101
|
Blaustein M, Quadrana L, Risso G, Mata MDL, Pelisch F, Srebrow A. SF2/ASF regulates proteomic diversity by affecting the balance between translation initiation mechanisms. J Cell Biochem 2009; 107:826-33. [PMID: 19441081 DOI: 10.1002/jcb.22181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Post-splicing activities have been described for a subset of shuttling serine/arginine-rich splicing regulatory proteins, among them SF2/ASF. We showed that growth factors activate a Ras-PI 3-kinase-Akt/PKB signaling pathway that not only modifies alternative splicing of the fibronectin EDA exon, but also alters in vivo translation of reporter mRNAs containing the EDA binding motif for SF2/ASF, providing two co-regulated levels of isoform-specific amplification. Translation of most eukaryotic mRNAs is initiated via the scanning mechanism, which implicates recognition of the m7G cap at the mRNA 5'-terminus by the eIF4F protein complex. Several viral and cellular mRNAs are translated in a cap-independent manner by the action of cis-acting mRNA elements named internal ribosome entry sites that direct internal ribosome binding to the mRNA. Here we use bicistronic reporters that generate mRNAs carrying two open reading frames, one translated in a cap-dependent manner while the other by internal ribosome entry site-dependent initiation, to show that in vivo over-expression of SF2/ASF increases the ratio between cap-dependent and internal ribosome entry site-dependent translation. Consistently, knocking-down of SF2/ASF causes the opposite effect. Changes in expression levels of SF2/ASF also affect alternative translation of an endogenous mRNA, that one coding for fibroblast growth factor-2. These results strongly suggest a role for SF2/ASF as a regulator of alternative translation, meaning the generation of different proteins by the balance among these two translation initiation mechanisms, and expand the known potential of SF2/ASF to regulate proteomic diversity to the translation field.
Collapse
Affiliation(s)
- Matías Blaustein
- Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
102
|
Jarnaess E, Stokka AJ, Kvissel AK, Skålhegg BS, Torgersen KM, Scott JD, Carlson CR, Taskén K. Splicing factor arginine/serine-rich 17A (SFRS17A) is an A-kinase anchoring protein that targets protein kinase A to splicing factor compartments. J Biol Chem 2009; 284:35154-64. [PMID: 19840947 DOI: 10.1074/jbc.m109.056465] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) is targeted to distinct subcellular localizations by specific protein kinase A anchoring proteins (AKAPs). AKAPs are divided into subclasses based on their ability to bind type I or type II PKA or both. Dual-specificity AKAPs were recently reported to have an additional PKA binding determinant called the RI specifier region. A bioinformatic search with the consensus RI specifier region identified a novel AKAP, the splicing factor arginine/serine-rich 17A (SFRS17A). Here, we show by a variety of protein interaction assays that SFRS17A binds both type I and type II PKA in vitro and inside cells, demonstrating that SFRS17A is a dual-specific AKAP. Moreover, immunofluorescence experiments show that SFRS17A colocalizes with the catalytic subunit of PKA as well as the splicing factor SC35 in splicing factor compartments. Using the E1A minigene splicing assay, we found that expression of wild type SFRS17A conferred regulation of E1A alternative splicing, whereas the mutant SFRS17A, which is unable to bind PKA, did not. Our data suggest that SFRS17A is an AKAP involved in regulation of pre-mRNA splicing possibly by docking a pool of PKA in splicing factor compartments.
Collapse
|
103
|
Grillari J, Löscher M, Denegri M, Lee K, Fortschegger K, Eisenhaber F, Ajuh P, Lamond AI, Katinger H, Grillari-Voglauer R. Blom7alpha is a novel heterogeneous nuclear ribonucleoprotein K homology domain protein involved in pre-mRNA splicing that interacts with SNEVPrp19-Pso4. J Biol Chem 2009; 284:29193-204. [PMID: 19641227 PMCID: PMC2781463 DOI: 10.1074/jbc.m109.036632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/28/2009] [Indexed: 02/05/2023] Open
Abstract
The removal of introns from pre-mRNA is performed by the spliceosome that stepwise assembles on the pre-mRNA before performing two catalytic steps. The spliceosome-associated CDC5L-SNEV(Prp19-Pso4) complex is implicated in activation of the second catalytic step of pre-mRNA splicing, and one of its members, SNEV(Prp19-Pso4), is also implicated in spliceosome assembly. To identify interaction partners of SNEVPrp19-Pso4, we have performed yeast two-hybrid screenings. Among the putative binding partners was a so far uncharacterized protein carrying two heterogeneous nuclear ribonucleoprotein K homology domains that we termed Blom7alpha. Blom7alpha is expressed in all tissues tested, and at least three splice variants exist. After confirming direct and physical interaction of SNEV and Blom7alpha, we investigated if it plays a functional role during pre-mRNA splicing. Indeed, Blom7alpha co-localizes and co-precipitates with splicing factors and pre-mRNA and is present in affinity-purified spliceosomes. More importantly, addition of Blom7alpha to HeLa nuclear extracts increased splicing activity in a dose-dependent manner. Furthermore, we tested if Blom7alpha influences splice site selection using two different minigene constructs. Indeed, both 5'- as well as 3'-site selection was altered upon Blom7alpha overexpression. Thus we suggest that Blom7alpha is a novel splicing factor of the K homology domain family that might be implicated in alternative splicing by helping to position the CDC5L-SNEV(Prp19-Pso4) complex at the splice sites.
Collapse
Affiliation(s)
- Johannes Grillari
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna A-1190, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Laserna EJ, Valero ML, Sanz L, del Pino MMS, Calvete JJ, Barettino D. Proteomic analysis of phosphorylated nuclear proteins underscores novel roles for rapid actions of retinoic acid in the regulation of mRNA splicing and translation. Mol Endocrinol 2009; 23:1799-814. [PMID: 19812389 DOI: 10.1210/me.2009-0165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retinoic acid (RA) signaling is mediated by the retinoic acid receptor (RAR), belonging to the nuclear hormone receptor superfamily. In addition to its classical transcriptional actions, RAR also mediates rapid transcription-independent (nongenomic) actions, consisting in the activation of signal transduction pathways, as the phosphatidyl-inositol-3-kinase or the ERK MAPK-signaling pathways. RA-induced rapid transcription-independent actions play a role in different physiological contexts. As an effort toward understanding the functions of those rapid actions on signaling elicited by RA, we have identified nuclear proteins the phosphorylation state of which is rapidly modified by RA treatment in neuroblastoma cells, using a proteomic approach. Our results show that RA treatment led to changes in the phosphorylation patterns in two families of proteins: 1) those related to chromatin dynamics in relation to transcriptional activation, and 2) those related to mRNA processing and, in particular, mRNA splicing. We show that treatment of neuroblastoma cells with RA leads to alteration of the regulation of pre-mRNA splicing and mRNA translation. Thus, our results underscore novel functions for the rapid signaling elicited by RAR in the regulation of mRNA processing. We conclude that RA activation of signaling pathways can indeed regulate mRNA processing as part of a cellular response orchestrated by the nuclear receptor RAR.
Collapse
Affiliation(s)
- Emilio J Laserna
- Biology of Hormone Action Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, [corrected] E-46010 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
105
|
Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 2009; 30:586-623. [PMID: 19752219 DOI: 10.1210/er.2008-0047] [Citation(s) in RCA: 733] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Ospedale Garibaldi-Nesima, 95122 Catania, Italy.
| | | | | | | | | |
Collapse
|
106
|
Piekielko-Witkowska A, Master A, Wojcicka A, Boguslawska J, Brozda I, Tanski Z, Nauman A. Disturbed expression of type 1 iodothyronine deiodinase splice variants in human renal cancer. Thyroid 2009; 19:1105-13. [PMID: 19534619 DOI: 10.1089/thy.2008.0284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alternative splicing, one of the sources of protein diversity, is often disturbed in cancer. Type 1 iodothyronine deiodinase (DIO1) catalyzes deiodination of thyroxine generating triiodothyronine, an important regulator of cell proliferation and differentiation. The expression of DIO1 is disturbed in different types of cancer. The aim of the study was to analyze the alternative splicing of DIO1 and its possible disturbance in renal cancer. METHODS Using real-time PCR, we analyzed 19 tissue samples (T) of renal cancer and 19 matched control samples (C) of the opposite pole of the kidney, not infiltrated by tumor, and 6 control samples (N) (nonneoplastic kidney abnormalities). RESULTS Cloning of DIO1 mRNA isoforms revealed 11 different transcripts, among them 7 new splice variants, not previously reported. The expression of all variants of DIO1 was dramatically (>90%) and significantly (p < or = 0.0003) lowered in samples T compared to control samples C. The ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center was lowered in samples T compared with control samples C, suggesting disturbed alternative splicing of DIO1. The expression of mRNA of splicing factors SF2/ASF (splicing factor-2/alternative-splicing factor) and hnRNPA1 (heterogeneous ribonucleoprotein A1), regulating 5'-splice site selection, was significantly but not proportionally lowered in samples T compared to samples C. The mRNA ratio of splicing factors SF2/ASF and hnRNPA1 correlated with the ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center in controls C but not in samples T. CONCLUSIONS Our results show that the expression and alternative splicing of DIO1 mRNA is disturbed in renal cancer, possibly due to changes in expression of splicing factors SF2/ASF and hnRNPA1.
