101
|
|
102
|
Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J. A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:3028-39. [PMID: 18434596 DOI: 10.1091/mbc.e08-01-0033] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ammonium permease Mep2 is required for the induction of pseudohyphal growth, a process in Saccharomyces cerevisiae that occurs in response to nutrient limitation. Mep2 has both a transport and a regulatory function, supporting models in which Mep2 acts as a sensor of ammonium availability. Potentially similar ammonium permease-dependent regulatory cascades operate in other fungi, and they may also function in animals via the homologous Rh proteins; however, little is known about the molecular mechanisms that mediate ammonium sensing. We show that Mep2 is localized to the cell surface during pseudohyphal growth, and it is required for both filamentous and invasive growth. Analysis of site-directed Mep2 mutants in residues lining the ammonia-conducting channel reveal separation of function alleles (transport and signaling defective; transport-proficient/signaling defective), indicating transport is necessary but not sufficient to sense ammonia. Furthermore, Mep2 overexpression enhances differentiation under normally repressive conditions and induces a transcriptional profile that is consistent with activation of the mitogen-activated protein (MAP) kinase pathway. This finding is supported by epistasis analysis establishing that the known role of the MAP kinase pathway in pseudohyphal growth is linked to Mep2 function. Together, these data strengthen the model that Mep2-like proteins are nutrient sensing transceptors that govern cellular differentiation.
Collapse
Affiliation(s)
- Julian C Rutherford
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
103
|
Vinod PK, Sengupta N, Bhat PJ, Venkatesh KV. Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11. PLoS One 2008; 3:e1663. [PMID: 18301741 PMCID: PMC2246015 DOI: 10.1371/journal.pone.0001663] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 01/22/2008] [Indexed: 11/19/2022] Open
Abstract
The budding yeast, Saccharomyces cerevisiae, responds to various environmental cues by invoking specific adaptive mechanisms for their survival. Under nitrogen limitation, S. cerevisiae undergoes a dimorphic filamentous transition called pseudohyphae, which helps the cell to forage for nutrients and reach an environment conducive for growth. This transition is governed by a complex network of signaling pathways, namely cAMP-PKA, MAPK and TOR, which controls the transcriptional activation of FLO11, a flocculin gene that encodes a cell wall protein. However, little is known about how these pathways co-ordinate to govern the conversion of nutritional availability into gene expression. Here, we have analyzed an integrative network comprised of cAMP-PKA, MAPK and TOR pathways with respect to the availability of nitrogen source using experimental and steady state modeling approach. Our experiments demonstrate that the steady state expression of FLO11 was bistable over a range of inducing ammonium sulphate concentration based on the preculturing condition. We also show that yeast switched from FLO11 expression to accumulation of trehalose, a STRE response controlled by a transcriptional activator Msn2/4, with decrease in the inducing concentration to complete starvation. Steady state analysis of the integrative network revealed the relationship between the environment, signaling cascades and the expression of FLO11. We demonstrate that the double negative feedback loop in TOR pathway can elicit a bistable response, to differentiate between vegetative growth, filamentous growth and STRE response. Negative feedback on TOR pathway function to restrict the expression of FLO11 under nitrogen starved condition and also with re-addition of nitrogen to starved cells. In general, we show that these global signaling pathways respond with specific sensitivity to regulate the expression of FLO11 under nitrogen limitation. The holistic steady state modeling approach of the integrative network revealed how the global signaling pathways could differentiate between multiple phenotypes.
Collapse
Affiliation(s)
- P. K. Vinod
- School of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - Neelanjan Sengupta
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - P. J. Bhat
- School of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - K. V. Venkatesh
- School of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| |
Collapse
|
104
|
Ka M, Park YU, Kim J. The DEAD-box RNA helicase, Dhh1, functions in mating by regulating Ste12 translation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2008; 367:680-6. [PMID: 18182159 DOI: 10.1016/j.bbrc.2007.12.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 12/26/2007] [Indexed: 01/11/2023]
Abstract
The DEAD-box RNA helicase, Dhh1, is a member of a highly conserved subfamily designated RCK/p54 helicases. Dhh1 functions as mRNA decapping activator, and is localized to discrete cytoplasmic foci known as processing bodies (P-bodies). Here, we describe the essential roles of Dhh1 in the yeast mating pathway. A dhh1 deletion mutation caused a significant decrease in the protein level of Ste12, a mating-specific transcription factor, resulting in severe mating defects. We examined the accumulation of Dhh1-GFP in P-bodies during mating. Following pheromone treatment, the P-body intensity and number increased in wild-type cells, while dhh1 mutant cells failed to show P-body formation. Both the mating and P-body phenotypes of dhh1 were suppressed by overexpression of STE12 or CAF20 encoding an eIF4E inhibitor. In wild-type cells, CAF20 overexpression led to an increased level of Ste12 protein as well as highly developed P-bodies. We propose that Dhh1 and Caf20 regulate the Ste12 protein expression and the Ste12 protein level is associated with P-body formation during mating.
