101
|
Hwang JS, Eun SY, Ham SA, Yoo T, Lee WJ, Paek KS, Do JT, Lim DS, Seo HG. PPARδ modulates oxLDL-induced apoptosis of vascular smooth muscle cells through a TGF-β/FAK signaling axis. Int J Biochem Cell Biol 2015; 62:54-61. [PMID: 25732738 DOI: 10.1016/j.biocel.2015.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/24/2022]
Abstract
The peroxisome proliferator-activated receptor delta (PPARδ) has been implicated in the modulation of vascular homeostasis. However, its roles in the apoptotic cell death of vascular smooth muscle cells (VSMCs) are poorly understood. Here, we demonstrate that PPARδ modulates oxidized low-density lipoprotein (oxLDL)-induced apoptosis of VSMCs through the transforming growth factor-β (TGF-β) and focal adhesion kinase (FAK) signaling pathways. Activation of PPARδ by GW501516, which is a specific ligand, significantly inhibited oxLDL-induced cell death and generation of reactive oxygen species in VSMCs. These inhibitory effects were significantly reversed in the presence of small interfering (si)RNA against PPARδ, or by blockade of the TGF-β or FAK signaling pathways. Furthermore, PPARδ-mediated recovery of FAK phosphorylation suppressed by oxLDL was reversed by SB431542, a specific ALK5 receptor inhibitor, indicating that a TGF-β/FAK signaling axis is involved in the action of PPARδ. Among the protein kinases activated by oxLDL, p38 mitogen-activated protein kinase was suppressed by ligand-activated PPARδ. In addition, oxLDL-induced expression and translocation of pro-apoptotic or anti-apoptotic factors were markedly affected in the presence of GW501516. Those effects were reversed by PPARδ siRNA, or inhibitors of TGF-β or FAK, which also suggests that PPARδ exerts its anti-apoptotic effect via a TGF-β/FAK signaling axis. Taken together, these findings indicate that PPARδ plays an important role in the pathophysiology of disease associated with apoptosis of VSMC, such as atherosclerosis and restanosis.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - So Young Eun
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Sun Ah Ham
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Taesik Yoo
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Won Jin Lee
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Kyung Shin Paek
- Department of Nursing, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Dae-Seog Lim
- Department of Applied Bioscience, CHA University, 355 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 463-400, Republic of Korea
| | - Han Geuk Seo
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
102
|
Kahremany S, Livne A, Gruzman A, Senderowitz H, Sasson S. Activation of PPARδ: from computer modelling to biological effects. Br J Pharmacol 2015; 172:754-70. [PMID: 25255770 PMCID: PMC4301687 DOI: 10.1111/bph.12950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/13/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022] Open
Abstract
PPARδ is a ligand-activated receptor that dimerizes with another nuclear receptor of the retinoic acid receptor family. The dimers interact with other co-activator proteins and form active complexes that bind to PPAR response elements and promote transcription of genes involved in lipid metabolism. It appears that various natural fatty acids and their metabolites serve as endogenous activators of PPARδ; however, there is no consensus in the literature on the nature of the prime activators of the receptor. In vitro and cell-based assays of PPARδ activation by fatty acids and their derivatives often produce conflicting results. The search for synthetic and selective PPARδ agonists, which may be pharmacologically useful, is intense. Current rational modelling used to obtain such compounds relies mostly on crystal structures of synthetic PPARδ ligands with the recombinant ligand binding domain (LBD) of the receptor. Here, we introduce an original computational prediction model for ligand binding to PPARδ LBD. The model was built based on EC50 data of 16 ligands with available crystal structures and validated by calculating binding probabilities of 82 different natural and synthetic compounds from the literature. These compounds were independently tested in cell-free and cell-based assays for their capacity to bind or activate PPARδ, leading to prediction accuracy of between 70% and 93% (depending on ligand type). This new computational tool could therefore be used in the search for natural and synthetic agonists of the receptor.
Collapse
Affiliation(s)
- Shirin Kahremany
- Division of Medicinal Chemistry, Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| | - Ariela Livne
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of JerusalemJerusalem, Israel
| | - Arie Gruzman
- Division of Medicinal Chemistry, Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| | - Hanoch Senderowitz
- Division of Medicinal Chemistry, Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| | - Shlomo Sasson
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
103
|
He F, York JP, Burroughs SG, Qin L, Xia J, Chen D, Quigley EM, Webb P, LeSage GD, Xia X. Recruited metastasis suppressor NM23-H2 attenuates expression and activity of peroxisome proliferator-activated receptor δ (PPARδ) in human cholangiocarcinoma. Dig Liver Dis 2015; 47:62-7. [PMID: 25277864 PMCID: PMC4537414 DOI: 10.1016/j.dld.2014.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/29/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor δ (PPARδ) is a versatile regulator of distinct biological processes and overexpression of PPARδ in cancer may be partially related to its suppression of its own co-regulators. AIMS To determine whether recruited suppressor proteins bind to and regulate PPARδ expression, activity and PPARδ-dependent cholangiocarcinoma proliferation. METHODS Yeast two-hybrid assays were done using murine PPARδ as bait. PPARδ mRNA expression was determined by qPCR. Protein expression was measured by western blot. Immunohistochemistry and fluorescence microscopy were used to determine PPARδ expression and co-localization with NDP Kinase alpha (NM23-H2). Cell proliferation assays were performed to determine cell numbers. RESULTS Yeast two-hybrid screening identified NM23-H2 as a PPARδ binding protein and their interaction was confirmed. Overexpressed PPARδ or treatment with the agonist GW501516 resulted in increased cell proliferation. NM23-H2 siRNA activated PPARδ luciferase promoter activity, upregulated PPARδ RNA and protein expression and increased GW501516-stimulated CCA growth. Overexpression of NM23-H2 inhibited PPARδ luciferase promoter activity, downregulated PPARδ expression and AKT phosphorylation and reduced GW501516-stimulated CCA growth. CONCLUSIONS We report the novel association of NM23-H2 with PPARδ and the negative regulation of PPARδ expression by NM23-H2 binding to the C-terminal region of PPARδ. These findings provide evidence that the metastasis suppressor NM23-H2 is involved in the regulation of PPARδ-mediated proliferation.
Collapse
Affiliation(s)
- Fang He
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - J Philippe York
- Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX, USA
| | | | - Lidong Qin
- Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX, USA
| | - Jintang Xia
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - De Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Eamonn M Quigley
- Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX, USA
| | - Paul Webb
- Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX, USA
| | - Gene D LeSage
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Xuefeng Xia
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX, USA.
| |
Collapse
|
104
|
Kaupang Å, Hildonen S, Halvorsen TG, Mortén M, Vik A, Hansen TV. Involvement of covalent interactions in the mode of action of PPARβ/δ antagonists. RSC Adv 2015. [DOI: 10.1039/c5ra15707b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Investigations on the mode of action of several different chemical modulators of the peroxisome proliferator-activated receptor β/δ (PPARβ/δ) have been reported using MS and NMR experiments.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Siri Hildonen
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Trine G. Halvorsen
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Magnus Mortén
- Department of Chemistry
- University of Oslo
- 0315 Oslo
- Norway
| | - Anders Vik
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Trond Vidar Hansen
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| |
Collapse
|
105
|
Pérez-Schindler J, Svensson K, Vargas-Fernández E, Santos G, Wahli W, Handschin C. The coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow diet. Diabetologia 2014; 57:2405-12. [PMID: 25116175 PMCID: PMC4657154 DOI: 10.1007/s00125-014-3352-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/22/2014] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS Physical activity improves oxidative capacity and exerts therapeutic beneficial effects, particularly in the context of metabolic diseases. The peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α (PGC-1α) and the nuclear receptor PPARβ/δ have both been independently discovered to play a pivotal role in the regulation of oxidative metabolism in skeletal muscle, though their interdependence remains unclear. Hence, our aim was to determine the functional interaction between these two factors in mouse skeletal muscle in vivo. METHODS Adult male control mice, PGC-1α muscle-specific transgenic (mTg) mice, PPARβ/δ muscle-specific knockout (mKO) mice and the combination PPARβ/δ mKO + PGC-1α mTg mice were studied under basal conditions and following PPARβ/δ agonist administration and acute exercise. Whole-body metabolism was assessed by indirect calorimetry and blood analysis, while magnetic resonance was used to measure body composition. Quantitative PCR and western blot were used to determine gene expression and intracellular signalling. The proportion of oxidative muscle fibre was determined by NADH staining. RESULTS Agonist-induced PPARβ/δ activation was only disrupted by PPARβ/δ knockout. We also found that the disruption of the PGC-1α-PPARβ/δ axis did not affect whole-body metabolism under basal conditions. As expected, PGC-1α mTg mice exhibited higher exercise performance, peak oxygen consumption and lower blood lactate levels following exercise, though PPARβ/δ mKO + PGC-1α mTg mice showed a similar phenotype. Similarly, we found that PPARβ/δ was dispensable for PGC-1α-mediated enhancement of an oxidative phenotype in skeletal muscle. CONCLUSIONS/INTERPRETATION Collectively, these results indicate that PPARβ/δ is not an essential partner of PGC-1α in the control of skeletal muscle energy metabolism.