Collapse
Affiliation(s)
- Agnieszka Piekielko-Witkowska
- Department of Biochemistry and Molecular Biology, The Medical Center of Postgraduate Education, 01-813 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
107
|
Ricciardi S, Kilstrup-Nielsen C, Bienvenu T, Jacquette A, Landsberger N, Broccoli V. CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery. Hum Mol Genet 2009; 18:4590-602. [PMID: 19740913 DOI: 10.1093/hmg/ddp426] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause severe neurodevelopmental disorders including infantile spasms, encephalopathy, West-syndrome and an early-onset variant of Rett syndrome. CDKL5 is a serine/threonine kinase whose involvement in Rett syndrome can be inferred by its ability to directly bind and mediate phosphorylation of MeCP2. However, it remains to be elucidated how CDKL5 exerts its function. Here, we report that CDKL5 localizes to specific nuclear foci referred to as nuclear speckles in both cell lines and tissues. These sub-nuclear structures are traditionally considered as storage/modification sites of pre-mRNA splicing factors. Interestingly, we provide evidence that CDKL5 regulates the dynamic behaviour of nuclear speckles. Indeed, CDKL5 overexpression leads to nuclear speckle disassembly, and this event is strictly dependent on its kinase activity. Conversely, its down-regulation affects nuclear speckle morphology leading to abnormally large and uneven speckles. Similar results were obtained for primary adult fibroblasts isolated from CDKL5-mutated patients. Altogether, these findings indicate that CDKL5 controls nuclear speckle morphology probably by regulating the phosphorylation state of splicing regulatory proteins. Nuclear speckles are dynamic sites that can continuously supply splicing factors to active transcription sites, where splicing occurs. Notably, we proved that CDKL5 influences alternative splicing, at least as proved in heterologous minigene assays. In conclusion, we provide evidence that CDKL5 is involved indirectly in pre-mRNA processing, by controlling splicing factor dynamics. These findings identify a biological process whose disregulation might affect neuronal maturation and activity in CDKL5-related disorders.
Collapse
Affiliation(s)
- Sara Ricciardi
- Division of Neuroscience, San Raffaele Rett Research Center, San Raffaele Scientific Institute, Milan 20132, Italy
| | | | | | | | | | | |
Collapse
|
108
|
Ouyang P. SRrp37, a novel splicing regulator located in the nuclear speckles and nucleoli, interacts with SC35 and modulates alternative pre-mRNA splicing in vivo. J Cell Biochem 2009; 108:304-14. [DOI: 10.1002/jcb.22255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
109
|
Haley B, Paunesku T, Protić M, Woloschak GE. Response of heterogeneous ribonuclear proteins (hnRNP) to ionising radiation and their involvement in DNA damage repair. Int J Radiat Biol 2009; 85:643-55. [PMID: 19579069 DOI: 10.1080/09553000903009548] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To determine the relationship between heterogeneous nuclear ribonucleoproteins (hnRNP) and DNA repair, particularly in response to ionising radiation (IR). MATERIALS AND METHODS The literature was examined for papers related to the topics of hnRNP, IR and DNA repair. RESULTS HnRNP orchestrate the processing of mRNA to which they are bound in response to IR. HnRNP A18, B1, C1/C2 and K interact with important proteins from DNA Damage Response (DDR) pathways, binding DNA-dependent protein kinase (DNA-PK), the Ku antigen (Ku) and tumour suppressor protein 53 (p53) respectively. Notably, irregularities in the expression of hnRNP A18, B1, K, P2 and L have been linked to cancer and radiosensitivity. Sixteen different hnRNP proteins have been reported to show either mRNA transcript or protein quantity changes following IR. Various protein modifications of hnRNP in response to IR have also been noted: hnRNP A18, C1/C2 and K are phosphorylated; hnRNP C1/C2 is a target of apoptotic proteases; and hnRNP K degradation is controlled by murine double minute ubiquitin ligase (MDM2). Evidence points to a role for hnRNP A1, A18, A2/B1, C1/C2, K and P2 in regulating double-stranded break (DSB) repair pathways by promoting either homologous recombination (HR) or non-homologous end rejoining (NHEJ) repair pathways following IR. CONCLUSIONS HnRNP proteins play a pivotal role in coordinating repair pathways following exposure to IR, through protein-protein interactions and transcript regulation of key repair and stress response mRNA. In particular, several hnRNP proteins are critical in coordinating the choice of HR or NHEJ to repair DSB caused by IR.
Collapse
Affiliation(s)
- Benjamin Haley
- Department of Radiation Oncology, Northwestern University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
110
|
Tsianou D, Nikolakaki E, Tzitzira A, Bonanou S, Giannakouros T, Georgatsou E. The enzymatic activity of SR protein kinases 1 and 1a is negatively affected by interaction with scaffold attachment factors B1 and 2. FEBS J 2009; 276:5212-27. [PMID: 19674106 DOI: 10.1111/j.1742-4658.2009.07217.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SR protein kinases (SRPKs) phosphorylate Ser/Arg dipeptide-containing proteins that play crucial roles in a broad spectrum of basic cellular processes. Phosphorylation by SRPKs constitutes a major way of regulating such cellular mechanisms. In the past, we have shown that SRPK1a interacts with the nuclear matrix protein scaffold attachment factor B1 (SAFB1) via its unique N-terminal domain, which differentiates it from SRPK1. In this study, we show that SAFB1 inhibits the activity of both SRPK1a and SRPK1 in vitro and that its RE-rich region is redundant for the observed inhibition. We demonstrate that kinase activity inhibition is caused by direct binding of SAFB1 to SRPK1a and SRPK1, and we also present evidence for the in vitro binding of SAFB2 to the two kinases, albeit with different affinity. Moreover, we show that both SR protein kinases can form complexes with both scaffold attachment factors B in living cells and that this interaction is capable of inhibiting their activity, depending on the tenacity of the complex formed. Finally, we present data demonstrating that SRPK/SAFB complexes are present in the nucleus of HeLa cells and that the enzymatic activity of the nuclear matrixlocalized SRPK1 is repressed. These results suggest a new role for SAFB proteins as regulators of SRPK activity and underline the importance of the assembly of transient intranuclear complexes in cellular regulation.
Collapse
Affiliation(s)
- Dora Tsianou
- Department of Medicine, University of Thessaly, Mezourlo, 41110 Larissa, Greece
| | | | | | | | | | | |
Collapse
|
111
|
Shimada N, Rios I, Moran H, Sayers B, Hubbard K. p38 MAP kinase-dependent regulation of the expression level and subcellular distribution of heterogeneous nuclear ribonucleoprotein A1 and its involvement in cellular senescence in normal human fibroblasts. RNA Biol 2009; 6:293-304. [PMID: 19430204 DOI: 10.4161/rna.6.3.8497] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a RNA binding protein that plays important role in the biogenesis of mRNA, such as alternative splicing and mRNA stability. We have previously demonstrated that hnRNP A1 has diminished protein levels and shows cytoplasmic accumulation in senescent human diploid fibroblasts. Recent reports showed that p38 MAP kinase (p38 MAPK), a member of the MAP kinase family is necessary and sufficient for the cytoplasmic accumulation of hnRNP A1 by stress stimuli such as osmotic shock. p38 MAP kinase has been shown to be involved in cell proliferation and the induction of senescence in response to extracellular stimuli. However, the relationship between hnRNP A1 and p38 MAPK and the roles of hnRNP A1 in cellular senescence have not yet been elucidated. Here we show that hnRNP A1 forms a complex with phospho-p38 MAPK in vivo. Inhibition of p38 MAPK activity with SB203580 elevated hnRNP A1 protein levels and prohibited the cytoplasmic accumulation of the protein, but not hnRNP A2, in senescent cells. The phosphorylation level of hnRNP A1 was elevated in senescent cells. Reduction of hnRNP A1 and A2 levels by siRNA transfection induced a senescence-like morphology and elevated the level of F-actin, a marker of senescence. These results suggest that the expression levels and subcellular distribution of hnRNP A1 are regulated in a p38 MAPK-dependent manner, probably via its phosphorylation. Our results also suggest that hnRNP A2 in addition to hnRNP A1 may play a role in establishing the senescence phenotype.