Collapse
Affiliation(s)
- Minhan Ka
- Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University, Yuseong-Gu, Gung-Dong 220, Daejeon 305-764, Republic of Korea
| | | | | |
Collapse
|
105
|
Froquet R, Cherix N, Birke R, Benghezal M, Cameroni E, Letourneur F, Mösch HU, De Virgilio C, Cosson P. Control of cellular physiology by TM9 proteins in yeast and Dictyostelium. J Biol Chem 2008; 283:6764-72. [PMID: 18178563 DOI: 10.1074/jbc.m704484200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TM9 proteins constitute a well defined family, characterized by the presence of a large variable extracellular domain and nine putative transmembrane domains. This family is highly conserved throughout evolution and comprises three members in Dictyostelium discoideum and Saccharomyces cerevisiae and four in humans and mice. In Dictyostelium, previous analysis demonstrated that TM9 proteins are implicated in cellular adhesion. In this study, we generated TM9 mutants in S. cerevisiae and analyzed their phenotype with particular attention to cellular adhesion. S. cerevisiae strains lacking any one of the three TM9 proteins were severely suppressed for adhesive growth and filamentous growth under conditions of nitrogen starvation. In these mutants, expression of the FLO11-lacZ reporter gene was strongly reduced, whereas expression of FRE(Ty1)-lacZ was not, suggesting that TM9 proteins are implicated at a late stage of nutrient-controlled signaling pathways. We also reexamined the phenotype of Dictyostelium TM9 mutant cells, focusing on nutrient-controlled cellular functions. Although the initiation of multicellular development and autophagy was unaltered in Dictyostelium TM9 mutants, nutrient-controlled secretion of lysosomal enzymes was dysregulated in these cells. These results suggest that in both yeast and amoebae, TM9 proteins participate in the control of specific cellular functions in response to changing nutrient conditions.
Collapse
Affiliation(s)
- Romain Froquet
- Département de Physiologie et Métabolisme Cellulaire, Centre Médical Universitaire, Université de Genève, rue Michel Servet 1, CH-1211 Genève 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Ma J, Jin R, Jia X, Dobry CJ, Wang L, Reggiori F, Zhu J, Kumar A. An interrelationship between autophagy and filamentous growth in budding yeast. Genetics 2007; 177:205-14. [PMID: 17890363 PMCID: PMC2013727 DOI: 10.1534/genetics.107.076596] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the last 15 years, yeast pseudohyphal growth (PHG) has been the focus of intense research interest as a model of fungal pathogenicity. Specifically, PHG is a stress response wherein yeast cells deprived of nitrogen form filaments of elongated cells. Nitrogen limitation also induces autophagy, a ubiquitous eukaryotic stress response in which proteins are trafficked to the vacuole/lysosome for degradation and recycling. Although autophagy and filamentous growth are both responsive to nitrogen stress, a link between these processes has not been investigated to date. Here, we present several studies describing an interrelationship between autophagy and filamentous growth. By microarray-based expression profiling, we detect extensive upregulation of the pathway governing autophagy during early PHG and find both processes active under conditions of nitrogen stress in a filamentous strain of budding yeast. Inhibition of autophagy results in increased PHG, and autophagy-deficient yeast induce PHG at higher concentrations of available nitrogen. Our results suggest a model in which autophagy mitigates nutrient stress, delaying the onset of PHG; conversely, inhibition of autophagy exacerbates nitrogen stress, resulting in precocious and overactive PHG. This physiological connection highlights the central role of autophagy in regulating the cell's nutritional state and the responsiveness of PHG to that state.