Collapse
Affiliation(s)
| | - Kristoffer Svensson
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Gesa Santos
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Walter Wahli
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Le Génopode, 1015 Lausanne, Switzerland
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 169612
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
- Corresponding author: Christoph Handschin, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland. Phone: +41 61 267 2378,
| |
Collapse
|
106
|
Doran AG, Berry DP, Creevey CJ. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle. BMC Genomics 2014; 15:837. [PMID: 25273628 PMCID: PMC4192274 DOI: 10.1186/1471-2164-15-837] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/25/2014] [Indexed: 12/25/2022] Open
Abstract
Background Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation. Results Following adjustment for false discovery (q-value < 0.05), 479 quantitative trait loci (QTL) were associated with at least one of the four carcass traits using a single SNP regression approach. Using a Bayesian approach, 46 QTL were associated (posterior probability > 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Conclusions A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth such as glucagon and leptin. Several biological pathways, including PPAR signaling, were shown to be involved in various aspects of bovine carcass performance. These core genes and biological processes may form the foundation for further investigation to identify causative mutations involved in each trait. Results reported here support previous findings suggesting conservation of key biological processes involved in growth and metabolism. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-837) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Christopher J Creevey
- Teagasc Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co, Meath, Ireland.
| |
Collapse
|
107
|
The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? BIOLOGY 2014; 3:623-44. [PMID: 25247275 PMCID: PMC4192631 DOI: 10.3390/biology3030623] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
Metabolism sustains life through enzyme-catalyzed chemical reactions within the cells of all organisms. The coupling of catalytic function to the structural organization of enzymes contributes to the kinetic optimization important to tissue-specific and whole-body function. This coupling is of paramount importance in the role that muscle plays in the success of Animalia. The structure and function of glycolytic enzyme complexes in anaerobic metabolism have long been regarded as a major regulatory element necessary for muscle activity and whole-body homeostasis. While the details of this complex remain to be elucidated through in vivo studies, this review will touch on recent studies that suggest the existence of such a complex and its structure. A potential model for glycolytic complexes and related subcomplexes is introduced.
Collapse
|
108
|
Ham SA, Lee H, Hwang JS, Kang ES, Yoo T, Paek KS, Do JT, Park C, Oh JW, Kim JH, Han CW, Seo HG. Activation of Peroxisome Proliferator-Activated Receptor δ Inhibits Angiotensin II-Induced Activation of Matrix Metalloproteinase-2 in Vascular Smooth Muscle Cells. J Vasc Res 2014; 51:221-30. [DOI: 10.1159/000365250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 06/07/2014] [Indexed: 11/19/2022] Open
|
109
|
Camerino GM, Cannone M, Giustino A, Massari AM, Capogrosso RF, Cozzoli A, De Luca A. Gene expression in mdx mouse muscle in relation to age and exercise: aberrant mechanical-metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy. Hum Mol Genet 2014; 23:5720-32. [PMID: 24916377 DOI: 10.1093/hmg/ddu287] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. Mechanical activity modulates gene expression and muscle plasticity. Here, we investigated the outcome of 4 (T4, 8 weeks of age) and 12 (T12, 16 weeks of age) weeks of either exercise or cage-based activity on a large set of genes in the gastrocnemius muscle of mdx and wild-type (WT) mice using quantitative real-time PCR. Basal expression of the exercise-sensitive genes peroxisome-proliferator receptor γ coactivator 1α (Pgc-1α) and Sirtuin1 (Sirt1) was higher in mdx versus WT mice at both ages. Exercise increased Pgc-1α expression in WT mice; Pgc-1α was downregulated by T12 exercise in mdx muscles, along with Sirt1, Pparγ and the autophagy marker Bnip3. Sixteen weeks old mdx mice showed a basal overexpression of the slow Mhc1 isoform and Serca2; T12 exercise fully contrasted this basal adaptation as well as the high expression of follistatin and myogenin. Conversely, T12 exercise was ineffective in WT mice. Damage-related genes such as gp91-phox (NADPH-oxidase2), Tgfβ, Tnfα and c-Src tyrosine kinase were overexpressed in mdx muscles and not affected by exercise. Likewise, the anti-inflammatory adiponectin was lower in T12-exercised mdx muscles. Chronic exercise with minor adaptive effects in WT muscles leads to maladaptation in mdx muscles with a disequilibrium between protective and damaging signals. Increased understanding of the pathways involved in the altered mechanical-metabolic coupling may help guide appropriate physical therapies while better addressing pharmacological interventions in translational research.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Maria Cannone
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari 'A. Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Ada Maria Massari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Roberta Francesca Capogrosso
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Anna Cozzoli
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| |
Collapse
|
110
|
Mosti MP, Stunes AK, Ericsson M, Pullisaar H, Reseland JE, Shabestari M, Eriksen EF, Syversen U. Effects of the peroxisome proliferator-activated receptor (PPAR)-δ agonist GW501516 on bone and muscle in ovariectomized rats. Endocrinology 2014; 155:2178-89. [PMID: 24708238 DOI: 10.1210/en.2013-1166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Estrogen deficiency promotes bone loss and skeletal muscle dysfunction. Peroxisome proliferator-activated receptors (PPARs) have 3 subtypes (α, δ, and γ). PPARγ agonists induce bone loss, whereas PPARα agonists increase bone mass. Although PPARδ agonists are known to influence skeletal muscle metabolism, the skeletal effects are unsettled. This study investigated the musculoskeletal effects of the PPARδ agonist GW501516 in ovariectomized (OVX) rats. Female Sprague Dawley rats, 12 weeks of age, were allocated to a sham-operated group and 3 OVX groups; high-dose GW501516 (OVX-GW5), low-dose GW501516 (OVX-GW1), and a control group (OVX-CTR), respectively (n = 12 per group). Animals received GW501516 or vehicle (methylcellulose) daily for 4 months by gavage. Bone mineral density (BMD) was assessed by dual x-ray absorptiometry at the femur, spine, and whole body. Bone microarchitecture at the proximal tibia was assessed by microcomputed tomography, and dynamic histomorphometry was performed. Quadriceps muscle morphology and the relative expression of mitochondrial proteins were analyzed. Bone metabolism markers and metabolic markers were measured in plasma. After 4 months, the OVX-GW5 group displayed lower femoral BMD than OVX-CTR. Trabecular separation was higher in the GW-treated groups, compared with OVX-CTR. The OVX-GW5 group also exhibited lower cortical area fraction and a higher structure model index than OVX-CTR. These effects coincided with impaired bone formation in both GW groups. The OVX-GW5 group displayed elevated triglyceride levels and reduced adiponectin levels, whereas no effects on muscle morphology or mitochondrial gene expression appeared. In summary, the PPARδ agonist GW501516 negatively affected bone properties in OVX rats, whereas no effects were detected in skeletal muscle.
Collapse
Affiliation(s)
- M P Mosti
- Department of Cancer Research and Molecular Medicine (M.P.M., A.K.S., U.S.), Norwegian University of Science and Technology, N-7491 Trondheim, Norway; Department of Medical Biosciences, Physiological Chemistry (M.E.), Umeå University, SE-901 85 Umeå, Sweden; Department of Biomaterials (H.P., J.E.R., M.S.), Institute for Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; Department of Endocrinology (E.F.E.), Oslo University Hospital, 0424 Oslo, Norway; and Department of Endocrinology (U.S.), St Olav's University Hospital HF, 7030 Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Abdul-Wahed A, Gautier-Stein A, Casteras S, Soty M, Roussel D, Romestaing C, Guillou H, Tourette JA, Pleche N, Zitoun C, Gri B, Sardella A, Rajas F, Mithieux G. A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol Metab 2014; 3:531-43. [PMID: 25061558 PMCID: PMC4099510 DOI: 10.1016/j.molmet.2014.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes is characterized by a deterioration of glucose tolerance, which associates insulin resistance of glucose uptake by peripheral tissues and increased endogenous glucose production. Here we report that the specific suppression of hepatic glucose production positively modulates whole-body glucose and energy metabolism. We used mice deficient in liver glucose-6 phosphatase that is mandatory for endogenous glucose production. When they were fed a high fat/high sucrose diet, they resisted the development of diabetes and obesity due to the activation of peripheral glucose metabolism and thermogenesis. This was linked to the secretion of hepatic hormones like fibroblast growth factor 21 and angiopoietin-like factor 6. Interestingly, the deletion of hepatic glucose-6 phosphatase in previously obese and insulin-resistant mice resulted in the rapid restoration of glucose and body weight controls. Therefore, hepatic glucose production is an essential lever for the control of whole-body energy metabolism during the development of obesity and diabetes.
Collapse
Affiliation(s)
- Aya Abdul-Wahed
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France ; University of Aleppo, Aleppo, Syria
| | - Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France
| | - Sylvie Casteras
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France
| | - Maud Soty
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France
| | - Damien Roussel
- Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France ; Centre National de la Recherche Scientifique, UMR5023, Villeurbanne, F-69622, France
| | - Caroline Romestaing
- Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France ; Centre National de la Recherche Scientifique, UMR5023, Villeurbanne, F-69622, France
| | | | - Jean-André Tourette
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France
| | - Nicolas Pleche
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France
| | - Carine Zitoun
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France
| | - Blandine Gri
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France
| | - Anne Sardella
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France ; Université de Lyon, Lyon, F-69008, France ; Université Lyon 1, Villeurbanne, F-69622, France
| |
Collapse
|
112
|
Boström PA, Graham EL, Georgiadi A, Ma X. Impact of exercise on muscle and nonmuscle organs. IUBMB Life 2014; 65:845-50. [PMID: 24078392 DOI: 10.1002/iub.1209] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/22/2013] [Indexed: 11/10/2022]
Abstract
Exercise is known to prevent and treat metabolic diseases such as diabetes. However, the underlying mechanisms are not fully understood, and there is currently much focus on detailing such pathways. Traditionally, much emphasis has been placed on skeletal muscle; however, recently, nonmuscle organs such as adipose tissue have been highlighted in mediating protective actions after training. Moreover, novel paracrine- and endocrine-signaling molecules have been shown to trigger important responses in nonmuscle organs after exercise. This is exciting because, when administered exogenously, such signals have obvious therapeutic potential. In this review, the authors have described some general and historical aspects of training and disease protection. The authors have also highlighted some of the current knowledge on how exercise impacts nonmuscle organs.