Collapse
Affiliation(s)
- Naoko Shimada
- City College of New York, City University of New York, New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
112
|
Wang X, Wang K, Radovich M, Wang Y, Wang G, Feng W, Sanford JR, Liu Y. Genome-wide prediction of cis-acting RNA elements regulating tissue-specific pre-mRNA alternative splicing. BMC Genomics 2009; 10 Suppl 1:S4. [PMID: 19594881 PMCID: PMC2709265 DOI: 10.1186/1471-2164-10-s1-s4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Human genes undergo various patterns of pre-mRNA splicing across different tissues. Such variation is primarily regulated by trans-acting factors that bind on exonic and intronic cis-acting RNA elements (CAEs). Here we report a computational method to mechanistically identify cis-acting RNA elements that contribute to the tissue-specific alternative splicing pattern. This method is an extension of our previous model, SplicingModeler, which predicts the significant CAEs that contribute to the splicing differences between two tissues. In this study, we introduce tissue-specific functional levels estimation step, which allows evaluating regulatory functions of predicted CAEs that are involved in more than two tissues. Results Using a publicly available Affymetrix Genechip® Human Exon Array dataset, our method identifies 652 cis-acting RNA elements (CAEs) across 11 human tissues. About one third of predicted CAEs can be mapped to the known RBP (RNA binding protein) binding sites or match with other predicted exonic splicing regulator databases. Interestingly, the vast majority of predicted CAEs are in intronic regulatory regions. A noticeable exception is that many exonic elements are found to regulate the alternative splicing between cerebellum and testes. Most identified elements are found to contribute to the alternative splicing between two tissues, while some are important in multiple tissues. This suggests that genome-wide alternative splicing patterns are regulated by a combination of tissue-specific cis-acting elements and "general elements" whose functional activities are important but differ across multiple tissues. Conclusion In this study, we present a model-based computational approach to identify potential cis-acting RNA elements by considering the exon splicing variation as the combinatorial effects of multiple cis-acting regulators. This methodology provides a novel evaluation on the functional levels of cis-acting RNA elements by estimating their tissue-specific functions on various tissues.
Collapse
Affiliation(s)
- Xin Wang
- College of Automation, Harbin Engineering University, Heilongjiang, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Sapra AK, Ankö ML, Grishina I, Lorenz M, Pabis M, Poser I, Rollins J, Weiland EM, Neugebauer KM. SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol Cell 2009; 34:179-90. [PMID: 19394295 DOI: 10.1016/j.molcel.2009.02.031] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/19/2008] [Accepted: 02/25/2009] [Indexed: 11/30/2022]
Abstract
The SR proteins are a family of pre-mRNA splicing factors with additional roles in gene regulation. To investigate individual family members in vivo, we generated a comprehensive panel of stable cell lines expressing GFP-tagged SR proteins under endogenous promoter control. Recruitment of SR proteins to nascent FOS RNA was transcription dependent and RNase sensitive, with unique patterns of accumulation along the gene specified by the RNA recognition motifs (RRMs). In addition, all SR protein interactions with Pol II were RNA dependent, indicating that SR proteins are not preassembled with Pol II. SR protein interactions with RNA were confirmed in situ by FRET/FLIM. Interestingly, SC35-GFP also exhibited FRET with DNA and failed to associate with cytoplasmic mRNAs, whereas all other SR proteins underwent nucleocytoplasmic shuttling and associated with specific nuclear and cytoplasmic mRNAs. Because different constellations of SR proteins bound nascent, nuclear, and cytoplasmic mRNAs, mRNP remodeling must occur throughout an mRNA's lifetime.
Collapse
Affiliation(s)
- Aparna K Sapra
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Bressan GC, Quaresma AJC, Moraes EC, Manfiolli AO, Passos DO, Gomes MD, Kobarg J. Functional association of human Ki-1/57 with pre-mRNA splicing events. FEBS J 2009; 276:3770-83. [PMID: 19523114 DOI: 10.1111/j.1742-4658.2009.07092.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cytoplasmic and nuclear protein Ki-1/57 was first identified in malignant cells from Hodgkin's lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki-1/57 in human cells remains to be determined. Here, we investigated the relationship of Ki-1/57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki-1/57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki-1/57 was able to bind to a poly-U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki-1/57 can modify the splicing site selection of the adenoviral E1A minigene in a dose-dependent manner. Further confocal and fluorescence microscopy analysis revealed the localization of enhanced green fluorescent proteinKi-1/57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N-terminal region. In summary, our findings suggest that Ki-1/57 is probably involved in cellular events related to RNA functions, such as pre-mRNA splicing.
Collapse
|
115
|
Blanchette M, Green RE, MacArthur S, Brooks AN, Brenner SE, Eisen MB, Rio DC. Genome-wide analysis of alternative pre-mRNA splicing and RNA-binding specificities of the Drosophila hnRNP A/B family members. Mol Cell 2009; 33:438-49. [PMID: 19250905 DOI: 10.1016/j.molcel.2009.01.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/17/2008] [Accepted: 01/09/2009] [Indexed: 01/11/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) have been traditionally seen as proteins packaging RNA nonspecifically into ribonucleoprotein particles (RNPs), but evidence suggests specific cellular functions on discrete target pre-mRNAs. Here we report genome-wide analysis of alternative splicing patterns regulated by four Drosophila homologs of the mammalian hnRNP A/B family (hrp36, hrp38, hrp40, and hrp48). Analysis of the global RNA-binding distributions of each protein revealed both small and extensively bound regions on target transcripts. A significant subset of RNAs were bound and regulated by more than one hnRNP protein, revealing a combinatorial network of interactions. In vitro RNA-binding site selection experiments (SELEX) identified distinct binding motif specificities for each protein, which were overrepresented in their respective regulated and bound transcripts. These results indicate that individual heterogeneous ribonucleoproteins have specific affinities for overlapping, but distinct, populations of target pre-mRNAs controlling their patterns of RNA processing.
Collapse
Affiliation(s)
- Marco Blanchette
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
116
|
Alternative splicing in exon 9 of glucocorticoid receptor pre-mRNA is regulated by SRp40. Mol Biol Rep 2009; 37:1427-33. [PMID: 19343537 DOI: 10.1007/s11033-009-9529-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 03/20/2009] [Indexed: 10/21/2022]
Abstract
Increasing evidence indicates that alternative splicing of human glucocorticoid receptor (GR) transcripts is implicated in the development of glucocorticoid resistance but the underlying mechanism was not well known. Serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 play an important role in the spliceosome assembly. In this study, we analyzed the effects of different SR proteins and hnRNP A1 on the alternative splicing of GR pre-mRNA in HeLa and 293T cells using a minigene transfection assay. Our results revealed that only SRp40 could induce a GRalpha to GRbeta shift of pre-mRNA splicing in exon 9 in HeLa cells and this effect induced by SRp40 was further confirmed by small interfering RNA study. However, in 293T cells, SRp40 could not induce this shift. These results indicated that SRp40 may influence the alternative splicing of GR pre-mRNA to regulate the ratio of GRalpha to GRbeta, and this effect is cell-dependent.
Collapse
|
117
|
Abstract
Ribonucleoproteins (RNPs) mediate key cellular functions such as gene expression and its regulation. Whereas most RNP enzymes are stable in composition and harbor preformed active sites, the spliceosome, which removes noncoding introns from precursor messenger RNAs (pre-mRNAs), follows fundamentally different strategies. In order to provide both accuracy to the recognition of reactive splice sites in the pre-mRNA and flexibility to the choice of splice sites during alternative splicing, the spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling.
