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.
Collapse
|
138
|
Mutations within the rplD Gene of Linezolid-Nonsusceptible Streptococcus pneumoniae Strains Isolated in the United States. Antimicrob Agents Chemother 2014; 58:2459-62. [PMID: 24492357 DOI: 10.1128/aac.02630-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Three invasive Streptococcus pneumoniae strains nonsusceptible to linezolid were isolated in the United States between 2001 and 2012 from the CDC's Active Bacterial Core surveillance. Linezolid binds ribosomal proteins where structural changes within its target site may confer resistance. Our study identified mutations and deletions near the linezolid binding pocket of two of these strains within the rplD gene, which encodes ribosomal protein L4. Mutations in the 23S rRNA alleles or the rplV gene were not detected.
Collapse
|
139
|
Sánchez-Díaz AM, Cuartero C, Lozano S, Rodríguez JD, Alonso JM, Quiles-Melero I, López J, Cantón R, Ruiz-Garbajosa P. Emergence and Long-Lasting Persistence of Linezolid-ResistantEnterococcus faecium-ST117 in an Oncohematologic Patient After a Nine-Day Course of Linezolid. Microb Drug Resist 2014; 20:17-21. [DOI: 10.1089/mdr.2013.0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana María Sánchez-Díaz
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Claudio Cuartero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sara Lozano
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Juan Manuel Alonso
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Inmaculada Quiles-Melero
- Servicio de Microbiología, Hospital Universitario La Paz and Instituto de Investigación La Paz (IdiPAZ), Madrid, Spain
| | - Javier López
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
140
|
Arias CA, Murray BE. Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther 2014; 6:637-55. [DOI: 10.1586/14787210.6.5.637] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
|
141
|
|
142
|
Li L, Sun J, Liu B, Zhao D, Ma J, Deng H, Li X, Hu F, Liao X, Liu Y. Quantification of lincomycin resistance genes associated with lincomycin residues in waters and soils adjacent to representative swine farms in China. Front Microbiol 2013; 4:364. [PMID: 24348472 PMCID: PMC3847549 DOI: 10.3389/fmicb.2013.00364] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2013] [Accepted: 11/16/2013] [Indexed: 11/13/2022] Open
Abstract
Lincomycin is commonly used on swine farms for growth promotion as well as disease treatment and control. Consequently, lincomycin may accumulate in the environment adjacent to the swine farms in many ways, thereby influencing antibiotic resistance in the environment. Levels of lincomycin-resistance genes and lincomycin residues in water and soil samples collected from multiple sites near wastewater discharge areas were investigated in this study. Sixteen lincomycin-resistance and 16S rRNA genes were detected using real-time PCR. Three genes, lnu(F), erm(A), and erm(B), were detected in all water and soil samples except control samples. Lincomycin residues were determined by rapid resolution liquid chromatography-tandem mass spectrometry, with concentrations detected as high as 9.29 ng/mL in water and 0.97 ng/g in soil. A gradual reduction in the levels of lincomycin-resistance genes and lincomycin residues in the waters and soils were detected from multiple sites along the path of wastewater discharging to the surrounding environment from the swine farms. Significant correlations were found between levels of lincomycin-resistance genes in paired water and soil samples (r = 0.885, p = 0.019), and between lincomycin-resistance genes and lincomycin residues (r = 0.975, p < 0.01). This study emphasized the potential risk of dissemination of lincomycin-resistance genes such as lnu(F), erm(A), and erm(B), associated with lincomycin residues in surrounding environments adjacent to swine farms.
Collapse
Affiliation(s)
- Liang Li
- Department of Veterinary Pharmacology and Toxicology, National Reference Laboratory of Veterinary Drugs Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jian Sun
- Department of Veterinary Pharmacology and Toxicology, National Reference Laboratory of Veterinary Drugs Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Baotao Liu
- Department of Veterinary Pharmacology and Toxicology, National Reference Laboratory of Veterinary Drugs Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Donghao Zhao
- Department of Veterinary Pharmacology and Toxicology, National Reference Laboratory of Veterinary Drugs Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jun Ma
- Department of Veterinary Pharmacology and Toxicology, National Reference Laboratory of Veterinary Drugs Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Hui Deng
- Department of Veterinary Pharmacology and Toxicology, National Reference Laboratory of Veterinary Drugs Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Xue Li
- Department of Veterinary Pharmacology and Toxicology, National Reference Laboratory of Veterinary Drugs Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Fengyang Hu
- Department of Veterinary Pharmacology and Toxicology, National Reference Laboratory of Veterinary Drugs Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Xiaoping Liao
- Department of Veterinary Pharmacology and Toxicology, National Reference Laboratory of Veterinary Drugs Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Yahong Liu
- Department of Veterinary Pharmacology and Toxicology, National Reference Laboratory of Veterinary Drugs Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| |
Collapse
|
143
|
Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 2013; 49:69-89. [PMID: 24261569 DOI: 10.3109/10409238.2013.859229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
Abstract
The study of post-transcriptional RNA modifications has long been focused on the roles these chemical modifications play in maintaining ribosomal function. The field of ribosomal RNA modification has reached a milestone in recent years with the confirmation of the final unknown ribosomal RNA methyltransferase in Escherichia coli in 2012. Furthermore, the last 10 years have brought numerous discoveries in non-coding RNAs and the roles that post-transcriptional modification play in their functions. These observations indicate the need for a revitalization of this field of research to understand the role modifications play in maintaining cellular health in a dynamic environment. With the advent of high-throughput sequencing technologies, the time is ripe for leaps and bounds forward. This review discusses ribosomal RNA methyltransferases and their role in responding to external stress in Escherichia coli, with a specific focus on knockout studies and on analysis of transcriptome data with respect to rRNA methyltransferases.