Collapse
Affiliation(s)
- Pontus A Boström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
113
|
Christensen J, Jones L, Andersen J, Daugaard G, Rorth M, Hojman P. Muscle dysfunction in cancer patients. Ann Oncol 2014; 25:947-58. [DOI: 10.1093/annonc/mdt551] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
114
|
Sasaki T, Nakata R, Inoue H, Shimizu M, Inoue J, Sato R. Role of AMPK and PPARγ1 in exercise-induced lipoprotein lipase in skeletal muscle. Am J Physiol Endocrinol Metab 2014; 306:E1085-92. [PMID: 24644240 DOI: 10.1152/ajpendo.00691.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise can effectively ameliorate type 2 diabetes and insulin resistance. Here we show that the mRNA levels of one of peroxisome proliferator-activated receptor (PPAR) family members, PPARγ1, and genes related to energy metabolism, including PPARγ coactivator-1 protein-1α (PGC-1α) and lipoprotein lipase (LPL), increased in the gastrocnemius muscle of habitual exercise-trained mice. When mice were intraperitoneally administered an AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), the mRNA levels of the aforementioned three genes increased in gastrocnemius muscle. AICAR treatment to C2C12 differentiated myotubes also increased PPARγ1 mRNA levels, but not PPARα and -δ mRNA levels, concomitant with increased PGC-1α mRNA levels. An AMPK inhibitor, compound C, blocked these AICAR effects. AICAR treatment increased the half-life of PPARγ1 mRNA nearly threefold (4-12 h) by activating AMPK. When C2C12 myoblast cells infected with a PPARγ1 expression lentivirus were differentiated into myotubes, PPARγ1 overexpression dramatically increased LPL mRNA levels more than 40-fold. In contrast, when PPARγ1 expression was suppressed in C2C12 myotubes, LPL mRNA levels were significantly reduced, and the effect of AICAR on increased LPL gene expression was almost completely blocked. These results indicated that PPARγ1 was intimately involved in LPL gene expression in skeletal muscle and the AMPK-PPARγ1 pathway may play a role in exercise-induced LPL expression. Thus, we identified a novel critical role for PPARγ1 in response to AMPK activation for controlling the expression of a subset of genes associated with metabolic regulation in skeletal muscle.
Collapse
Affiliation(s)
- Takashi Sasaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; and
| | | | | | | | | | | |
Collapse
|
115
|
Sodhi K, Puri N, Kim DH, Hinds TD, Stechschulte LA, Favero G, Rodella L, Shapiro JI, Jude D, Abraham NG. PPARδ binding to heme oxygenase 1 promoter prevents angiotensin II-induced adipocyte dysfunction in Goldblatt hypertensive rats. Int J Obes (Lond) 2014; 38:456-65. [PMID: 23779049 PMCID: PMC3950586 DOI: 10.1038/ijo.2013.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/20/2013] [Accepted: 05/29/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Renin-angiotensin system (RAS) regulates adipogenic response with adipocyte hypertrophy by increasing oxidative stress. Recent studies have shown the role of peroxisome proliferator-activated receptor-δ (PPARδ) agonist in attenuation of angiotensin II-induced oxidative stress. The aim of this study was to explore a potential mechanistic link between PPARδ and the cytoprotective enzyme heme oxygenase-1 (HO-1) and to elucidate the contribution of HO-1 to the adipocyte regulatory effects of PPARδ agonism in an animal model of enhanced RAS, the Goldblatt 2 kidney 1 clip (2K1C) model. METHOD We first established a direct stimulatory effect of the PPARδ agonist (GW 501516) on the HO-1 gene by demonstrating increased luciferase activity in COS-7 cells transfected with a luciferase-HO-1 promoter construct. Sprague-Dawley rats were divided into four groups: sham-operated animals, 2K1C rats and 2K1C rats treated with GW 501516, in the absence or presence of the HO activity inhibitor, stannous mesoporphyrin (SnMP). RESULTS 2K1C animals had increased visceral adiposity, adipocyte hypertrophy, increased inflammatory cytokines, increased circulatory and adipose tisssue levels of renin and Ang II along with increased adipose tissue gp91 phox expression (P<0.05) when compared with sham-operated animals. Treatment with GW 501516 increased adipose tissue HO-1 and adiponectin levels (P<0.01) along with enhancement of Wnt10b and β-catenin expression. HO-1 induction was accompanied by the decreased expression of Wnt5b, mesoderm specific transcript (mest) and C/EBPα levels and an increased number of small adipocytes (P<0.05). These effects of GW501516 were reversed in 2K1C animals exposed to SnMP (P<0.05). CONCLUSION Taken together, our study demonstrates, for the first time, that increased levels of Ang II contribute towards adipose tissue dysregulation, which is abated by PPARδ-mediated upregulation of the heme-HO system. These findings highlight the pivotal role and symbiotic relationship of HO-1, adiponectin and PPARδ in the regulation of metabolic homeostasis in adipose tissues.
Collapse
Affiliation(s)
- K Sodhi
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - N Puri
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - D H Kim
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - T D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - L A Stechschulte
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - G Favero
- Department of Biomedical Science, Division of Anatomy, University of Brescia, Brescia, Italy
| | - L Rodella
- Department of Biomedical Science, Division of Anatomy, University of Brescia, Brescia, Italy
| | - J I Shapiro
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - D Jude
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - N G Abraham
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
116
|
Feng YZ, Nikolić N, Bakke SS, Boekschoten MV, Kersten S, Kase ET, Rustan AC, Thoresen GH. PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference. Arch Physiol Biochem 2014; 120:12-21. [PMID: 23991827 DOI: 10.3109/13813455.2013.829105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of peroxisome proliferator-activated receptor δ (PPARδ) activation on global gene expression and mitochondrial fuel utilization were investigated in human myotubes. Only 21 genes were up-regulated and 3 genes were down-regulated after activation by the PPARδ agonist GW501516. Pathway analysis showed up-regulated mitochondrial fatty acid oxidation, TCA cycle and cholesterol biosynthesis. GW501516 increased oleic acid oxidation and mitochondrial oxidative capacity by 2-fold. Glucose uptake and oxidation were reduced, but total substrate oxidation was not affected, indicating a fuel switch from glucose to fatty acid. Cholesterol biosynthesis was increased, but lipid biosynthesis and mitochondrial content were not affected. This study confirmed that the principal effect of PPARδ activation was to increase mitochondrial fatty acid oxidative capacity. Our results further suggest that PPARδ activation reduced glucose utilization through a switch in mitochondrial substrate preference by up-regulating pyruvate dehydrogenase kinase isozyme 4 and genes involved in lipid metabolism and fatty acid oxidation.
Collapse
Affiliation(s)
- Yuan Z Feng
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo , Oslo , Norway
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Hoppeler H, Baum O, Lurman G, Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2013; 1:1383-412. [PMID: 23733647 DOI: 10.1002/cphy.c100042] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Collapse
Affiliation(s)
- Hans Hoppeler
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
118
|
Ljubicic V, Burt M, Jasmin BJ. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB J 2013; 28:548-68. [PMID: 24249639 DOI: 10.1096/fj.13-238071] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a life-limiting, neuromuscular disorder that causes progressive, severe muscle wasting in boys and young men. Although there is no cure, scientists and clinicians can leverage the fact that slower, more oxidative skeletal muscle fibers possess an enhanced degree of resistance to the dystrophic pathology relative to their faster, more glycolytic counterparts, and can thus use this knowledge when investigating novel therapeutic avenues. Several factors have been identified as powerful regulators of muscle plasticity. Some proteins, such as calcineurin, peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α), PPARβ/δ, and AMP-activated protein kinase (AMPK), when chronically stimulated in animal models, remodel skeletal muscle toward the slow, oxidative myogenic program, whereas others, such as receptor-interacting protein 140 (RIP140) and E2F transcription factor 1 (E2F1), repress this phenotype. Recent studies demonstrating that pharmacologic and physiological activation of targets that shift dystrophic muscle toward the slow, oxidative myogenic program provide appreciable molecular and functional benefits. This review surveys the rationale behind, and evidence for, the study of skeletal muscle plasticity in preclinical models of DMD and highlights the potential therapeutic opportunities in advancing a strategy focused on remodeling skeletal muscle in patients with DMD toward the slow, oxidative phenotype.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- 1Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | | | | |
Collapse
|
119
|
Philp A, MacKenzie MG, Belew MY, Towler MC, Corstorphine A, Papalamprou A, Hardie DG, Baar K. Glycogen content regulates peroxisome proliferator activated receptor-∂ (PPAR-∂) activity in rat skeletal muscle. PLoS One 2013; 8:e77200. [PMID: 24146969 PMCID: PMC3798319 DOI: 10.1371/journal.pone.0077200] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/29/2013] [Indexed: 11/18/2022] Open
Abstract
Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in response to exercise.
Collapse
Affiliation(s)
- Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
| | - Matthew G. MacKenzie
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
- Jacqui Wood Cancer Centre, University of Dundee, Dundee, United Kingdom
| | - Micah Y. Belew
- Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
| | - Mhairi C. Towler
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
- Vivomotion, Greenhouse+, Dundee, United Kingdom
| | - Alan Corstorphine
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
| | - Angela Papalamprou
- Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
| | - Keith Baar
- Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
120
|
Rogowski MP, Flowers MT, Stamatikos AD, Ntambi JM, Paton CM. SCD1 activity in muscle increases triglyceride PUFA content, exercise capacity, and PPARδ expression in mice. J Lipid Res 2013; 54:2636-46. [PMID: 23918045 DOI: 10.1194/jlr.m035865] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stearoyl-CoA desaturase (SCD)1 converts saturated fatty acids into monounsaturated fatty acids. Using muscle overexpression, we sought to determine the role of SCD1 expression in glucose and lipid metabolism and its effects on exercise capacity in mice. Wild-type C57Bl/6 (WT) and SCD1 muscle transgenic (SCD1-Tg) mice were generated, and expression of the SCD1 transgene was restricted to skeletal muscle. SCD1 overexpression was associated with increased triglyceride (TG) content. The fatty acid composition of the muscle revealed a significant increase in polyunsaturated fatty acid (PUFA) content of TG, including linoleate (18:2n6). Untrained SCD1-Tg mice also displayed significantly increased treadmill exercise capacity (WT = 6.6 ± 3 min, Tg = 71.9 ± 9.5 min; P = 0.0009). SCD1-Tg mice had decreased fasting plasma glucose, glucose transporter (GLUT)1 mRNA, fatty acid oxidation, mitochondrial content, and increased peroxisome proliferator-activated receptor (PPAR)δ and Pgc-1 protein expression in skeletal muscle. In vitro studies in C2C12 myocytes revealed that linoleate (18:2n6) and not oleate (18:1n9) caused a 3-fold increase in PPARδ and a 9-fold increase in CPT-1b with a subsequent increase in fat oxidation. The present model suggests that increasing delta-9 desaturase activity of muscle increases metabolic function, exercise capacity, and lipid oxidation likely through increased PUFA content, which increases PPARδ expression and activity. However, the mechanism of action that results in increased PUFA content of SCD1-Tg mice remains to be elucidated.