Collapse
Affiliation(s)
- Markus C Wahl
- Makromolekulare Röntgenkristallographie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
118
|
Abstract
The systems for mRNA surveillance, capping, and cleavage/polyadenylation are proposed to play pivotal roles in the physical establishment and distribution of spliceosomal introns along a transcript.
Collapse
|
119
|
Abstract
The SR protein family comprises a number of phylogenetically conserved and structurally related proteins with a characteristic domain rich in arginine and serine residues, known as the RS domain. They play significant roles in constitutive pre-mRNA splicing and are also important regulators of alternative splicing. In addition they participate in post-splicing activities, such as mRNA nuclear export, nonsense-mediated mRNA decay and mRNA translation. These wide-ranging roles of SR proteins highlight their importance as pivotal regulators of mRNA metabolism, and if these functions are disrupted, developmental defects or disease may result. Furthermore, animal models have shown a highly specific, non-redundant role for individual SR proteins in the regulation of developmental processes. Here, we will review the current literature to demonstrate how SR proteins are emerging as one of the master regulators of gene expression.
Collapse
|
120
|
Abstract
We recently characterized human hnRNP L as a global regulator of alternative splicing, binding to CA-repeat and CA-rich elements. Here we report that hnRNP L autoregulates its own expression on the level of alternative splicing. Intron 6 of the human hnRNP L gene contains a short exon that, if used, introduces a premature termination codon, resulting in nonsense-mediated decay (NMD). This "poison exon" is preceded by a highly conserved CA-rich cluster extending over 800 nucleotides that binds hnRNP L and functions as an unusually extended, intronic enhancer, promoting inclusion of the poison exon. As a result, excess hnRNP L activates NMD of its own mRNA, thereby creating a negative autoregulatory feedback loop and contributing to homeostasis of hnRNP L levels. We present experimental evidence for this mechanism, based on NMD inactivation, hnRNP L binding assays, and hnRNP L-dependent alternative splicing of heterologous constructs. In addition, we demonstrate that hnRNP L cross-regulates inclusion of an analogous poison exon in the hnRNP L-like pre-mRNA, which explains the reciprocal expression of the two closely related hnRNP L proteins.
Collapse
|
121
|
Nicholls CD, Beattie TL. Multiple factors influence the normal and UV-inducible alternative splicing of PIG3. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:838-49. [DOI: 10.1016/j.bbagrm.2008.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 08/15/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
|
122
|
Kishore S, Khanna A, Stamm S. Rapid generation of splicing reporters with pSpliceExpress. Gene 2008; 427:104-10. [PMID: 18930792 DOI: 10.1016/j.gene.2008.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/13/2008] [Accepted: 09/18/2008] [Indexed: 11/30/2022]
Abstract
Almost all human protein-coding transcripts undergo pre-mRNA splicing and a majority of them is alternatively spliced. The most common technique used to analyze the regulation of an alternative exon is through reporter minigene constructs. However, their construction is time-consuming and is often complicated by the limited availability of appropriate restriction sites. Here, we report a fast and simple recombination-based method to generate splicing reporter genes, using a new vector, pSpliceExpress. The system allows generation of minigenes within one week. Minigenes generated with pSpliceExpress show the same regulation as displayed by conventionally cloned reporter constructs and provide an alternate avenue to study splice site selection in vivo.
Collapse
Affiliation(s)
- Shivendra Kishore
- Department of Molecular and Cellular Biochemistry, B283 Biomedical Biological Sciences Research Building, 741 South Limestone, University of Kentucky, College of Medicine, Lexington, KY 40536-0509, USA
| | | | | |
Collapse
|
123
|
Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proc Natl Acad Sci U S A 2008; 105:14692-7. [PMID: 18796608 DOI: 10.1073/pnas.0802675105] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of IL-6 transsignaling by the administration of soluble gp130 (sgp130) receptor to capture the IL-6/soluble IL-6R complex has shown promise for the treatment of rheumatoid arthritis (RA). However, enhancing endogenous sgp130 via alternative splicing of the gp130 gene has not yet been tested. We found that epigallocatechin-3-gallate (EGCG), an anti-inflammatory compound found in green tea, inhibits IL-1beta-induced IL-6 production and transsignaling in RA synovial fibroblasts by inducing alternative splicing of gp130 mRNA, resulting in enhanced sgp130 production. Results from in vivo studies using a rat adjuvant-induced arthritis model showed specific inhibition of IL-6 levels in the serum and joints of EGCG-treated rats by 28% and 40%, respectively, with concomitant amelioration of rat adjuvant-induced arthritis. We also observed a marked decrease in membrane-bound gp130 protein expression in the joint homogenates of the EGCG-treated group. In contrast, quantitative RT-PCR showed that the gp130/IL-6Ralpha mRNA ratio increased by approximately 2-fold, suggesting a possible mechanism of sgp130 activation by EGCG. Gelatin zymography results showed EGCG inhibits IL-6/soluble IL-6R-induced matrix metalloproteinase-2 activity in RA synovial fibroblasts and in joint homogenates, possibly via up-regulation of sgp130 synthesis. The results of these studies provide previously undescribed evidence of IL-6 synthesis and transsignaling inhibition by EGCG with a unique mechanism of sgp130 up-regulation, and thus hold promise as a potential therapeutic agent for RA.
Collapse
|
124
|
Xie J. Control of alternative pre-mRNA splicing by Ca(++) signals. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:438-52. [PMID: 18258215 PMCID: PMC3500379 DOI: 10.1016/j.bbagrm.2008.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/18/2007] [Accepted: 01/08/2008] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a common way of gene expression regulation in metazoans. The selective use of specific exons can be modulated in response to various manipulations that alter Ca(++) signals, particularly in neurons. A number of splicing factors have also been found to be controlled by Ca(++) signals. Moreover, pre-mRNA elements have been identified that are essential and sufficient to mediate Ca(++)-regulated splicing, providing model systems for dissecting the involved molecular components. In neurons, this regulation likely contributes to the fine-tuning of neuronal properties.
Collapse
Affiliation(s)
- Jiuyong Xie
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Canada MB R3E 3J7.
| |
Collapse
|
125
|
Ellis JD, Llères D, Denegri M, Lamond AI, Cáceres JF. Spatial mapping of splicing factor complexes involved in exon and intron definition. ACTA ACUST UNITED AC 2008; 181:921-34. [PMID: 18559666 PMCID: PMC2426932 DOI: 10.1083/jcb.200710051] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analyzed the interaction between serine/arginine-rich (SR) proteins and splicing components that recognize either the 5′ or 3′ splice site. Previously, these interactions have been extensively characterized biochemically and are critical for both intron and exon definition. We use fluorescence resonance energy transfer (FRET) microscopy to identify interactions of individual SR proteins with the U1 small nuclear ribonucleoprotein (snRNP)–associated 70-kD protein (U1 70K) and with the small subunit of the U2 snRNP auxiliary factor (U2AF35) in live-cell nuclei. We find that these interactions occur in the presence of RNA polymerase II inhibitors, demonstrating that they are not exclusively cotranscriptional. Using FRET imaging by means of fluorescence lifetime imaging microscopy (FLIM), we map these interactions to specific sites in the nucleus. The FLIM data also reveal a previously unknown interaction between HCC1, a factor related to U2AF65, with both subunits of U2AF. Spatial mapping using FLIM-FRET reveals differences in splicing factors interactions within complexes located in separate subnuclear domains.
Collapse
Affiliation(s)
- Jonathan D Ellis
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, UK
| | | | | | | | | |
Collapse
|
126
|
Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, Kasim M, Dreyfuss G. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 2008; 133:585-600. [PMID: 18485868 PMCID: PMC2446403 DOI: 10.1016/j.cell.2008.03.031] [Citation(s) in RCA: 484] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 01/04/2008] [Accepted: 03/24/2008] [Indexed: 11/16/2022]
Abstract
The survival of motor neurons (SMN) protein is essential for the biogenesis of small nuclear RNA (snRNA)-ribonucleoproteins (snRNPs), the major components of the pre-mRNA splicing machinery. Though it is ubiquitously expressed, SMN deficiency causes the motor neuron degenerative disease spinal muscular atrophy (SMA). We show here that SMN deficiency, similar to that which occurs in severe SMA, has unexpected cell type-specific effects on the repertoire of snRNAs and mRNAs. It alters the stoichiometry of snRNAs and causes widespread pre-mRNA splicing defects in numerous transcripts of diverse genes, preferentially those containing a large number of introns, in SMN-deficient mouse tissues. These findings reveal a key role for the SMN complex in RNA metabolism and in splicing regulation and indicate that SMA is a general splicing disease that is not restricted to motor neurons.