Collapse
Affiliation(s)
- Jun Ma
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Tamaki H. Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae. J Biosci Bioeng 2007; 104:245-50. [PMID: 18023794 DOI: 10.1263/jbb.104.245] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/09/2007] [Indexed: 11/17/2022]
Abstract
In the yeast Saccharomyces cerevisiae, glucose signals activate the production of cellular cAMP. This signaling pathway is called the cAMP-protein kinase A (PKA) pathway, which plays a major role in the regulation of cell growth, metabolism, and stress resistance. Extensive studies have been carried out to clarify the mechanism of this pathway, and many factors involved in the pathway have been identified such as small G proteins, the GDP-GTP exchange factor, adenylate cyclase, and PKA. Also, additional elements involved in this pathway have been evaluated in the last decade. A heterotrimeric G protein alpha subunit was identified as a mammalian Galpha homologue, and a G-protein-coupled receptor (GPCR), which initiates the signaling pathway in response to glucose addition, was identified. GPCR-Galpha was shown to function in a signaling pathway that acts parallel to small G proteins. These signaling pathways regulate cell growth and differentiation in response to nutrients.
Collapse
Affiliation(s)
- Hisanori Tamaki
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
108
|
Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. EUKARYOTIC CELL 2007; 7:162-71. [PMID: 18039941 DOI: 10.1128/ec.00258-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vegetative hyphal fusion (VHF) is a ubiquitous phenomenon in filamentous fungi whose biological role is poorly understood. In Neurospora crassa, the mitogen-activated protein kinase (MAPK) Mak-2 and the WW domain protein So are required for efficient VHF. A MAPK orthologous to Mak-2, Fmk1, was previously shown to be essential for root penetration and pathogenicity of the vascular wilt fungus Fusarium oxysporum. Here we took a genetic approach to test two hypotheses, that (i) VHF and plant infection have signaling mechanisms in common and (ii) VHF is required for efficient plant infection. F. oxysporum mutants lacking either Fmk1 or Fso1, an orthologue of N. crassa So, were impaired in the fusion of vegetative hyphae and microconidial germ tubes. Deltafmk1 Deltafso1 double mutants exhibited a more severe fusion phenotype than either single mutant, indicating that the two components function in distinct pathways. Both Deltafso1 and Deltafmk1 strains were impaired in the formation of hyphal networks on the root surface, a process associated with extensive VHF. The Deltafso1 mutants exhibited slightly reduced virulence in tomato fruit infection assays but, in contrast to Deltafmk1 strains, were still able to perform functions associated with invasive growth, such as secretion of pectinolytic enzymes or penetration of cellophane sheets, and to infect tomato plants. Thus, although VHF per se is not essential for plant infection, both processes have some signaling components in common, suggesting an evolutionary relationship between the underlying cellular mechanisms.
Collapse
|
109
|
Jin R, Dobry CJ, McCown PJ, Kumar A. Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 2007; 19:284-96. [PMID: 17989363 DOI: 10.1091/mbc.e07-05-0519] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous Sigma1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.
Collapse
Affiliation(s)
- Rui Jin
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | |
Collapse
|
110
|
Takahashi S, Pryciak PM. Identification of novel membrane-binding domains in multiple yeast Cdc42 effectors. Mol Biol Cell 2007; 18:4945-56. [PMID: 17914055 PMCID: PMC2096579 DOI: 10.1091/mbc.e07-07-0676] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Rho-type GTPase Cdc42 is a central regulator of eukaryotic cell polarity and signal transduction. In budding yeast, Cdc42 regulates polarity and mitogen-activated protein (MAP) kinase signaling in part through the PAK-family kinase Ste20. Activation of Ste20 requires a Cdc42/Rac interactive binding (CRIB) domain, which mediates its recruitment to membrane-associated Cdc42. Here, we identify a separate domain in Ste20 that interacts directly with membrane phospholipids and is critical for its function. This short region, termed the basic-rich (BR) domain, can target green fluorescent protein to the plasma membrane in vivo and binds PIP(2)-containing liposomes in vitro. Mutation of basic or hydrophobic residues in the BR domain abolishes polarized localization of Ste20 and its function in both MAP kinase-dependent and independent pathways. Thus, Cdc42 binding is required but is insufficient; instead, direct membrane binding by Ste20 is also required. Nevertheless, phospholipid specificity is not essential in vivo, because the BR domain can be replaced with several heterologous lipid-binding domains of varying lipid preferences. We also identify functionally important BR domains in two other yeast Cdc42 effectors, Gic1 and Gic2, suggesting that cooperation between protein-protein and protein-membrane interactions is a prevalent mechanism during Cdc42-regulated signaling and perhaps for other dynamic localization events at the cell cortex.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Peter M. Pryciak
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
111
|
Borneman AR, Gianoulis TA, Zhang ZD, Yu H, Rozowsky J, Seringhaus MR, Wang LY, Gerstein M, Snyder M. Divergence of transcription factor binding sites across related yeast species. Science 2007; 317:815-9. [PMID: 17690298 DOI: 10.1126/science.1140748] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Characterization of interspecies differences in gene regulation is crucial for understanding the molecular basis of both phenotypic diversity and evolution. By means of chromatin immunoprecipitation and DNA microarray analysis, the divergence in the binding sites of the pseudohyphal regulators Ste12 and Tec1 was determined in the yeasts Saccharomyces cerevisiae, S. mikatae, and S. bayanus under pseudohyphal conditions. We have shown that most of these sites have diverged across these species, far exceeding the interspecies variation in orthologous genes. A group of Ste12 targets was shown to be bound only in S. mikatae and S. bayanus under pseudohyphal conditions. Many of these genes are targets of Ste12 during mating in S. cerevisiae, indicating that specialization between the two pathways has occurred in this species. Transcription factor binding sites have therefore diverged substantially faster than ortholog content. Thus, gene regulation resulting from transcription factor binding is likely to be a major cause of divergence between related species.