Collapse
Affiliation(s)
- Michael P Rogowski
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX; and
| | | | | | | | | |
Collapse
|
121
|
AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol Med 2013; 19:614-24. [PMID: 23891277 DOI: 10.1016/j.molmed.2013.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022]
Abstract
Recent studies have highlighted the potential of adenosine monophosphate-activated protein kinase (AMPK) to act as a central therapeutic target in Duchenne muscular dystrophy (DMD). Here, we review the role of AMPK as an important integrator of cell signaling pathways that mediate phenotypic plasticity within the context of dystrophic skeletal muscle. Pharmacological AMPK activation remodels skeletal muscle towards a slower, more oxidative phenotype, which is more pathologically resistant to the lack of dystrophin. Moreover, recent studies suggest that AMPK-activated autophagy may be beneficial for myofiber structure and function in mice with muscular dystrophy. Thus, AMPK may represent an ideal target for intervention because clinically approved pharmacological agonists exist, and because benefits can be derived via two independent yet, complementary biological pathways. The availability of several AMPK activators could therefore lead to the rapid development and implementation of novel and highly effective therapeutics aimed at altering the relentless progression of DMD.
Collapse
|
122
|
Regulation of mitochondrial fatty acid β-oxidation in human: what can we learn from inborn fatty acid β-oxidation deficiencies? Biochimie 2013; 96:113-20. [PMID: 23764392 DOI: 10.1016/j.biochi.2013.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/30/2013] [Indexed: 12/31/2022]
Abstract
The mitochondrial fatty acid β-oxidation (FAO) pathway plays a crucial role in ATP production in many tissues with high-energy demand. This is highlighted by the diverse and possibly severe clinical manifestations of inborn fatty acid β-oxidation deficiencies. More than fifteen genetic FAO enzyme defects have been described to date, forming a large group of rare diseases. Inborn FAO disorders are characterized by a high genetic heterogeneity, with a variety of gene mutations resulting in complete or partial loss-of-function of the corresponding enzyme. The panel of observed phenotypes varies from multi-organ failure in the neonate with fatal outcome, up to milder late onset manifestations associated with significant disabilities. Diagnosis of FAO disorders has markedly improved over the last decades, but few treatments are available. The clinical, biochemical, and molecular analysis of these disorders provided new, and sometimes unexpected, data on the organization and regulation of mitochondrial FAO in humans, in various tissues, and at various stages of development. This will be illustrated by examples of FAO defects affecting enzymes of long-chain fatty acid import into the mitochondria, or Lynen helix enzymes. The involvement of the transcriptional network regulating FAO gene expression, in particular the PGC-1α/PPAR axis, as a target for pharmacological therapy of these genetic disorders, will also be discussed.
Collapse
|
123
|
Thulin P, Wei T, Werngren O, Cheung L, Fisher RM, Grandér D, Corcoran M, Ehrenborg E. MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor δ in human monocytes during the inflammatory response. Int J Mol Med 2013; 31:1003-10. [PMID: 23525285 PMCID: PMC3658603 DOI: 10.3892/ijmm.2013.1311] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/30/2013] [Indexed: 12/16/2022] Open
Abstract
PPARδ is involved in the inflammatory response and its expression is induced by cytokines, however, limited knowledge has been produced regarding its regulation. Since recent findings have shown that microRNAs, which are small non-coding RNAs that regulate gene expression, are involved in the immune response, we set out to investigate whether PPARδ can be regulated by microRNAs expressed in monocytes. Bioinformatic analysis identified a putative miR-9 target site within the 3′-UTR of PPARδ that was subsequently verified to be functional using reporter constructs. Primary human monocytes stimulated with LPS showed a downregulation of PPARδ and its target genes after 4 h while the expression of miR-9 was induced. Analysis of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages showed that human PPARδ mRNA as well as miR-9 expression was higher in M1 compared to M2 macrophages. Furthermore, treatment with the PPARδ agonist, GW501516, induced the expression of PPARδ target genes in the pro-inflammatory M1 macrophages while no change was observed in the anti-inflammatory M2 macrophages. Taken together, these data suggest that PPARδ is regulated by miR-9 in monocytes and that activation of PPARδ may be of importance in M1 pro-inflammatory but not in M2 anti-inflammatory macrophages in humans.
Collapse
Affiliation(s)
- Petra Thulin
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital L8:03, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Li L, Luo Z, Yu H, Feng X, Wang P, Chen J, Pu Y, Zhao Y, He H, Zhong J, Liu D, Zhu Z. Telmisartan improves insulin resistance of skeletal muscle through peroxisome proliferator-activated receptor-δ activation. Diabetes 2013; 62:762-74. [PMID: 23238297 PMCID: PMC3581229 DOI: 10.2337/db12-0570] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mechanisms of the improvement of glucose homeostasis through angiotensin receptor blockers are not fully elucidated in hypertensive patients. We investigated the effects of telmisartan on insulin signaling and glucose uptake in cultured myotubes and skeletal muscle from wild-type and muscle-specific peroxisome proliferator-activated receptor (PPAR) δ knockout (MCK-PPARδ(-/-)) mice. Telmisartan increased PPARδ expression and activated PPARδ transcriptional activity in cultured C2C12 myotubes. In palmitate-induced insulin-resistant C2C12 myotubes, telmisartan enhanced insulin-stimulated Akt and Akt substrate of 160 kDa (AS160) phosphorylation as well as Glut4 translocation to the plasma membrane. These effects were inhibited by antagonizing PPARδ or phosphatidylinositol-3 kinase, but not by PPARγ and PPARα inhibition. Palmitate reducing the insulin-stimulated glucose uptake in C2C12 myotubes could be restored by telmisartan. In vivo experiments showed that telmisartan treatment reversed high-fat diet-induced insulin resistance and glucose intolerance in wild-type mice but not in MCK-PPARδ(-/-) mice. The protein levels of PPARδ, phospho-Akt, phospho-AS160, and Glut4 translocation to the plasma membrane in the skeletal muscle on insulin stimulation were reduced by high-fat diet and were restored by telmisartan administration in wild-type mice. These effects were absent in MCK-PPARδ(-/-) mice. These findings implicate PPARδ as a potential therapeutic target in the treatment of hypertensive subjects with insulin resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Daoyan Liu
- Corresponding author: Zhiming Zhu, , or Daoyan Liu,
| | - Zhiming Zhu
- Corresponding author: Zhiming Zhu, , or Daoyan Liu,
| |
Collapse
|
125
|
Wone BWM, Donovan ER, Cushman JC, Hayes JP. Metabolic rates associated with membrane fatty acids in mice selected for increased maximal metabolic rate. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:70-8. [PMID: 23422919 DOI: 10.1016/j.cbpa.2013.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/19/2022]
Abstract
Aerobic metabolism of vertebrates is linked to membrane fatty acid (FA) composition. Although the membrane pacemaker hypothesis posits that desaturation of FAs accounts for variation in resting or basal metabolic rate (BMR), little is known about the FA profiles that underpin variation in maximal metabolic rate (MMR). We examined membrane FA composition of liver and skeletal muscle in mice after seven generations of selection for increased MMR. In both liver and skeletal muscle, unsaturation index did not differ between control and high-MMR mice. We also examined membrane FA composition at the individual-level of variation. In liver, 18:0, 20:3 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In gastrocnemius muscle, 18:2 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In addition, muscle 16:1 n-7, 18:1 n-9, and 22:5 n-3 FAs were significant predictors of BMR, whereas no liver FAs were significant predictors of BMR. Our findings indicate that (i) individual variation in MMR and BMR appears to be linked to membrane FA composition in the skeletal muscle and liver, and (ii) FAs that differ between selected and control lines are involved in pathways that can affect MMR or BMR.
Collapse
Affiliation(s)
- Bernard W M Wone
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557-0314, USA.
| | | | | | | |
Collapse
|
126
|
Gu SJ, Liu MM, Guo ZR, Wu M, Chen Q, Zhou ZY, Zhang LJ, Luo WS. Gene–gene interactions among PPARα/δ/γ polymorphisms for hypertriglyceridemia in Chinese Han population. Gene 2013; 515:272-6. [DOI: 10.1016/j.gene.2012.11.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/27/2012] [Accepted: 11/27/2012] [Indexed: 01/01/2023]
|
127
|
Heyman E, Gamelin FX, Aucouturier J, Di Marzo V. The role of the endocannabinoid system in skeletal muscle and metabolic adaptations to exercise: potential implications for the treatment of obesity. Obes Rev 2012; 13:1110-24. [PMID: 22943701 DOI: 10.1111/j.1467-789x.2012.01026.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The results of recent studies add the endocannabinoid system, and more specifically CB1 receptor signalling, to the complex mechanisms that negatively modulate insulin sensitivity and substrate oxidation in skeletal muscle. CB1 receptors might become overactive in the skeletal muscle during obesity due to increased levels of endocannabinoids. However, quite surprisingly, one of the most studied endocannabinoids, anandamide, when administered in a sufficient dose, was shown to improve muscle glucose uptake and activate some key molecules of insulin signalling and mitochondrial biogenesis. This is probably because anandamide is only a partial agonist at CB1 receptors and interacts with other receptors (PPARγ, TRPV1), which may trigger positive metabolic effects. This putative beneficial role of anandamide is worth considering because increased plasma anandamide levels were recently reported after intense exercise. Whether the endocannabinoid system is involved in the positive exercise effects on mitochondrial biogenesis and glucose fatty acid oxidation remains to be confirmed. Noteworthy, when exercise becomes chronic, a decrease in CB1 receptor expression in obese metabolically deregulated tissues occurs. It is then tempting to hypothesize that physical activity would represent a complementary alternative approach for the clinical management of endocannabinoid system deregulation in obesity, without the side effects occurring with CB1 receptor antagonists.