Collapse
Affiliation(s)
- Zhenxi Zhang
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Friend LR, Han SP, Rothnagel JA, Smith R. Differential subnuclear localisation of hnRNPs A/B is dependent on transcription and cell cycle stage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1972-80. [PMID: 18588922 DOI: 10.1016/j.bbamcr.2008.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 01/31/2023]
Abstract
The heterogeneous nuclear ribonucleoproteins A1, A2/B1 and A3 (hnRNPs A/B) are involved in many nuclear functions that are confined to distinct regions within the nucleus. To characterise and compare the distribution of the hnRNPs A/B in these subnuclear compartments, their colocalisation with spliceosomal components, nascent transcripts and other nuclear markers in HeLa cells was investigated by immunostaining and transfection of GFP constructs. The mechanisms of this localisation were further explored by treating cells with detergent, nucleases and transcription inhibitors. We have also examined the dynamics of A2/B1 throughout the cell cycle. Our results show that hnRNPs A/B have different subnuclear localisations, with A1 differentially localised to the nuclear envelope, and A2/B1 and A3 enriched around nucleoli. This pattern of distribution was dependent on RNA integrity and active transcription. The hnRNPs A/B preferentially colocalised with a subset of splicing factors. Significantly, only rarely did transcription factories colocalise with high levels of these hnRNPs. Moreover, localisation of A2/B1 changed with cell cycle stage. Our findings show that the subnuclear localisation of the hnRNPs A/B is differentially, spatially and temporally regulated, and suggest that this localisation may be relevant to their nuclear functions.
Collapse
Affiliation(s)
- Lexie R Friend
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
128
|
Orvain C, Matre V, Gabrielsen OS. The transcription factor c-Myb affects pre-mRNA splicing. Biochem Biophys Res Commun 2008; 372:309-13. [PMID: 18498763 DOI: 10.1016/j.bbrc.2008.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 05/12/2008] [Indexed: 11/28/2022]
Abstract
c-Myb is a transcription factor which plays a key role in haematopoietic proliferation and lineage commitment. We raised the question of whether c-Myb may have abilities beyond the extensively studied transcriptional activation function. In this report we show that c-Myb influences alternative pre-mRNA splicing. This was seen by its marked effect on the 5'-splice site selection during E1A alternative splicing, while no effect of c-Myb was observed when reporters for the 3'-splice site selection or for the constitutive splicing process were tested. Moreover, co-immunoprecipitation experiments provided evidence for interactions between c-Myb and distinct components of the splicing apparatus, such as the general splicing factor U2AF(65) and hnRNPA1 involved in the 5'-splice site selection. The effect on 5'-splice site selection was abolished in the oncogenic variant v-Myb. Altogether, these data provide evidence that c-Myb may serve a previously unappreciated role in the coupling between transcription and splicing.
Collapse
Affiliation(s)
- Christophe Orvain
- University of Oslo, Department of Molecular Biosciences, P.O. Box 1041 Blindern, N-0316 Oslo, Norway
| | | | | |
Collapse
|
129
|
Abstract
Alternative splicing of RNA increases the coding potential of the genome and allows for additional regulatory control over gene expression. The full extent of alternative splicing remains to be defined but is likely to significantly expand the size of the human transcriptome. There are several examples of mammalian viruses regulating viral splicing or inhibiting cellular splicing in order to facilitate viral replication. Here, we describe a viral protein that induces alternative splicing of a cellular RNA transcript. Epstein-Barr virus (EBV) SM protein is a viral protein essential for replication that enhances EBV gene expression by enhancing RNA stability and export. SM also increases cellular STAT1 expression, a central mediator of interferon signal transduction, but disproportionately increases the abundance of the STAT1beta splicing isoform, which can act as a dominant-negative suppressor of STAT1alpha. SM induces splicing of STAT1 at a novel 5' splice site, resulting in a STAT1 mRNA incapable of producing STAT1alpha. SM-induced alternative splicing is dependent on the presence of an RNA sequence to which SM binds directly and which can confer SM-dependent splicing on heterologous RNA. The cellular splicing factor ASF/SF2 also binds to this region and inhibits SM-RNA binding and SM-induced alternative splicing. These results suggest that viruses may regulate cellular gene expression at the level of alternative mRNA splicing in order to facilitate virus replication or persistence in vivo.
Collapse
|
130
|
Hiller M, Platzer M. Widespread and subtle: alternative splicing at short-distance tandem sites. Trends Genet 2008; 24:246-55. [PMID: 18394746 DOI: 10.1016/j.tig.2008.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 12/11/2022]
Abstract
Alternative splicing at donor or acceptor sites located just a few nucleotides apart is widespread in many species. It results in subtle changes in the transcripts and often in the encoded proteins. Several of these tandem splice events contribute to the repertoire of functionally different proteins, whereas many are neutral or deleterious. Remarkably, some of the functional events are differentially spliced in tissues or developmental stages, whereas others exhibit constant splicing ratios, indicating that function is not always associated with differential splicing. Stochastic splice site selection seems to play a major role in these processes. Here, we review recent progress in understanding functional and evolutionary aspects as well as the mechanism of splicing at short-distance tandem sites.
Collapse
Affiliation(s)
- Michael Hiller
- Bioinformatics Group, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany.
| | | |
Collapse
|
131
|
Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol Cell Biol 2008; 28:3513-25. [PMID: 18332115 DOI: 10.1128/mcb.02279-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exonization of Alu elements creates primate-specific genomic diversity. Here we combine bioinformatic and experimental methodologies to reconstruct the molecular changes leading to exon selection. Our analyses revealed an intricate network involved in Alu exonization. A typical Alu element contains multiple sites with the potential to serve as 5' splice sites (5'ss). First, we demonstrated the role of 5'ss strength in controlling exonization events. Second, we found that a cryptic 5'ss enhances the selection of a more upstream site and demonstrate that this is mediated by binding of U1 snRNA to the cryptic splice site, challenging the traditional role attributed to U1 snRNA of binding the 5'ss only. Third, we used a simple algorithm to identify specific sequences that determine splice site selection within specific Alu exons. Finally, by inserting identical exons within different sequences, we demonstrated the importance of flanking genomic sequences in determining whether an Alu exon will undergo exonization. Overall, our results demonstrate the complex interplay between at least four interacting layers that affect Alu exonization. These results shed light on the mechanism through which Alu elements enrich the primate transcriptome and allow a better understanding of the exonization process in general.
Collapse
|
132
|
Yomoda JI, Muraki M, Kataoka N, Hosoya T, Suzuki M, Hagiwara M, Kimura H. Combination of Clk family kinase and SRp75 modulates alternative splicing of Adenovirus E1A. Genes Cells 2008; 13:233-44. [DOI: 10.1111/j.1365-2443.2008.01163.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
133
|
Lai MC, Peng TY, Tarn WY. Functional interplay between viral and cellular SR proteins in control of post-transcriptional gene regulation. FEBS J 2008; 276:1517-26. [PMID: 19220464 PMCID: PMC7164074 DOI: 10.1111/j.1742-4658.2009.06894.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Viruses take advantage of cellular machineries to facilitate their gene expression in the host. SR proteins, a superfamily of cellular precursor mRNA splicing factors, contain a domain consisting of repetitive arginine/serine dipeptides, termed the RS domain. The authentic RS domain or variants can also be found in some virus‐encoded proteins. Viral proteins may act through their own RS domain or through interaction with cellular SR proteins to facilitate viral gene expression. Numerous lines of evidence indicate that cellular SR proteins are important for regulation of viral RNA splicing and participate in other steps of post‐transcriptional viral gene expression control. Moreover, viral infection may alter the expression levels or modify the phosphorylation status of cellular SR proteins and thus perturb cellular precursor mRNA splicing. We review our current understanding of the interplay between virus and host in post‐transcriptional regulation of gene expression via RS domain‐containing proteins.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
134
|
Haj Khelil A, Deguillien M, Morinière M, Ben Chibani J, Baklouti F. Cryptic splicing sites are differentially utilized in vivo. FEBS J 2008; 275:1150-62. [PMID: 18266765 DOI: 10.1111/j.1742-4658.2008.06276.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It has long been considered that cryptic splice sites are ignored by the splicing machinery in the context of intact genuine splice sites. In the present study, it is shown that cryptic splice sites are utilized in all circumstances, when the authentic site is intact, partially functional or completely abolished. Their use would therefore contribute to a background lack of fidelity in the context of the wild-type sequence. We also found that a mutation at the 5' splice site of beta-globin intron 1 accommodates multiple cryptic splicing pathways, including three previously reported pathways. Focusing on the two major cryptic 5' splice sites within beta-globin exon 1, we show that cryptic splice site selection ex vivo varies depending upon: (a) the cell stage of development during terminal erythroid differentiation; (b) the nature of the mutation at the authentic 5' splice site; and (c) the nature of the promoter. Finally, we found that the two major cryptic 5' splice sites are utilized with differential efficiencies in two siblings sharing the same beta-globin chromosome haplotype in the homozygous state. Collectively, these data suggest that intrinsic, sequence specific factors and cell genetic background factors both contribute to promote a subtle differential use of cryptic splice sites in vivo.