Collapse
Affiliation(s)
- Anthony R Borneman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Specificity of MAPK signaling towards FLO11 expression is established by crosstalk from cAMP pathway. SYSTEMS AND SYNTHETIC BIOLOGY 2007; 1:99-108. [PMID: 19003439 DOI: 10.1007/s11693-007-9007-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 02/12/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
In budding yeast, elements of a single MAP Kinase cascade are shared to regulate a wide range of functions such as mating, differentiation and osmotic stress. However, cells have programmed to execute correct event in response to a given input signal without cross activating other responses. Studies have observed that magnitude and duration of MAPK activation encodes specificity. Similarly, the differential regulation of Tec1p, a transcriptional activator of invasive growth gene, FLO11 by MAP kinases has been observed to bring specificity in mating and invasive growth signaling. However, the understanding of interactions between the shared components and other signaling pathways related to the phenotypic response in contributing towards specificity remains unclear. We specifically address the crosstalk of cAMP pathway with MAPK pathway in haploid invasive growth and show the contribution and importance of cAMP pathway towards invasive growth irrespective of the activation status of MAPK pathway. Our analysis shows that crosstalk from cAMP pathway in haploids might offer an advantage in terms of amplifying the observed weak signaling through MAPK pathway. Further, we show that such a crosstalk in haploids leads to higher FLO11 expression than diploids. We also demonstrate the positive and negative role of Tpk1 and Tpk3 in haploid invasive growth. Finally, we observe that a cross-inhibition at gene level brought about by cAMP pathway controlled inhibitor, Sfl1, perhaps help in deamplifying the MAPK signal and also in preventing FLO11 expression in the absence of cAMP pathway activation.
Collapse
|
113
|
Borneman AR, Zhang ZD, Rozowsky J, Seringhaus MR, Gerstein M, Snyder M. Transcription factor binding site identification in yeast: a comparison of high-density oligonucleotide and PCR-based microarray platforms. Funct Integr Genomics 2007; 7:335-45. [PMID: 17638031 DOI: 10.1007/s10142-007-0054-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/18/2007] [Accepted: 05/20/2007] [Indexed: 12/21/2022]
Abstract
In recent years, techniques have been developed to map transcription factor binding sites using chromatin immunoprecipitation combined with DNA microarrays (chIP chip). Initially, polymerase chain reaction (PCR)-based DNA arrays were used for the chIP chip procedure, however, high-density oligonucleotide (HDO) arrays, which allow for the production of thousands more features per array, have emerged as a competing array platform. To compare the two platforms, data from chIP chip analysis performed for three factors (Tec1, Ste12, and Sok2) using both HDO and PCR arrays under identical experimental conditions were compared. HDO arrays provided increased reproducibility and sensitivity, detecting approximately three times more binding events than the PCR arrays while also showing increased accuracy. The increased resolution provided by the HDO arrays also allowed for the identification of multiple binding peaks in close proximity and of novel binding events such as binding within ORFs. The HDO array platform provides a far more robust array system by all measures than PCR-based arrays, all of which is directly attributable to the large number of probes available.