Collapse
Affiliation(s)
- E Heyman
- Univ Lille Nord de France, EA4488 'Activité Physique, Muscle, Santé', Lille, France.
| | | | | | | |
Collapse
|
128
|
Pérez-Schindler J, Summermatter S, Salatino S, Zorzato F, Beer M, Balwierz PJ, van Nimwegen E, Feige JN, Auwerx J, Handschin C. The corepressor NCoR1 antagonizes PGC-1α and estrogen-related receptor α in the regulation of skeletal muscle function and oxidative metabolism. Mol Cell Biol 2012; 32:4913-24. [PMID: 23028049 PMCID: PMC3510532 DOI: 10.1128/mcb.00877-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/23/2012] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle exhibits a high plasticity and accordingly can quickly adapt to different physiological and pathological stimuli by changing its phenotype largely through diverse epigenetic mechanisms. The nuclear receptor corepressor 1 (NCoR1) has the ability to mediate gene repression; however, its role in regulating biological programs in skeletal muscle is still poorly understood. We therefore studied the mechanistic and functional aspects of NCoR1 function in this tissue. NCoR1 muscle-specific knockout mice exhibited a 7.2% higher peak oxygen consumption (VO(2peak)), a 11% reduction in maximal isometric force, and increased ex vivo fatigue resistance during maximal stimulation. Interestingly, global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) overexpression on oxidative metabolism in muscle. Importantly, PPARβ/δ and estrogen-related receptor α (ERRα) were identified as common targets of NCoR1 and PGC-1α with opposing effects on the transcriptional activity of these nuclear receptors. In fact, the repressive effect of NCoR1 on oxidative phosphorylation gene expression specifically antagonizes PGC-1α-mediated coactivation of ERRα. We therefore delineated the molecular mechanism by which a transcriptional network controlled by corepressor and coactivator proteins determines the metabolic properties of skeletal muscle, thus representing a potential therapeutic target for metabolic diseases.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Muscle Contraction/genetics
- Muscle Contraction/physiology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Nuclear Receptor Co-Repressor 1/deficiency
- Nuclear Receptor Co-Repressor 1/genetics
- Nuclear Receptor Co-Repressor 1/metabolism
- Oxidative Phosphorylation
- Oxygen Consumption
- PPAR delta/metabolism
- PPAR-beta/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Trans-Activators/antagonists & inhibitors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
| | | | | | - Francesco Zorzato
- Departments of Anesthesia and Biomedicine, Basel University Hospital, Basel, Switzerland
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Markus Beer
- Biozentrum, University of Basel, Basel, Switzerland
| | - Piotr J. Balwierz
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Erik van Nimwegen
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jérôme N. Feige
- Novartis Institute for Biomedical Research, Basel, Switzerland
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
129
|
Kim MY, Kang ES, Ham SA, Hwang JS, Yoo TS, Lee H, Paek KS, Park C, Lee HT, Kim JH, Han CW, Seo HG. The PPARδ-mediated inhibition of angiotensin II-induced premature senescence in human endothelial cells is SIRT1-dependent. Biochem Pharmacol 2012; 84:1627-34. [PMID: 23000914 DOI: 10.1016/j.bcp.2012.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 12/26/2022]
Abstract
Cellular senescence has been implicated in endothelial dysfunctions affecting vascular tone and regeneration. The molecular mechanisms of vascular senescence are poorly understood. The present study demonstrates that upregulation of SIRT1 by peroxisome proliferator-activated receptor (PPAR) δ attenuates premature senescence in angiotensin (Ang) II-treated human coronary artery endothelial cells (HCAECs). Activation of PPARδ by the specific ligand GW501516 significantly inhibited Ang II-induced premature senescence and generation of reactive oxygen species (ROS) in HCAECs. A marked concentration- and time-dependent increase in the mRNA levels of SIRT1 was observed in GW501516-treated HCAECs. The effects of GW501516 were almost completely abolished in the presence of small interfering (si) RNA against PPARδ, indicating that PPARδ mediates the effects of GW501516. In addition, activation of PPARδ, but not PPARα or PPARγ, significantly enhanced SIRT1 promoter activity and protein expression. Down-regulation or inhibition of SIRT1 by siRNA or sirtinol abrogated the effects of PPARδ on Ang II-induced premature senescence and ROS generation, respectively. Furthermore, resveratrol, a well-known activator of SIRT1, mimicked the action of PPARδ on Ang II-induced premature senescence and ROS generation. Taken together, these results indicate that the anti-senescent activities of PPARδ may be achieved at least in part by fine tuning the expression of SIRT1 in the vascular endothelium.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Pharmacology, Gyeongsang National University School of Medicine, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
McDaneld TG, Smith TPL, Harhay GP, Wiedmann RT. Next-generation sequencing of the porcine skeletal muscle transcriptome for computational prediction of microRNA gene targets. PLoS One 2012; 7:e42039. [PMID: 22848698 PMCID: PMC3407067 DOI: 10.1371/journal.pone.0042039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 07/02/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND MicroRNA are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts through targeting of a microRNA-protein complex by base-pairing of the microRNA sequence to cognate recognition sequences in the 3' untranslated region (UTR) of the mRNA. Target identification for a given microRNA sequence is generally accomplished by informatics analysis of predicted mRNA sequences present in the genome or in databases of transcript sequence for the tissue of interest. However, gene models for porcine skeletal muscle transcripts in current databases, specifically complete sequence of the 3' UTR, are inadequate for this exercise. METHODOLOGY/PRINCIPAL FINDINGS To provide data necessary to identify gene targets for microRNA in porcine skeletal muscle, normalized cDNA libraries were sequenced using Roche 454 GS-FLX pyrosequencing and de novo assembly of transcripts enriched in the 3' UTR was performed using the MIRA sequence assembly program. Over 725 million bases of sequence were generated, which assembled into 18,202 contigs. Sequence reads were mapped to a 3' UTR database containing porcine sequences. The 3' UTR that mapped to the database were examined to predict targets for previously identified microRNA that had been separately sequenced from the same porcine muscle sample used to generate the cDNA libraries. For genes with microRNA-targeted 3' UTR, KEGG pathways were computationally determined in order to identify potential functional effects of these microRNA-targeted transcripts. CONCLUSIONS Through next-generation sequencing of transcripts expressed in skeletal muscle, mapping reads to a 3' UTR database, and prediction of microRNA target sites in the 3' UTR, our results identified genes expressed in porcine skeletal muscle and predicted the microRNA that target these genes. Additionally, identification of pathways regulated by these microRNA-targeted genes provides us with a set of genes that can be further evaluated for their potential role in skeletal muscle development and growth.
Collapse
Affiliation(s)
- Tara G McDaneld
- Genetics and Breeding Research Unit, United States Department of Agriculture/Agricultural Research Service/USDA/Meat Animal Research Center, Nebraska, United States of America.
| | | | | | | |
Collapse
|
131
|
Ligand-activated PPARδ inhibits UVB-induced senescence of human keratinocytes via PTEN-mediated inhibition of superoxide production. Biochem J 2012; 444:27-38. [PMID: 22335598 DOI: 10.1042/bj20111832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UV radiation-mediated photodamage to the skin has been implicated in premature aging and photoaging-related skin cancer and melanoma. Little is known about the cellular events that underlie premature senescence, or how to impede these events. In the present study we demonstrate that PPARδ (peroxisome-proliferator-activated receptor δ) regulates UVB-induced premature senescence of normal keratinocytes. Activation of PPARδ by GW501516, a specific ligand of PPARδ, significantly attenuated UVB-mediated generation of ROS (reactive oxygen species) and suppressed senescence of human keratinocytes. Ligand-activated PPARδ up-regulated the expression of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and suppressed the PI3K (phosphatidylinositol 3-kinase)/Akt pathway. Concomitantly, translocation of Rac1 to the plasma membrane, which leads to the activation of NADPH oxidases and generation of ROS, was significantly attenuated. siRNA (small interfering RNA)-mediated knockdown of PTEN abrogated the effects of PPARδ on cellular senescence, on PI3K/Akt/Rac1 signalling and on generation of ROS in keratinocytes exposed to UVB. Finally, when HR-1 hairless mice were treated with GW501516 before exposure to UVB, the number of senescent cells in the skin was significantly reduced. Thus ligand-activated PPARδ confers resistance to UVB-induced cellular senescence by up-regulating PTEN and thereby modulating PI3K/Akt/Rac1 signalling to reduce ROS generation in keratinocytes.