Collapse
Affiliation(s)
- Amel Haj Khelil
- CNRS UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Université Lyon 1, 16 rue Raphael Dubois, Villeurbanne Cedex, France
| | | | | | | | | |
Collapse
|
135
|
Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S, Belfiore A, Vigneri R. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem 2008; 114:23-37. [PMID: 18465356 DOI: 10.1080/13813450801969715] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is evidence, both in vitro and in vivo, that receptor tyrosine kinases play a key role in the formation and progression of human cancer. In particular, the insulin-like growth factor receptor (IGF-IR), a tyrosine kinase receptor for IGF-I and IGF-II, has been well documented in cell culture, animal studies, and humans to play a role in malignant transformation, progression, protection from apoptosis, and metastasis. In addition, the hormone insulin (which is very closely related to the IGFs) and its tyrosine kinase receptor (the IR, which is very closely related to the IGR-IR) have been documented both in vitro and in vivo to play a key role in cancer biology. Indeed, several epidemiological studies have shown that insulin resistance status, characterized by hyperinsulinaemia, is associated with an increased risk for a number of malignancies, including carcinomas of the breast, prostate, colon and kidney. Recent data have elucidated some molecular mechanisms by which IR is involved in cancer. IR is over-expressed in several human malignancies. Interestingly, one of the two IR isoform (IR-A) is especially over-expressed in cancer. IR-A is the IR foetal isoform and has the peculiar characteristic to bind not only insulin but also IGF-II. In addition, the IR contributes to formation of hybrid receptors with the IGF-IR (HR). By binding to hybrid receptors, insulin may stimulate specific IGF-IR signalling pathways. Over-expression of IR-A is, therefore, a major mechanism of IGF system over-activation in cancer. In this respect, IR-A isoform and hybrid receptors should be regarded as potential molecular targets, in addition to IGF-IR, for novel anti-cancer therapy. These findings may have important implications for both the prevention and treatment of common human malignancies. They underline the concept that hyperinsulinaemia, associated with insulin resistance and obesity, should be treated by changes in life style and/or pharmacological approaches to avoid an increased risk for cancer. Moreover, native insulin and insulin analogue administration should be carefully evaluated in terms of the possible increase in cancer risk.
Collapse
Affiliation(s)
- Francesco Frasca
- Department of Internal Medicine, Endocrinology Unit, University of Catania, Via Palermo 636, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
136
|
Identification of cis-acting elements involved in acetylcholinesterase RNA alternative splicing. Mol Cell Neurosci 2008; 38:1-14. [PMID: 18313329 DOI: 10.1016/j.mcn.2008.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/21/2007] [Accepted: 01/07/2008] [Indexed: 01/10/2023] Open
Abstract
The 3' end of Acetylcholinesterase (AChE) pre-mRNA is processed by a complex mechanism of alternative splicing. Three different transcripts are generated and called R, H and T according respectively to the intron (intron 4') or exons (5 or 6) retained in the mature RNA. The relative expression of the specific transcripts depends on cell type, developmental stage or pathophysiological conditions. The aim of our study was to identify sequences involved in AChE pre-mRNA splicing choices. For this purpose, we constructed a minigene in which the constitutive exons were fused and followed by the entire alternative domain without 3' UTR. We transfected the wild-type or minigene mutated in the alternative domain in muscle or COS-7 cells and identified the splicing products by RPA, RT-PCR and sedimentation coefficients of the enzymatic molecular forms. We find that the alternative splicing domain contains most of the necessary signals to control splicing choices in skeletal muscle cells with the coding sequences of the domain having little effect on the splicing outcome. A branch point at an unusual location 278 nt from the 3' acceptor site of exon 6 is characterized. We further identify several regulatory sequences in the non-coding sequence of exon 5 that regulate the splicing pattern. Sequences that control the splice to exon 5 and those which influence intron 4' retention or splicing to exon 6 appear to be distinct.
Collapse
|
137
|
Bakkour N, Lin YL, Maire S, Ayadi L, Mahuteau-Betzer F, Nguyen CH, Mettling C, Portales P, Grierson D, Chabot B, Jeanteur P, Branlant C, Corbeau P, Tazi J. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance. PLoS Pathog 2008; 3:1530-9. [PMID: 17967062 PMCID: PMC2042022 DOI: 10.1371/journal.ppat.0030159] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 09/14/2007] [Indexed: 01/01/2023] Open
Abstract
The development of multidrug-resistant viruses compromises antiretroviral therapy efficacy and limits therapeutic options. Therefore, it is an ongoing task to identify new targets for antiretroviral therapy and to develop new drugs. Here, we show that an indole derivative (IDC16) that interferes with exonic splicing enhancer activity of the SR protein splicing factor SF2/ASF suppresses the production of key viral proteins, thereby compromising subsequent synthesis of full-length HIV-1 pre-mRNA and assembly of infectious particles. IDC16 inhibits replication of macrophage- and T cell-tropic laboratory strains, clinical isolates, and strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Importantly, drug treatment of primary blood cells did not alter splicing profiles of endogenous genes involved in cell cycle transition and apoptosis. Thus, human splicing factors represent novel and promising drug targets for the development of antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.
Collapse
Affiliation(s)
- Nadia Bakkour
- Université de Montpellier II, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- CNRS, UMR 5535, Montpellier, France
| | - Yea-Lih Lin
- Laboratoire d'Immunologie CHU de Montpellier, Montpellier, France
- Institut de Genetique Humaine, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - Sophie Maire
- Université de Montpellier II, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- CNRS, UMR 5535, Montpellier, France
| | - Lilia Ayadi
- Université Henri Poincare-Nancy I, Vandoeuvre-les-Nancy, France
- CNRS, UMR 7567, Vandoeuvre-les-Nancy, France
| | | | - Chi Hung Nguyen
- Laboratoire de Pharmaco-chimie, Institut Curie, Orsay, France
- CNRS-UMR 176, Orsay, France
| | - Clément Mettling
- Laboratoire d'Immunologie CHU de Montpellier, Montpellier, France
- Institut de Genetique Humaine, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - Pierre Portales
- Laboratoire d'Immunologie CHU de Montpellier, Montpellier, France
- Institut de Genetique Humaine, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - David Grierson
- Laboratoire de Pharmaco-chimie, Institut Curie, Orsay, France
- CNRS-UMR 176, Orsay, France
| | - Benoit Chabot
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Philippe Jeanteur
- Université de Montpellier II, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- CNRS, UMR 5535, Montpellier, France
| | - Christiane Branlant
- Université Henri Poincare-Nancy I, Vandoeuvre-les-Nancy, France
- CNRS, UMR 7567, Vandoeuvre-les-Nancy, France
| | - Pierre Corbeau
- Laboratoire d'Immunologie CHU de Montpellier, Montpellier, France
- Institut de Genetique Humaine, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - Jamal Tazi
- Université de Montpellier II, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- CNRS, UMR 5535, Montpellier, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
138
|
Platani M, Lamond AI. Nuclear organisation and subnuclear bodies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2008; 35:1-22. [PMID: 15113077 DOI: 10.1007/978-3-540-74266-1_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Melpomeni Platani
- Wellcome Trust Biocentre, MSI/WTB Complex, DD1 5EH, Dundee, Scotland, United Kingdom
| | | |
Collapse
|
139
|
Roca X, Olson AJ, Rao AR, Enerly E, Kristensen VN, Børresen-Dale AL, Andresen BS, Krainer AR, Sachidanandam R. Features of 5'-splice-site efficiency derived from disease-causing mutations and comparative genomics. Genome Res 2007; 18:77-87. [PMID: 18032726 DOI: 10.1101/gr.6859308] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many human diseases, including Fanconi anemia, hemophilia B, neurofibromatosis, and phenylketonuria, can be caused by 5'-splice-site (5'ss) mutations that are not predicted to disrupt splicing, according to position weight matrices. By using comparative genomics, we identify pairwise dependencies between 5'ss nucleotides as a conserved feature of the entire set of 5'ss. These dependencies are also conserved in human-mouse pairs of orthologous 5'ss. Many disease-associated 5'ss mutations disrupt these dependencies, as can some human SNPs that appear to alter splicing. The consistency of the evidence signifies the relevance of this approach and suggests that 5'ss SNPs play a role in complex diseases.