Collapse
Affiliation(s)
- Anthony R Borneman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | |
Collapse
|
114
|
Frýdlová I, Basler M, Vasicová P, Malcová I, Hasek J. Special type of pheromone-induced invasive growth in Saccharomyces cerevisiae. Curr Genet 2007; 52:87-95. [PMID: 17639399 DOI: 10.1007/s00294-007-0141-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/22/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
The ability to invade a solid substrate is an important phenomenon due to its connection with pathogenic activity of fungi. We report here on invasion displayed by MATalpha cells of Saccharomyces cerevisiae lacking Isw2p, a subunit of the ISW2 chromatin remodelling complex. We found that on minimal medium, where the isw2Delta MATalpha mutant is not invasive, additional absence of another ISW2 complex subunit, Dls1p or Dpb4p, promoted invasion. Our microarray data showed that derepression of MAT a-specific genes caused by absence of Isw2p is very low. Their expression is increased only by the autocrine activation of the mating pathway. Invasion of isw2Delta MATalpha cells thus resembles the pheromone-induced invasion, including dependence on Fig2p. We show here that another pheromone-induced protein, mating agglutinin Aga1p, can play a role in the agar adhesion necessary for invasion. In contrast with MAT a-cells invading agar under low alpha-pheromone concentration, the invasive growth of isw2Delta cells specifically requires Fus3 kinase. Its function in the invasion of isw2Delta MATalpha cells cannot be completely substituted by Kss1 kinase, which plays a basic role in invasive growth signalling. We suggest that partial dependence of the isw2Delta MATalpha invasion on Fus3p and Aga1p corresponds to a weaker pheromone response of this mutant.
Collapse
Affiliation(s)
- Ivana Frýdlová
- Institute of Microbiology of AS CR, v.v.i, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
115
|
Zeller CE, Parnell SC, Dohlman HG. The RACK1 ortholog Asc1 functions as a G-protein beta subunit coupled to glucose responsiveness in yeast. J Biol Chem 2007; 282:25168-76. [PMID: 17591772 DOI: 10.1074/jbc.m702569200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to the prevailing paradigm, G-proteins are composed of three subunits, an alpha subunit with GTPase activity and a tightly associated betagamma subunit complex. In the yeast Saccharomyces cerevisiae there are two known Galpha proteins (Gpa1 and Gpa2) but only one Gbetagamma, which binds only to Gpa1. Here we show that the yeast ortholog of RACK1 (receptor for activated protein kinase C1) Asc1 functions as the Gbeta for Gpa2. As with other known Gbeta proteins, Asc1 has a 7-WD domain structure, interacts directly with the Galpha in a guanine nucleotide-dependent manner, and inhibits Galpha guanine nucleotide exchange activity. In addition, Asc1 binds to the effector enzyme adenylyl cyclase (Cyr1), and diminishes the production of cAMP in response to glucose stimulation. Thus, whereas Gpa2 promotes glucose signaling through elevated production of cAMP, Asc1 has opposing effects on these same processes. Our findings reveal the existence of an unusual Gbeta subunit, one having multiple functions within the cell in addition to serving as a signal transducer for cell surface receptors and intracellular effectors.
Collapse
Affiliation(s)
- Corinne E Zeller
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
116
|
Bardwell L, Zou X, Nie Q, Komarova NL. Mathematical models of specificity in cell signaling. Biophys J 2007; 92:3425-41. [PMID: 17325015 PMCID: PMC1853162 DOI: 10.1529/biophysj.106.090084] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 01/17/2007] [Indexed: 01/12/2023] Open
Abstract
Cellular signaling pathways transduce extracellular signals into appropriate responses. These pathways are typically interconnected to form networks, often with different pathways sharing similar or identical components. A consequence of this connectedness is the potential for cross talk, some of which may be undesirable. Indeed, experimental evidence indicates that cells have evolved insulating mechanisms to partially suppress "leaking" between pathways. Here we characterize mathematical models of simple signaling networks and obtain exact analytical expressions for two measures of cross talk called specificity and fidelity. The performance of several insulating mechanisms--combinatorial signaling, compartmentalization, the inhibition of one pathway by another, and the selective activation of scaffold proteins--is evaluated with respect to the trade-off between the specificity they provide and the constraints they place on the network. The effects of noise are also examined. The insights gained from this analysis are applied to understanding specificity in the yeast mating and invasive growth MAP kinase signaling network.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, California 92697-2300, USA.