Collapse
|
132
|
Stephenson EJ, Camera DM, Jenkins TA, Kosari S, Lee JS, Hawley JA, Stepto NK. Skeletal muscle respiratory capacity is enhanced in rats consuming an obesogenic Western diet. Am J Physiol Endocrinol Metab 2012; 302:E1541-9. [PMID: 22496344 DOI: 10.1152/ajpendo.00590.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity-induced lipid oversupply promotes skeletal muscle mitochondrial biogenesis. Previous investigations have utilized extreme high-fat diets (HFD) to induce such mitochondrial perturbations despite their disparity from human obesogenic diets. Here, we evaluate the effects of Western diet (WD)-induced obesity on skeletal muscle mitochondrial function. Long-Evans rats were given ad libitum access to either a WD [40% energy (E) from fat, 17% protein, and 43% carbohydrate (30% sucrose); n = 12] or a control diet (CON; 16% of E from fat, 21% protein, and 63% carbohydrate; n = 12) for 12 wk. Rats fed the WD consumed 23% more E than CON (P = 0.0001), which was associated with greater increases in body mass (23%, P = 0.0002) and adiposity (17%, P = 0.03). There were no differences in fasting blood glucose concentration or glucose tolerance between diets, although fasting insulin was increased by 40% (P = 0.007). Fasting serum triglycerides were also elevated in WD (86%, P = 0.001). The maximal capacity of the electron transfer system was greater following WD (37%, P = 0.02), as were the maximal activities of several mitochondrial enzymes (citrate synthase, β-hydroxyacyl-CoA dehydrogenase, carnitine palmitoyltransferase). Protein expression of citrate synthase, UCP3, and individual respiratory complexes was greater after WD (P < 0.05) despite no differences in the expression of peroxisome proliferator-activated receptor (PPAR)α, PPARδ, or PPARγ coactivator-1 mRNA or protein abundance. We conclude that the respiratory capacity of skeletal muscle is enhanced in response to the excess energy supplied by a WD. This is likely due to an increase in mitochondrial density, which at least in the short term, and in the absence of increased energy demand, may protect the tissue from lipid-induced impairments in glycemic control.
Collapse
Affiliation(s)
- Erin J Stephenson
- School of Medical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Australia
| | | | | | | | | | | | | |
Collapse
|
133
|
Philp A, Hargreaves M, Baar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab 2012; 302:E1343-51. [PMID: 22395109 DOI: 10.1152/ajpendo.00004.2012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The glycogen content of muscle determines not only our capacity for exercise but also the signaling events that occur in response to exercise. The result of the shift in signaling is that frequent training in a low-glycogen state results in improved fat oxidation during steady-state submaximal exercise. This review will discuss how the amount or localization of glycogen particles can directly or indirectly result in this differential response to training. The key direct effect discussed is carbohydrate binding, whereas the indirect effects include the metabolic shift toward fat oxidation, the increase in catecholamines, and osmotic stress. Although our understanding of the role of glycogen in response to training has expanded exponentially over the past 5 years, there are still many questions remaining as to how stored carbohydrate affects the muscular adaptation to exercise.
Collapse
Affiliation(s)
- Andrew Philp
- Dept. of Neurobiology, Physiology and Behavior, University of California-Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
134
|
Bremer K, Monk CT, Gurd BJ, Moyes CD. Transcriptional regulation of temperature-induced remodeling of muscle bioenergetics in goldfish. Am J Physiol Regul Integr Comp Physiol 2012; 303:R150-8. [PMID: 22621965 DOI: 10.1152/ajpregu.00603.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Central to mammalian mitochondrial biogenesis is the transcriptional master regulator peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), and a network of DNA-binding proteins it coactivates. We explored the role of this pathway in muscle mitochondrial biogenesis in response to thermal acclimation in goldfish (Carassius auratus). We investigated the transcriptional response of PGC-1α, PGC-1β, and their antagonist the nuclear receptor interacting protein 1 (RIP140), as well as the mRNA and protein patterns of DNA-binding proteins that bind PGC-1, including nuclear respiratory factors (NRF) 1 and 2, retinoid X receptor α (RXRα), estrogen-related receptor α (ERRα), thyroid receptor α-1 (TRα-1), PPARα, and PPARβ/δ, and the host cell factor 1 (HCF1), which links PGC-1 and NRF-2. Cold-acclimated (4°C) fish had higher COX activities (4.5-fold) and COX4-1 mRNA levels (3.5-fold per total RNA; 6.5-fold per gram tissue) than warm-acclimated (32°C) fish. The transcription factor patterns were profoundly influenced by changes in RNA per gram tissue (2-fold higher in cold fish) and nuclear protein content (2-fold higher in warm fish). In cold-acclimated fish, mRNA per gram tissue was elevated for PGC-1β, RIP140, NRF-1, HCF1, NRF-2α, NRF-2β-2, ERRα, PPAR β/δ, and RXRα, but other transcriptional regulators either did not change (PGC-1α, PPARα) or even decreased (TRα-1). Nuclear protein levels in cold-acclimated fish were higher only for NRF-1; other proteins were either unaffected (NRF-2α, ERRα) or decreased (NRF-2β1/2, TRα, RXRα). Collectively, these data support the role for NRF-1 in regulating cold-induced mitochondrial biogenesis in goldfish, with effects mediated by PGC-1β, rather than PGC-1α.
Collapse
Affiliation(s)
- Katharina Bremer
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
135
|
Lee H, Ham SA, Kim MY, Kim JH, Paek KS, Kang ES, Kim HJ, Hwang JS, Yoo T, Park C, Kim JH, Lim DS, Han CW, Seo HG. Activation of PPARδ counteracts angiotensin II-induced ROS generation by inhibiting rac1 translocation in vascular smooth muscle cells. Free Radic Res 2012; 46:912-9. [PMID: 22519881 DOI: 10.3109/10715762.2012.687448] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Cho SY, Jeong HW, Sohn JH, Seo DB, Kim WG, Lee SJ. An ethanol extract of Artemisia iwayomogi activates PPARδ leading to activation of fatty acid oxidation in skeletal muscle. PLoS One 2012; 7:e33815. [PMID: 22479450 PMCID: PMC3313949 DOI: 10.1371/journal.pone.0033815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/17/2012] [Indexed: 01/15/2023] Open
Abstract
Although Artemisia iwayomogi (AI) has been shown to improve the lipid metabolism, its mode of action is poorly understood. In this study, a 95% ethanol extract of AI (95EEAI) was identified as a potent ligand of peroxisome proliferator-activated receptorδ (PPARδ) using ligand binding analysis and cell-based reporter assay. In cultured primary human skeletal muscle cells, treatment of 95EEAI increased expression of two important PPARδ-regulated genes, carnitine palmitoyl-transferase-1 (CPT1) and pyruvate dehydrogenase kinase isozyme 4 (PDK4), and several genes acting in lipid efflux and energy expenditure. Furthermore, 95EEAI stimulated fatty acid oxidation in a PPARδ-dependent manner. High-fat diet-induced obese mice model further indicated that administration of 95EEAI attenuated diet-induced obesity through the activation of fatty acid oxidation in skeletal muscle. These results suggest that a 95% ethanol extract of AI may have a role as a new functional food material for the prevention and/or treatment of hyperlipidermia and obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Sang-Jun Lee
- Health Science Research Institute, Research and Development Center, AmorePacific Corporation, Bora-dong, Giheung-gu, Yongin-si, Korea
| |
Collapse
|
137
|
Corthals AP. Multiple sclerosis is not a disease of the immune system. QUARTERLY REVIEW OF BIOLOGY 2012; 86:287-321. [PMID: 22384749 DOI: 10.1086/662453] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multiple sclerosis is a complex neurodegenerative disease, thought to arise through autoimmunity against antigens of the central nervous system. The autoimmunity hypothesis fails to explain why genetic and environmental risk factors linked to the disease in one population tend to be unimportant in other populations. Despite great advances in documenting the cell and molecular mechanisms underlying MS pathophysiology, the autoimmunity framework has also been unable to develop a comprehensive explanation of the etiology of the disease. I propose a new framework for understanding MS as a dysfunction of the metabolism of lipids. Specifically, the homeostasis of lipid metabolism collapses during acute-phase inflammatory response triggered by a pathogen, trauma, or stress, starting a feedback loop of increased oxidative stress, inflammatory response, and proliferation of cytoxic foam cells that cross the blood brain barrier and both catabolize myelin and prevent remyelination. Understanding MS as a chronic metabolic disorder illuminates four aspects of disease onset and progression: 1) its pathophysiology; 2) genetic susceptibility; 3) environmental and pathogen triggers; and 4) the skewed sex ratio of patients. It also suggests new avenues for treatment.
Collapse
Affiliation(s)
- Angelique P Corthals
- Department of Sciences, John Jay College of Criminal Justice, City University of New York New York, New York 10019, USA.
| |
Collapse
|
138
|
Badin PM, Loubière C, Coonen M, Louche K, Tavernier G, Bourlier V, Mairal A, Rustan AC, Smith SR, Langin D, Moro C. Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58. J Lipid Res 2012; 53:839-848. [PMID: 22383684 DOI: 10.1194/jlr.m019182] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We investigated here the specific role of CGI-58 in the regulation of energy metabolism in skeletal muscle. We first examined CGI-58 protein expression in various muscle types in mice, and next modulated CGI-58 expression during overexpression and knockdown studies in human primary myotubes and evaluated the consequences on oxidative metabolism. We observed a preferential expression of CGI-58 in oxidative muscles in mice consistent with triacylglycerol hydrolase activity. We next showed by pulse-chase that CGI-58 overexpression increased by more than 2-fold the rate of triacylglycerol (TAG) hydrolysis, as well as TAG-derived fatty acid (FA) release and oxidation. Oppositely, CGI-58 silencing reduced TAG hydrolysis and TAG-derived FA release and oxidation (-77%, P < 0.001), whereas it increased glucose oxidation and glycogen synthesis. Interestingly, modulations of CGI-58 expression and FA release are reflected by changes in pyruvate dehydrogenase kinase 4 gene expression. This regulation involves the activation of the peroxisome proliferator activating receptor-δ (PPARδ) by lipolysis products. Altogether, these data reveal that CGI-58 plays a limiting role in the control of oxidative metabolism by modulating FA availability and the expression of PPARδ-target genes, and highlight an important metabolic function of CGI-58 in skeletal muscle.