Collapse
Affiliation(s)
- Xavier Roca
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Lahmann I, Fabienke M, Henneberg B, Pabst O, Vauti F, Minge D, Illenberger S, Jockusch BM, Korte M, Arnold HH. The hnRNP and cytoskeletal protein raver1 contributes to synaptic plasticity. Exp Cell Res 2007; 314:1048-60. [PMID: 18061163 DOI: 10.1016/j.yexcr.2007.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/26/2007] [Accepted: 10/31/2007] [Indexed: 12/18/2022]
Abstract
Raver1 is an hnRNP protein that interacts with the ubiquitous splicing regulator PTB and binds to cytoskeletal components like alpha-actinin and vinculin/metavinculin. Cell culture experiments suggested that raver1 functions as corepressor in PTB-regulated splicing reactions and may thereby increase proteome complexity. To determine the role of raver1 in vivo, we inactivated the gene by targeted disruption in the mouse. Here we report that raver1-deficient mice develop regularly to adulthood and show no obvious anatomical or behavioral defects. In keeping with this notion, cells from raver1-null mice were indistinguishable from wild type cells and displayed normal growth, motility, and cytoskeletal architecture in culture. Moreover, alternative splicing of exons, including the model exon 3 of alpha-tropomyosin, was not markedly changed in mutant mice, suggesting that the role of raver1 for PTB-mediated exon repression is not absolutely required to generate splice variants during mouse development. Interestingly however, loss of raver1 caused significantly reduced plasticity of synapses on acute hippocampal slices, as elicited by electrophysiological measurements of markedly lower LTP and LTD in mutant neurons. Our results provide evidence that raver1 may play an important role for the regulation of neuronal synaptic plasticity, possibly by controlling especially the late LTP via posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Ines Lahmann
- Cell and Molecular Biology, Institute for Biochemistry and Biotechnology, Technical University of Braunschweig, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
The alternative splicing factor hnRNP A1 is up-regulated during virus-infected epithelial cell differentiation and binds the human papillomavirus type 16 late regulatory element. Virus Res 2007; 131:189-98. [PMID: 17950949 PMCID: PMC2635527 DOI: 10.1016/j.virusres.2007.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 01/06/2023]
Abstract
Human papillomavirus type 16 (HPV16) infects anogenital epithelia and is the etiological agent of cervical cancer. We showed previously that HPV16 infection regulates the key splicing/alternative splicing factor SF2/ASF and that virus late transcripts are extensively alternatively spliced. hnRNP A1 is the antagonistic counterpart of SF2/ASF in alternative splicing. We show here that hnRNP A1 is also up-regulated during differentiation of virus-infected epithelial cells in monolayer and organotypic raft culture. Taken together with our previous data on SF2/ASF, this comprises the first report of HPV-mediated regulation of expression of two functionally related cellular proteins during epithelial differentiation. Further, using electrophoretic mobility shift assays and UV crosslinking we demonstrate that hnRNP A1 binds the HPV16 late regulatory element (LRE) in differentiated HPV16 infected cells. The LRE has been shown to be important in temporally controlling virus late gene expression during epithelial differentiation. We suggest that increased levels of these cellular RNA processing factors facilitate appropriate alternative splicing necessary for production of virus late transcripts in differentiated epithelial cells.
Collapse
|
142
|
Manabe T, Ohe K, Katayama T, Matsuzaki S, Yanagita T, Okuda H, Bando Y, Imaizumi K, Reeves R, Tohyama M, Mayeda A. HMGA1a: sequence-specific RNA-binding factor causing sporadic Alzheimer's disease-linked exon skipping of presenilin-2 pre-mRNA. Genes Cells 2007; 12:1179-91. [PMID: 17903177 DOI: 10.1111/j.1365-2443.2007.01123.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aberrant exon 5 skipping of presenilin-2 (PS2) pre-mRNA produces a deleterious protein isoform PS2V, which is almost exclusively observed in the brains of sporadic Alzheimer's disease patients. PS2V over-expression in vivo enhances susceptibility to various endoplasmic reticulum (ER) stresses and increases production of amyloid-beta peptides. We previously purified and identified high mobility group A protein 1a (HMGA1a) as a trans-acting factor responsible for aberrant exon 5 skipping. Using heterologous pre-mRNAs, here we demonstrate that a specific HMGA1a-binding sequence in exon 5 adjacent to the 5' splice site is necessary for HMGA1a to inactivate the 5' splice site. An aberrant HMGA1a-U1 snRNP complex was detected on the HMGA1a-binding site adjacent to the 5' splice site during the early splicing reaction. A competitor 2'-O-methyl RNA (2'-O-Me RNA) consisting of the HMGA1a-binding sequence markedly repressed exon 5 skipping of PS2 pre-mRNA in vitro and in vivo. Finally, HMGA1a-induced cell death under ER stress was prevented by transfection of the competitor 2'-O-Me RNA. These results provide insights into the molecular basis for PS2V-associated neurodegenerative diseases that are initiated by specific RNA binding of HMGA1a.
Collapse
Affiliation(s)
- Takayuki Manabe
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Puig O, Bragado-Nilsson E, Koski T, Séraphin B. The U1 snRNP-associated factor Luc7p affects 5' splice site selection in yeast and human. Nucleic Acids Res 2007; 35:5874-85. [PMID: 17726058 PMCID: PMC2034479 DOI: 10.1093/nar/gkm505] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
yLuc7p is an essential subunit of the yeast U1 snRNP and contains two putative zinc fingers. Using RNA-protein cross-linking and directed site-specific proteolysis (DSSP), we have established that the N-terminal zinc finger of yLuc7p contacts the pre-mRNA in the 5' exon in a region close to the cap. Modifying the pre-mRNA sequence in the region contacted by yLuc7p affects splicing in a yLuc7p-dependent manner indicating that yLuc7p stabilizes U1 snRNP-pre-mRNA interaction, thus reminding of the mode of action of another U1 snRNP component, Nam8p. Database searches identified three putative human yLuc7p homologs (hLuc7A, hLuc7B1 and hLuc7B2). These proteins have an extended C-terminal tail rich in RS and RE residues, a feature characteristic of splicing factors. Consistent with a role in pre-mRNA splicing, hLuc7A localizes in the nucleus and antibodies raised against hLuc7A specifically co-precipitate U1 snRNA from human cell extracts. Interestingly, hLuc7A overexpression affects splicing of a reporter in vivo. Taken together, our data suggest that the formation of a wide network of protein-RNA interactions around the 5' splice site by U1 snRNP-associated factors contributes to alternative splicing regulation.