Collapse
Affiliation(s)
- Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, TX , USA
| | | |
Collapse
|
144
|
Liu Y, Wang Y, Schwarz S, Wang S, Chen L, Wu C, Shen J. Investigation of a multiresistance gene cfr that fails to mediate resistance to phenicols and oxazolidinones in Enterococcus faecalis. J Antimicrob Chemother 2013; 69:892-8. [DOI: 10.1093/jac/dkt459] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
|
145
|
Wilson D. Peptidyltransferase Inhibitors of the Bacterial Ribosome. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
|
146
|
Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. Int J Antimicrob Agents 2013; 42:317-21. [DOI: 10.1016/j.ijantimicag.2013.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/18/2022]
|
147
|
Wendlandt S, Feßler AT, Monecke S, Ehricht R, Schwarz S, Kadlec K. The diversity of antimicrobial resistance genes among staphylococci of animal origin. Int J Med Microbiol 2013; 303:338-49. [DOI: 10.1016/j.ijmm.2013.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
|
148
|
Biogenesis of [Fe–S] cluster in Firmicutes: an unexploited field of investigation. Antonie Van Leeuwenhoek 2013; 104:283-300. [DOI: 10.1007/s10482-013-9966-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
149
|
Fujimori DG. Radical SAM-mediated methylation reactions. Curr Opin Chem Biol 2013; 17:597-604. [PMID: 23835516 DOI: 10.1016/j.cbpa.2013.05.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
A subset of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily is able to catalyze methylation reactions. Substrates of these enzymes are distinct from the nucleophilic substrates that undergo methylation by a polar mechanism. Recently, activities of several radical SAM methylating enzymes have been reconstituted in vitro and their mechanisms of catalysis investigated. The RNA modifying enzymes RlmN and Cfr catalyze methylation via a methyl synthase mechanism. These enzymes use SAM in two distinct roles: as a source of a methyl group transferred to a conserved cysteine and as a source of 5'-deoxyadenosyl radical (5'-dA). Hydrogen atom abstraction by this species generates a thiomethylene radical which adds into the RNA substrate, forming an enzyme-substrate covalent adduct. In another recent study, methylation of the indole moiety of tryptophan by the radical SAM and cobalamin-binding domain enzyme TsrM has been reconstituted. Methylcobalamin serves as an intermediate methyl donor in TsrM, and is proposed to transfer the methyl group as a methyl radical. Interestingly, despite the presence of the radical SAM motif, no reductive cleavage of SAM has been observed in this methylation. These important reconstitutions set the stage for further studies on mechanisms of radical methylation.
Collapse
Affiliation(s)
- Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2280, USA.
| |
Collapse
|
150
|
Challand MR, Salvadori E, Driesener RC, Kay CWM, Roach PL, Spencer J. Cysteine methylation controls radical generation in the Cfr radical AdoMet rRNA methyltransferase. PLoS One 2013; 8:e67979. [PMID: 23861844 PMCID: PMC3702613 DOI: 10.1371/journal.pone.0067979] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 11/18/2022] Open
Abstract
The 'radical S-adenosyl-L-methionine (AdoMet)' enzyme Cfr methylates adenosine 2503 of the 23S rRNA in the peptidyltransferase centre (P-site) of the bacterial ribosome. This modification protects host bacteria, notably methicillin-resistant Staphylococcus aureus (MRSA), from numerous antibiotics, including agents (e.g. linezolid, retapamulin) that were developed to treat such organisms. Cfr contains a single [4Fe-4S] cluster that binds two separate molecules of AdoMet during the reaction cycle. These are used sequentially to first methylate a cysteine residue, Cys338; and subsequently generate an oxidative radical intermediate that facilitates methyl transfer to the unreactive C8 (and/or C2) carbon centres of adenosine 2503. How the Cfr active site, with its single [4Fe-4S] cluster, catalyses these two distinct activities that each utilise AdoMet as a substrate remains to be established. Here, we use absorbance and electron paramagnetic resonance (EPR) spectroscopy to investigate the interactions of AdoMet with the [4Fe-4S] clusters of wild-type Cfr and a Cys338 Ala mutant, which is unable to accept a methyl group. Cfr binds AdoMet with high (∼ 10 µM) affinity notwithstanding the absence of the RNA cosubstrate. In wild-type Cfr, where Cys338 is methylated, AdoMet binding leads to rapid oxidation of the [4Fe-4S] cluster and production of 5'-deoxyadenosine (DOA). In contrast, while Cys338 Ala Cfr binds AdoMet with equivalent affinity, oxidation of the [4Fe-4S] cluster is not observed. Our results indicate that the presence of a methyl group on Cfr Cys338 is a key determinant of the activity of the enzyme towards AdoMet, thus enabling a single active site to support two distinct modes of AdoMet cleavage.
Collapse
Affiliation(s)
- Martin R. Challand
- School of Cellular and Molecular Medicine, University of Bristol Medical Sciences Building, Bristol, United Kingdom
| | - Enrico Salvadori
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
- London Centre for Nanotechnology, University College London, London, United Kingdom
| | | | - Christopher W. M. Kay
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
- London Centre for Nanotechnology, University College London, London, United Kingdom
- * E-mail: (CWMK); (PLR); (JS)
| | - Peter L. Roach
- Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Highfield, Southampton, United Kingdom
- * E-mail: (CWMK); (PLR); (JS)
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Medical Sciences Building, Bristol, United Kingdom
- * E-mail: (CWMK); (PLR); (JS)
| |
Collapse
|