Collapse
Affiliation(s)
- Pierre-Marie Badin
- Inserm, 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Camille Loubière
- Inserm, 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Maarten Coonen
- Inserm, 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Katie Louche
- Inserm, 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Geneviève Tavernier
- Inserm, 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Virginie Bourlier
- Inserm, 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Aline Mairal
- Inserm, 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Arild C Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital and the Burnham Institute for Medical Research, Winter Park, FL
| | - Dominique Langin
- Inserm, 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Cedric Moro
- Inserm, 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France.
| |
Collapse
|
139
|
Gross B, Hennuyer N, Bouchaert E, Rommens C, Grillot D, Mezdour H, Staels B. Generation and characterization of a humanized PPARδ mouse model. Br J Pharmacol 2012; 164:192-208. [PMID: 21426320 DOI: 10.1111/j.1476-5381.2011.01359.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Humanized mice for the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ), termed PPARδ knock-in (PPARδ KI) mice, were generated for the investigation of functional differences between mouse and human PPARδ and as tools for early drug efficacy assessment. EXPERIMENTAL APPROACH Human PPARδ function in lipid metabolism was assessed at baseline, after fasting or when challenged with the GW0742 compound in mice fed a chow diet or high-fat diet (HFD). KEY RESULTS Analysis of PPARδ mRNA levels revealed a hypomorph expression of human PPARδ in liver, macrophages, small intestine and heart, but not in soleus and quadriceps muscles, white adipose tissue and skin. PPARδ KI mice displayed a small decrease of high-density lipoprotein-cholesterol whereas other lipid parameters were unaltered. Plasma metabolic parameters were similar in wild-type and PPARδ KI mice when fed chow or HFD, and following physiological (fasting) and pharmacological (GW0742 compound) activation of PPARδ. Gene expression profiling in liver, soleus muscle and macrophages showed similar gene patterns regulated by mouse and human PPARδ. The anti-inflammatory potential of human PPARδ was also similar to mouse PPARδ in liver and isolated macrophages. CONCLUSIONS AND IMPLICATIONS These data indicate that human PPARδ can compensate for mouse PPARδ in the regulation of lipid metabolism and inflammation. Overall, this novel PPARδ KI mouse model shows full responsiveness to pharmacological challenge and represents a useful tool for the preclinical assessment of PPARδ activators with species-specific activity.
Collapse
Affiliation(s)
- B Gross
- Université Lille Nord de France, Lille, France
| | | | | | | | | | | | | |
Collapse
|
140
|
Radley-Crabb HG, Fiorotto ML, Grounds MD. The different impact of a high fat diet on dystrophic mdx and control C57Bl/10 mice. PLOS CURRENTS 2011; 3:RRN1276. [PMID: 22094293 PMCID: PMC3217191 DOI: 10.1371/currents.rrn1276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/24/2011] [Indexed: 01/26/2023]
Abstract
The absence of functional dystrophin protein in patients with Duchenne muscular dystrophy (DMD) and dystrophic mdx mice leads to fragile myofibre membranes and cycles of myofibre necrosis and regeneration. It is proposed that both DMD patients and mdx mice have an altered metabolism and impaired energy status and that nutritional supplementation may reduce the severity of dystropathology. This research compares the in vivo responses of dystrophic mdx and normal control C57Bl/10 mice to a high protein (50%) or a high fat (16%) diet. Consumption of a high protein diet had minimal effects on the body composition or muscle morphology in both strains of mice. In contrast, differences between the strains were seen in response to the high fat diet; this response also varied between mdx mice aged <24 weeks, and mdx mice aged 24 - 40 weeks. C57Bl/10 mice demonstrated many negative side effects after consuming the high fat diet, including weight gain, increased body fat, and elevated inflammatory cytokines. In contrast, after consuming the high fat diet for 16 weeks the mdx mice (< 24 weeks) remained lean with minimal fat deposition and were resistant to changes in body composition. These results support the proposal that energy metabolism in dystrophic mdx mice is altered compared to normal C57Bl/10 mice and this enables the mdx mice to better metabolise the high fat diet and avoid fat deposition. However, older mdx mice (24 - 40-week-old), with increased energy intake, exhibited some mild adverse effects of a high fat diet but to a far lesser extent than age-matched C57Bl/10 mice. Benefits of the high fat diet on dystrophic muscles of young mice were demonstrated by the significantly increased running ability (km) of voluntarily exercised mdx mice and significantly reduced myofibre necrosis in 24-week-old sedentary mdx mice. These novel data clearly identify an 'altered' response to a high fat diet in dystrophic mdx compared to normal C57Bl/10 mice. Our data indicate that the high fat diet may better meet the energy needs of mdx mice to reduce muscle damage and improve muscle function.
Collapse
Affiliation(s)
- Hannah G Radley-Crabb
- School of Anatomy and Human Biology, the University of Western Australia, Perth, Australia and USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
141
|
Kim HJ, Ham SA, Kim MY, Hwang JS, Lee H, Kang ES, Yoo T, Woo IS, Yabe-Nishimura C, Paek KS, Kim JH, Seo HG. PPARδ coordinates angiotensin II-induced senescence in vascular smooth muscle cells through PTEN-mediated inhibition of superoxide generation. J Biol Chem 2011; 286:44585-93. [PMID: 22072715 DOI: 10.1074/jbc.m111.222562] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence-associated changes in blood vessels have been implicated in aging and age-related cardiovascular disorders. Here, we demonstrate that peroxisome proliferator-activated receptor (PPAR) δ coordinates angiotensin (Ang) II-induced senescence of human vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly attenuated Ang II-induced generation of superoxides and suppressed senescence of VSMCs. A marked increase in the levels of p53 and p21 induced by Ang II was blunted by the treatment with GW501516. Ligand-activated PPARδ up-regulated expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and suppressed the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Knockdown of PTEN with siRNA abrogated the effects of PPARδ on cellular senescence, on PI3K/Akt signaling, and on generation of ROS in VSMCs treated with Ang II. Finally, administration of GW501516 to apoE-deficient mice treated with Ang II significantly reduced the number of senescent cells in the aorta, where up-regulation of PTEN with reduced levels of phosphorylated Akt and ROS was demonstrated. Thus, ligand-activated PPARδ confers resistance to Ang II-induced senescence by up-regulation of PTEN and ensuing modulation of the PI3K/Akt signaling to reduce ROS generation in vascular cells.
Collapse
Affiliation(s)
- Hyo Jung Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Thoresen GH, Hessvik NP, Bakke SS, Aas V, Rustan AC. Metabolic switching of human skeletal muscle cells in vitro. Prostaglandins Leukot Essent Fatty Acids 2011; 85:227-34. [PMID: 21549583 DOI: 10.1016/j.plefa.2011.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review we will focus on external factors that may modify energy metabolism in human skeletal muscle cells (myotubes) and the ability of the myotubes to switch between lipid and glucose oxidation. We describe the metabolic parameters suppressibility, adaptability and substrate-regulated flexibility, and show the influence of nutrients such as fatty acids and glucose (chronic hyperglycemia), and some pharmacological agents modifying nuclear receptors (PPAR and LXR), on these parameters in human myotubes. Possible cellular mechanisms for changes in these parameters will also be highlighted.
Collapse
Affiliation(s)
- G H Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
143
|
Broos S, Windelinckx A, De Mars G, Huygens W, Peeters MW, Aerssens J, Vlietinck R, Beunen GP, Thomis MA. Is PPARα intron 7 G/C polymorphism associated with muscle strength characteristics in nonathletic young men? Scand J Med Sci Sports 2011; 23:494-500. [PMID: 22092351 DOI: 10.1111/j.1600-0838.2011.01406.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2011] [Indexed: 11/30/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor, regulates fatty acid metabolism in heart and skeletal muscle. The intron 7 G/C polymorphism (rs4253778) has been associated with athletic performance. The rare C-allele was predominant in power athletes, whereas the G-allele was more frequent in endurance athletes. In the present study, we investigated the association between this polymorphism and strength characteristics in nonathletic, healthy young adults (n = 500; age 24.2 ± 4.4 years). Knee torque was measured during concentric knee flexion and extension movements at 60°/s, 120°/s, and 240°/s during 3, 25, and 5 repetitions, respectively. Also, resistance to muscle fatigue (i.e. work last 20% repetitions/work first 20% repetitions *100) was calculated. Differences in knee strength phenotypes between GG homozygous individuals and C-allele carriers were analyzed. The polymorphism did not influence the ability to produce isometric or dynamic knee flexor or extensor peak torque during static or dynamic conditions in this population (0.23 < P < 0.95). Similar results were found for the endurance ratio, a measure for resistance to muscle fatigue. In conclusion, the PPARα intron 7 G/C polymorphism does not seem to influence strength characteristics in a nonathletic population.