Collapse
Affiliation(s)
- Oscar Puig
- European Molecular Biology Laboratory, Meyerhofstrasse, 1, 69117 Heidelberg, Germany, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland and CGM, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
- *To whom correspondence should be addressed. +358 9191 59423+358 9191 59366 Correspondence may also be addressed to Bertrand Séraphin. +33 1 69 82 38 84+33 1 69 82 38 77
| | - Elisabeth Bragado-Nilsson
- European Molecular Biology Laboratory, Meyerhofstrasse, 1, 69117 Heidelberg, Germany, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland and CGM, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Terhi Koski
- European Molecular Biology Laboratory, Meyerhofstrasse, 1, 69117 Heidelberg, Germany, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland and CGM, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Bertrand Séraphin
- European Molecular Biology Laboratory, Meyerhofstrasse, 1, 69117 Heidelberg, Germany, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland and CGM, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
144
|
Barrandon C, Bonnet F, Nguyen VT, Labas V, Bensaude O. The transcription-dependent dissociation of P-TEFb-HEXIM1-7SK RNA relies upon formation of hnRNP-7SK RNA complexes. Mol Cell Biol 2007; 27:6996-7006. [PMID: 17709395 PMCID: PMC2168891 DOI: 10.1128/mcb.00975-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The positive transcription elongation factor P-TEFb controls the elongation of transcription by RNA polymerase II. P-TEFb is inactivated upon binding to HEXIM1 or HEXIM2 proteins associated with a noncoding RNA, 7SK. In response to the inhibition of transcription, 7SK RNA, as well as HEXIM proteins, is released by an unknown mechanism and P-TEFb is activated. New partners of 7SK RNA were searched for as potential players in this feedback process. A subset of heterogeneous ribonuclear proteins, hnRNPs Q and R and hnRNPs A1 and A2, were thus identified as major 7SK RNA-associated proteins. The degree of association of 7SK RNA with these hnRNPs increased when P-TEFb-HEXIM1-7SK was dissociated following the inhibition of transcription or HEXIM1 knockdown. This finding suggested that 7SK RNA shuttles from HEXIM1-P-TEFb complexes to hnRNPs. The transcription-dependent dissociation of P-TEFb-HEXIM1-7SK complexes was attenuated when both hnRNPs A1 and A2 were knocked down by small interfering RNA. As hnRNPs are known to interact transiently with RNA while it is synthesized, hnRNPs released from nascent transcripts may trap 7SK RNA and thereby contribute to the activation of P-TEFb.
Collapse
Affiliation(s)
- Charlotte Barrandon
- UMR 8541 CNRS, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
145
|
Guil S, Cáceres JF. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 2007; 14:591-6. [PMID: 17558416 DOI: 10.1038/nsmb1250] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 04/09/2007] [Indexed: 12/19/2022]
Abstract
hnRNP A1 is an RNA-binding protein involved in various aspects of RNA processing. Use of an in vivo cross-linking and immunoprecipitation protocol to find hnRNP A1 RNA targets resulted in the identification of a microRNA (miRNA) precursor, pre-miR-18a. This microRNA is expressed as part of a cluster of intronic RNAs, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92, and potentially acts as an oncogene. Here we show that hnRNP A1 binds specifically to the primary RNA sequence pri-miR-18a before Drosha processing. HeLa cells depleted of hnRNP A1 have reduced in vitro processing activity with pri-miR-18a and also show reduced abundances of endogenous pre-miR-18a. Furthermore, we show that hnRNP A1 is required for miR-18a-mediated repression of a target reporter in vivo. These results underscore a previously uncharacterized role for general RNA-binding proteins as auxiliary factors that facilitate the processing of specific miRNAs.
Collapse
Affiliation(s)
- Sonia Guil
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, UK
| | | |
Collapse
|
146
|
Kvissel AK, Ørstavik S, Eikvar S, Brede G, Jahnsen T, Collas P, Akusjärvi G, Skålhegg BS. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing. Exp Cell Res 2007; 313:2795-809. [PMID: 17594903 DOI: 10.1016/j.yexcr.2007.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 03/31/2007] [Accepted: 05/01/2007] [Indexed: 11/30/2022]
Abstract
Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both Calpha and Cbeta are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism.
Collapse
|
147
|
Liang H, Tuan RS, Norton PA. Overexpression of SR proteins and splice variants modulates chondrogenesis. Exp Cell Res 2007; 313:1509-17. [PMID: 16140295 DOI: 10.1016/j.yexcr.2005.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/26/2005] [Accepted: 07/26/2005] [Indexed: 11/19/2022]
Abstract
Fibronectin alternative exon EIIIA is largely included in undifferentiated mesenchymal cells of the developing limb bud, whereas the exon is excluded in differentiated chondrocytes. Inclusion of exon EIIIA in chondrocytic cells is increased by overexpression of SRp40, and, to a lesser extent, SRp75, but not SRp55. RT-PCR analysis using real-time PCR revealed that the levels of the mRNAs for these three proteins did not vary significantly in chick chondrocytes versus mesenchymal cells of the developing limb bud. However, a variant spliced form of SRp40, termed, SRp40LF, is detected preferentially in chondrocytes and in chondrifying mesenchymal cells. Forced overexpression of SRp40 or SRp75, but not SRp55, enhanced chondrogenic differentiation of chick limb mesenchymal cells in a high-density micromass assay. Overexpression of SRp40LF, which produces a truncated form of SRp40, also was strongly pro-chondrogenic. In a HeLa cell-based assay, SRp40LF fails to substitute for SRp40 in mediating an increase in exon EIIIA inclusion, suggesting that the latter event is not essential for the pro-chondrogenic effect. These results demonstrate the ability of these highly conserved splicing factors to modulate chondrogenesis and are consistent with earlier results that implicated exon EIIIA-containing isoforms of fibronectin in formation of chondrogenic condensations.
Collapse
Affiliation(s)
- Hongyan Liang
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
148
|
Gotoh I, Uekita T, Seiki M. Regulated nucleo-cytoplasmic shuttling of human aci-reductone dioxygenase (hADI1) and its potential role in mRNA processing. Genes Cells 2007; 12:105-17. [PMID: 17212658 DOI: 10.1111/j.1365-2443.2006.01035.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial aci-reductone dioxygenase (ARD), a member of the cupin superfamily, has evolutionarily primitive protein folding and functions in the methionine recycling pathway. Recently, a human ARD orthologue (human ADI1, hADI1) has been identified and exhibits functions other than ARD activity. The hADI1 localizes mainly to the cytoplasm, but a substantial fraction is nuclear, suggesting functions in both cellular compartments. In this study, we report that nucleo-cytoplasmic transport of hADI1 is regulated by a non-canonical nuclear export signal (NES) located in the N-terminal region of hADI1. The NES is composed of multiple basic amino-acid residues instead of the canonical leucine-rich sequence. Nuclear export of hADI1 was not mediated by CRM1, a major transporter that binds to leucine-rich NES. Substitution of the basic residues with alanines abolished NES activity. Mutant hADI1 accumulated in the nucleus and formed speckles frequently observed with splicing factors and some transcription factors. Indeed, hADI1 specifically co-localized with the splicing factor U1-70K to the nucleus but not with another splicing factor, SC35. U1-70K over-expression induced nuclear accumulation of hADI1. Nuclear hADI1 expression significantly altered the splicing pattern of the adenovirus E1A mini-gene, which generates multiple alternatively spliced transcripts. Thus, hADI1 may have acquired a novel role in nuclear mRNA processing possibly by modulating U1-70K-related functions, an activity negatively regulated by a non-classical NES sequence.
Collapse
Affiliation(s)
- Isamu Gotoh
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
149
|
Abstract
Neuronal depolarization regulates the alternative splicing of NMDA receptor subunits, providing molecular insight into how experience alters gene expression.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America. E-mail:
| |
Collapse
|
150
|
Schaub MC, Lopez SR, Caputi M. Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. J Biol Chem 2007; 282:13617-26. [PMID: 17337441 DOI: 10.1074/jbc.m700774200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we analyzed members of the heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family to determine their RNA binding specificities and roles in splicing regulation. Our data indicate that hnRNPs H, H', F, 2H9, and GRSF-1 bind the consensus motif DGGGD (where D is U, G, or A) and aggregate in a multimeric complex. We analyzed the role of these proteins in the splicing of a substrate derived from the HIV-1 tat gene and have shown that hnRNP H family members are required for efficient splicing of this substrate. The hnRNP H protein family members activated splicing of the viral substrate by promoting the formation of ATP-dependent spliceosomal complexes. Mutational analysis of six consensus motifs present within the intron of the substrate indicated that only one of these motifs acts as an intronic splicing enhancer.
Collapse
Affiliation(s)
- Michael C Schaub
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | | | |
Collapse
|