| | | | | | | |
Collapse
|
117
|
Schacherer J, Ruderfer DM, Gresham D, Dolinski K, Botstein D, Kruglyak L. Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains. PLoS One 2007; 2:e322. [PMID: 17389913 PMCID: PMC1829191 DOI: 10.1371/journal.pone.0000322] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 02/28/2007] [Indexed: 11/28/2022] Open
Abstract
Ten years have passed since the genome of Saccharomyces cerevisiae–more precisely, the S288c strain–was completely sequenced. However, experimental work in yeast is commonly performed using strains that are of unknown genetic relationship to S288c. Here, we characterized the nucleotide-level similarity between S288c and seven commonly used lab strains (A364A, W303, FL100, CEN.PK, ∑1278b, SK1 and BY4716) using 25mer oligonucleotide microarrays that provide complete and redundant coverage of the ∼12 Mb Saccharomyces cerevisiae genome. Using these data, we assessed the frequency and distribution of nucleotide variation in comparison to the sequenced reference genome. These data allow us to infer the relationships between experimentally important strains of yeast and provide insight for experimental designs that are sensitive to sequence variation. We propose a rational approach for near complete sequencing of strains related to the reference using these data and directed re-sequencing. These data and new visualization tools are accessible online in a new resource: the Yeast SNPs Browser (YSB; http://gbrowse.princeton.edu/cgi-bin/gbrowse/yeast_strains_snps) that is available to all researchers.
Collapse
Affiliation(s)
- Joseph Schacherer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Douglas M. Ruderfer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - David Gresham
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Kara Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
118
|
Smit A, Cordero Otero RR, Pretorius IS. Differences amongAGT1-encoded α-glucoside transporters and their ability to transport maltotriose inSaccharomyces yeasts. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
119
|
Park HO, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 2007; 71:48-96. [PMID: 17347519 PMCID: PMC1847380 DOI: 10.1128/mmbr.00028-06] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SUMMARY The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.
Collapse
Affiliation(s)
- Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA.
| | | |
Collapse
|
120
|
Sadowski I, Su TC, Parent J. Disintegrator vectors for single-copy yeast chromosomal integration. Yeast 2007; 24:447-55. [PMID: 17315265 DOI: 10.1002/yea.1469] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vectors were developed for two-step chromosomal integration of reporter genes or expression constructs. With these vectors, integration produces a disruption of the ADE8, LYS2, MET15, LEU2, HIS3 or FCY1 genes, and integrants can be easily identified by replica-plating on selective media. Integration using these 'disintegrator' vectors produces a single-copy integration of the construct of interest at the junction of the marker deletion, and removes the additional plasmid sequences. Importantly, the integrated constructs do not contain flanking sequence duplications, and therefore should be highly stable. Each of the vectors was shown to reliably integrate a TEF1-KAN expression cassette and/or GAL1-HIS3 and STE12-LacZ reporter genes.
Collapse
Affiliation(s)
- Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
121
|
Abstract
Yeasts are found in natural biofilms, where many microorganisms colonize surfaces. In artificial environments, such as surfaces of man-made objects, biofilms can reduce industrial productivity, destroy structures, and threaten human life. 1-3 On the other hand, harnessing the power of biofilms can help clean the environment and generate sustainable energy. 4-8 The ability of S. cerevisiae to colonize surfaces and participate in complex biofilms was mostly ignored until the rediscovery of the differentiation programs triggered by various signaling pathways and environmental cues in this organism. 9, 10 The continuing interest in using S. cerevisiae as a model organism to understand the interaction and convergence of signaling pathways, such as the Ras-PKA, Kss1 MAPK, and Hog1 osmolarity pathways, quickly placed S. cerevisiae in the junction of biofilm biology and signal transduction research. 11-20 To this end, differentiation of yeast cells into long, adhesive, pseudohyphal filaments became a convenient readout for the activation of signal transduction pathways upon various environmental changes. However, filamentation is a complex collection of phenotypes, which makes assaying for it as if it were a simple phenotype misleading. In the past decade, several assays were successfully adopted from bacterial biofilm studies to yeast research, such as MAT formation assays to measure colony spread on soft agar and crystal violet staining to quantitatively measure cell-surface adherence. 12, 21 However, there has been some confusion in assays developed to qualitatively assess the adhesive and invasive phenotypes of yeast in agar. Here, we present a simple and reliable method for assessing the adhesive and invasive quality of yeast strains with easy-to-understand steps to isolate the adhesion assessment from invasion assessment. Our method, adopted from previous studies, 10, 16 involves growing cells in liquid media and plating on differential nutrient conditions for growth of large spots, which we then wash with water to assess adhesion and rub cells completely off the agar surface to assess invasion into the agar. We eliminate the need for streaking cells onto agar, which affects the invasion of cells into the agar. In general, we observed that haploid strains that invade agar are always adhesive, yet not all adhesive strains can invade agar medium. Our approach can be used in conjunction with other assays to carefully dissect the differentiation steps and requirements of yeast signal transduction, differentiation, quorum sensing, and biofilm formation.