Collapse
Affiliation(s)
- S Broos
- Research Center for Exercise and Health, Department of Biomedical Kinesiology, FaBeR, K.U.Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Ljubicic V, Khogali S, Renaud JM, Jasmin BJ. Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. Am J Physiol Cell Physiol 2011; 302:C110-21. [PMID: 21940670 DOI: 10.1152/ajpcell.00183.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we evaluated how a pharmacologically induced phenotype shift in dystrophic skeletal muscle would affect subsequent intracellular signaling in response to a complementary, adaptive physiological stimulus. mdx mice were treated with the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR; 500 mg·kg(-1)·day(-1)) for 30 days, and then one-half of the animals were subjected to a bout of treadmill running to induce acute AMPK and p38 MAPK signaling. The mRNA levels of phenotypic modifiers, including peroxisome proliferator-activated receptor-δ (PPARδ), PPARγ coactivator-1α (PGC-1α), receptor interacting protein 140 (RIP 140), and silent information regulator two ortholog 1 (SIRT1) were assessed in skeletal muscle, as well as the expression of the protein arginine methyltransferase genes PRMT1 and CARM1. We found unique AMPK and p38 phosphorylation and expression signatures between dystrophic and healthy muscle. In dystrophic skeletal muscle, treadmill running induced PPARδ, PGC-1α, and SIRT1 mRNAs, three molecules that promote the slow, oxidative myogenic program. In the mdx animals that received the chronic AICAR treatment, running-elicited AMPK and p38 phosphorylation was attenuated compared with vehicle-treated mice. Similarly, acute stress-evoked expression of PPARδ, PGC-1α, and SIRT1 was also blunted by chronic pharmacological AMPK stimulation. Skeletal muscle PRMT1 and CARM1 protein contents were higher in mdx mice compared with wild-type littermates. The acute running-evoked induction of PRMT1 and CARM1 mRNAs was also attenuated by the AICAR treatment. Our data demonstrate that prior pharmacological conditioning is a salient determinant in how dystrophic muscle adapts to subsequent complementary, acute physiological stress stimuli. These results provide insight into possible therapeutic applications of synthetic agonists in neuromuscular diseases, such as during chronic administration to Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
145
|
Wone B, Donovan ER, Hayes JP. Metabolomics of aerobic metabolism in mice selected for increased maximal metabolic rate. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:399-405. [PMID: 21982590 DOI: 10.1016/j.cbd.2011.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
Maximal aerobic metabolic rate (MMR) is an important physiological and ecological variable that sets an upper limit to sustained, vigorous activity. How the oxygen cascade from the external environment to the mitochondria may affect MMR has been the subject of much interest, but little is known about the metabolic profiles that underpin variation in MMR. We tested how seven generations of artificial selection for high mass-independent MMR affected metabolite profiles of two skeletal muscles (gastrocnemius and plantaris) and the liver. MMR was 12.3% higher in mass selected for high MMR than in controls. Basal metabolic rate was 3.5% higher in selected mice than in controls. Artificial selection did not lead to detectable changes in the metabolic profiles from plantaris muscle, but in the liver amino acids and tricarboxylic acid cycle (TCA cycle) metabolites were lower in high-MMR mice than in controls. In gastrocnemius, amino acids and TCA cycle metabolites were higher in high-MMR mice than in controls, indicating elevated amino acid and energy metabolism. Moreover, in gastrocnemius free fatty acids and triacylglycerol fatty acids were lower in high-MMR mice than in controls. Because selection for high MMR was associated with changes in the resting metabolic profile of both liver and gastrocnemius, the result suggests a possible mechanistic link between resting metabolism and MMR. In addition, it is well established that diet and exercise affect the composition of fatty acids in muscle. The differences that we found between control lines and lines selected for high MMR demonstrate that the composition of fatty acids in muscle is also affected by genetic factors.
Collapse
Affiliation(s)
- Bernard Wone
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
146
|
Han JK, Kim HL, Jeon KH, Choi YE, Lee HS, Kwon YW, Jang JJ, Cho HJ, Kang HJ, Oh BH, Park YB, Kim HS. Peroxisome proliferator-activated receptor-δ activates endothelial progenitor cells to induce angio-myogenesis through matrix metallo-proteinase-9-mediated insulin-like growth factor-1 paracrine networks. Eur Heart J 2011; 34:1755-65. [PMID: 21920965 DOI: 10.1093/eurheartj/ehr365] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS The roles of peroxisome proliferator-activated receptor (PPAR)-δ in vascular biology are mainly unknown. We investigated the effects of PPAR-δ activation on the paracrine networks between endothelial progenitor cells (EPCs) and endothelial cells (ECs)/skeletal muscle. METHODS AND RESULTS Treatment of EPCs with GW501516, a PPAR-δ agonist, induced specifically matrix metallo-proteinase (MMP)-9 by direct transcriptional activation. Subsequently, this increased-MMP-9 broke down insulin-like growth factor-binding protein (IGFBP)-3, resulting in IGF-1 receptor (IGF-1R) activation in surrounding target cells. Treatment of conditioned medium from GW501516-stimulated EPCs enhanced the number and functions of human umbilical vein ECs and C2C12 myoblasts via MMP-9-mediated IGF-1R activation. Systemic administration of GW501516 in mice increased MMP-9 expression in EPCs, and augmented IGFBP-3 degradation in serum. In a mouse hindlimb ischaemia model, systemic treatment of GW501516 or local transplantation of GW501516-treated EPCs induced IGF-1R phosphorylation in ECs and skeletal muscle in the ischaemic limbs, leading to augmented angiogenesis and skeletal muscle regeneration. It also enhanced wound healing with increased angiogenesis in a mouse skin punch wound model. These pro-angiogenic and muscle-regenerating effects were abolished by MMP-9 knock-out. CONCLUSION Our results suggest that PPAR-δ is a crucial modulator of angio-myogenesis via the paracrine effects of EPCs, and its agonist is a good candidate as a therapeutic drug for patients with peripheral vascular diseases.
Collapse
Affiliation(s)
- Jung-Kyu Han
- National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Lipids are the most abundant organic constituents in many humans. The rise in obesity prevalence has prompted a need for a more refined understanding of the effects of lipid molecules on cell physiology. In skeletal muscle, deposition of lipids can be associated with insulin resistance that contributes to the development of diabetes. Here, we review the evidence that muscle cells are equipped with the molecular machinery to convert and sequester lipid molecules, thus rendering them harmless. Induction of mitochondrial and lipogenic flux in the setting of elevated lipid deposition can protect muscle from lipid-induced "poisoning" of the cellular machinery. Lipid flux may also be directed toward the synthesis of ligands for nuclear receptors, further enhancing the capacity of muscle for lipid metabolism to promote favorable physiology. Exploiting these mechanisms may have implications for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Katsuhiko Funai
- Div. of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
148
|
Lendoye E, Sibille B, Rousseau AS, Murdaca J, Grimaldi PA, Lopez P. PPARbeta activation induces rapid changes of both AMPK subunit expression and AMPK activation in mouse skeletal muscle. Mol Endocrinol 2011; 25:1487-98. [PMID: 21798999 DOI: 10.1210/me.2010-0504] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AMP-activated protein kinases (AMPK) are heterotrimeric, αβγ, serine/threonine kinases. The γ3-AMPK subunit is particularly interesting in muscle physiology because 1) it is specifically expressed in skeletal muscle, 2) α2β2γ3 is the AMPK heterotrimer activated during exercise in humans, and 3) it is down-regulated in humans after a training period. However, mechanisms underlying this decrease of γ3-AMPK expression remained unknown. We investigated whether the expression of AMPK subunits and particularly that of γ3-AMPK are regulated by the PPARβ pathway. We report that PPARβ activation with GW0742 induces a rapid (2 h) and sustained down-regulation of γ3-AMPK expression both in mouse skeletal muscles and in culture myotubes. Concomitantly, phosphorylation levels of both AMPK and acetyl-coenzyme A carboxylase are rapidly modified. The γ3-AMPK down-regulation is also observed in muscles from young and adult transgenic mice with muscle-specific overexpression of peroxisome proliferator-activated receptor β (PPARβ). We showed that γ3-AMPK down-regulation is a rapid physiological muscle response observed in mouse after running exercise or fasting, two situations leading to PPARβ activation. Finally, using C2C12, we demonstrated that dose and time-dependent down-regulation of γ3-AMPK expression upon GW0742 treatment, is due to decrease γ3-AMPK promoter activity.
Collapse
Affiliation(s)
- E Lendoye
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) 907, Nice, France
| | | | | | | | | | | |
Collapse
|
149
|
Yeo WK, Carey AL, Burke L, Spriet LL, Hawley JA. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab 2011; 36:12-22. [PMID: 21326374 DOI: 10.1139/h10-089] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The performance of prolonged (>90 min), continuous, endurance exercise is limited by endogenous carbohydrate (CHO) stores. Accordingly, for many decades, sports nutritionists and exercise physiologists have proposed a number of diet-training strategies that have the potential to increase fatty acid availability and rates of lipid oxidation and thereby attenuate the rate of glycogen utilization during exercise. Because the acute ingestion of exogenous substrates (primarily CHO) during exercise has little effect on the rates of muscle glycogenolysis, recent studies have focused on short-term (<1-2 weeks) diet-training interventions that increase endogenous substrate stores (i.e., muscle glycogen and lipids) and alter patterns of substrate utilization during exercise. One such strategy is "fat adaptation", an intervention in which well-trained endurance athletes consume a high-fat, low-CHO diet for up to 2 weeks while undertaking their normal training and then immediately follow this by CHO restoration (consuming a high-CHO diet and tapering for 1-3 days before a major endurance event). Compared with an isoenergetic CHO diet for the same intervention period, this "dietary periodization" protocol increases the rate of whole-body and muscle fat oxidation while attenuating the rate of muscle glycogenolysis during submaximal exercise. Of note is that these metabolic perturbations favouring the oxidation of fat persist even in the face of restored endogenous CHO stores and increased exogenous CHO availability. Here we review the current knowledge of some of the potential mechanisms by which skeletal muscle sustains high rates of fat oxidation in the face of high exogenous and endogenous CHO availability.
Collapse
Affiliation(s)
- Wee Kian Yeo
- Health Innovations Research Institute, School of Medical Sciences, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia
| | | | | | | | | |
Collapse
|
150
|
Abstract
The peroxisome proliferator-activated receptors (PPARs) and the retinoid X receptors (RXRs) are ligand-activated transcription factors that coordinately regulate gene expression. This PPAR-RXR transcriptional complex plays a critical role in energy balance, including triglyceride metabolism, fatty acid handling and storage, and glucose homeostasis: processes whose dysregulation characterize obesity, diabetes, and atherosclerosis. PPARs and RXRs are also involved directly in inflammatory and vascular responses in endothelial and vascular smooth muscle cells. New insights into fundamental aspects of PPAR and RXR biology, and their actions in the vasculature, continue to appear. Although RXRs are obligate heterodimeric partners for PPAR action, the part that RXRs, and their endogenous retinoid mediators, exert in the vessel wall is less well understood. Biological insights into PPAR-RXRs may help inform interpretation of clinical trials with synthetic PPAR agonists and prospects for future PPAR therapeutics. Importantly, the extensive data establishing a key role for PPARs and RXRs in energy balance, inflammation, and vascular biology stands separately from the clinical experience with any given synthetic PPAR agonist. Both the basic science data and the clinical experience with PPAR agonists identify the need to better understand these important transcriptional regulators.
Collapse
Affiliation(s)
- Jorge Plutzky
- From Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|