Collapse
|
122
|
Park YU, Hur H, Ka M, Kim J. Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1. EUKARYOTIC CELL 2006; 5:2120-7. [PMID: 17041186 PMCID: PMC1694813 DOI: 10.1128/ec.00121-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dimorphic transition of yeast to the hyphal form is regulated by the mitogen-activated protein kinase and cyclic AMP-dependent protein kinase A pathways in Saccharomyces cerevisiae. Signaling pathway-responsive transcription factors such as Ste12, Tec1, and Flo8 are known to mediate filamentation-specific transcription. We were interested in investigating the translational regulation of specific mRNAs during the yeast-to-hyphal-form transition. Using polyribosome fractionation and RT-PCR analysis, we identified STE12, GPA2, and CLN1 as translation regulation target genes during filamentous growth. The transcript levels for these genes did not change, but their mRNAs were preferentially associated with polyribosomes during the hyphal transition. The intracellular levels of Ste12, Gpa2, and Cln1 proteins increased under hyphal-growth conditions. The increase in Ste12 protein level was partially blocked by mutations in the CAF20 and DHH1 genes, which encode an eIF4E inhibitor and a decapping activator, respectively. In addition, the caf20 and dhh1 mutations resulted in defects in filamentous growth. The filamentation defects caused by caf20 and dhh1 mutations were suppressed by STE12 overexpression. These results suggest that Caf20 and Dhh1 control yeast filamentation by regulating STE12 translation.
Collapse
Affiliation(s)
- Young-Un Park
- Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University, Yuseong-Gu, Gung-Dong 220, Daejeon 305-764, Republic of Korea
| | | | | | | |
Collapse
|
123
|
Ren P, Springer DJ, Behr MJ, Samsonoff WA, Chaturvedi S, Chaturvedi V. Transcription factor STE12alpha has distinct roles in morphogenesis, virulence, and ecological fitness of the primary pathogenic yeast Cryptococcus gattii. EUKARYOTIC CELL 2006; 5:1065-80. [PMID: 16835451 PMCID: PMC1489290 DOI: 10.1128/ec.00009-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptococcus gattii is a primary pathogenic yeast, increasingly important in public health, but factors responsible for its host predilection and geographical distribution remain largely unknown. We have characterized C. gattii STE12alpha to probe its role in biology and pathogenesis because this transcription factor has been linked to virulence in many human and plant pathogenic fungi. A full-length STE12alpha gene was cloned by colony hybridization and sequenced using primer walk and 3' rapid amplification of cDNA ends strategies, and a ste12alpha delta gene knockout mutant was created by URA5 insertion at the homologous site. A semiquantitative analysis revealed delayed and poor mating in ste12alpha delta mutant; this defect was not reversed by exogenous cyclic AMP. C. gattii parent and mutant strains showed robust haploid fruiting. Among putative virulence factors tested, the laccase transcript and enzymatic activity were down regulated in the ste12alpha delta mutant, with diminished production of melanin. However, capsule, superoxide dismutase, phospholipase, and urease were unaffected. Similarly, Ste12 deficiency did not cause any auxotrophy, assimilation defects, or sensitivity to a large panel of chemicals and antifungals. The ste12alpha delta mutant was markedly attenuated in virulence in both BALB/c and A/Jcr mice models of meningoencephalitis, and it also exhibited significant in vivo growth reduction and was highly susceptible to in vitro killing by human neutrophils (polymorphonuclear leukocytes). In tests designed to simulate the C. gattii natural habitat, the ste12alpha delta mutant was poorly pigmented on wood agar prepared from two tree species and showed poor survival and multiplication in wood blocks. Thus, STE12alpha plays distinct roles in C. gattii morphogenesis, virulence, and ecological fitness.
Collapse
Affiliation(s)
- Ping Ren
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, New York 12201-2002, USA
| | | | | | | | | | | |
Collapse
|
124
|
Huang G, Wang H, Chou S, Nie X, Chen J, Liu H. Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc Natl Acad Sci U S A 2006; 103:12813-8. [PMID: 16905649 PMCID: PMC1540355 DOI: 10.1073/pnas.0605270103] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida albicans, a commensal organism and a pathogen of humans, can switch stochastically between a white phase and an opaque phase without an intermediate phase. The white and opaque phases have distinct cell shapes and gene expression programs. Once switched, each phase is stable for many cell divisions. White-opaque switching is under a1-alpha2 repression and therefore only happens in a or alpha cells. Mechanisms that control the switching are unknown. Here, we identify Wor1 (white-opaque regulator 1) as a master regulator of white-opaque switching. The deletion of WOR1 blocks opaque cell formation. The ectopic expression of WOR1 converts all cells to stable opaque cells in a or alpha cells. In addition, the ectopic expression of WOR1 in a/alpha cells is sufficient to induce opaque cell formation. Importantly, WOR1 expression displays an all-or-none pattern. It is undetectable in white cells, and it is highly expressed in opaque cells. The ectopic expression of Wor1 induces the transcription of WOR1 from the WOR1 locus, which correlates with the switch to opaque phase. We present genetic evidence for feedback regulation of WOR1 transcription. The feedback regulation explains the bistable and stochastic nature of white-opaque switching.
Collapse
Affiliation(s)
- Guanghua Huang
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China; and
| | - Huafeng Wang
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China; and
| | - Song Chou
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, CA 92697-1700
| | - Xinyi Nie
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China; and
| | - Jiangye Chen
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China; and
- To whom correspondence may be addressed. E-mail:
or
| | - Haoping Liu
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, CA 92697-1700
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
125
|
Du H, Liang Y. Saccharomyces cerevisiae ste20 mutant showing resistance to glucose-induced cell death. ACTA ACUST UNITED AC 2006; 33:664-8. [PMID: 16875325 DOI: 10.1016/s0379-4172(06)60097-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glucose is one of the most important nutrients for yeast growth, which induces cell death of S. cerevisiae in the absence of other nutrients to support growth. In the present study, we reported that the S. cerevisiae ste20 mutant was resistant to glucose-induced cell death. Cells of ste20 mutant that were treated with glucose maintained intact membrane and nuclei. Ste20 kinase phosphorylates histone H2B at serine 10 (S10) during hydrogen peroxide (H202)-induced cell death. Therefore, glucose-induced cell death (GICD) may be regulated via a similar pathway of H2O2-induced apoptosis.
Collapse
Affiliation(s)
- Han Du
- College ofAgronomy and Biotechnology, Southwest University, Beibei, Chongqing 400716, China.
| | | |
Collapse
|
126
|
Strittmatter AW, Fischer C, Kleinschmidt M, Braus GH. FLO11 mediated filamentous growth of the yeast Saccharomyces cerevisiae depends on the expression of the ribosomal RPS26 genes. Mol Genet Genomics 2006; 276:113-25. [PMID: 16721598 DOI: 10.1007/s00438-006-0127-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
The RPS26A and RPS26B isogenes of Saccharomyces cerevisiae encode two almost identical proteins of the small 40S ribosomal subunit, which differ by only two amino acid residues. Growth of an rps26BDelta mutant strain is normal, whereas an rps26ADelta strain displays a reduced growth rate and increased sensitivity towards the specific translational inhibitor paromomycin. An rps26ADelta rps26BDelta double mutant strain is inviable. RPS26A but not RPS26B is required for haploid adhesive and diploid pseudohyphal growth mediated by FLO11, which encodes an adhesion. The RPS26A and RPS26B transcripts make up about 70 and 30% of the cellular RPS26 mRNA, respectively. Overexpression of RPS26B, as well as an RPS26B open reading frame driven by the RPS26A promoter, complements the rps26ADelta deletion and restores haploid invasive growth as well as diploid pseudohyphal growth. These results suggest that the two proteins are functionally interchangeable. FLO11-lacZ activity is not present in haploid rps26ADelta yeast mutant strains, even though FLO11 mRNA levels are not reduced. This suggests that the amount of Rps26p is critical for accurate translation of the FLO11 mRNA, and therefore for the dimorphic switch of the bakera9s yeast from a single cell yeast to an adhesive filamentous growth form.
Collapse
Affiliation(s)
- Axel W Strittmatter
- Institute of Microbiology and Genetics, Georg-August-Universität, 37077, Göttingen, Germany
| | | | | | | |
Collapse
|
127
|
Andaluz E, Ciudad T, Gómez-Raja J, Calderone R, Larriba G. Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Mol Microbiol 2006; 59:1452-72. [PMID: 16468988 DOI: 10.1111/j.1365-2958.2005.05038.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have analysed the effect of RAD52 deletion in several aspects of the cell biology of Candida albicans. Cultures of rad52Delta strains exhibited slow growth and contained abundant cells with a filamentous morphology. Filamentation with polarization of actin patches was accompanied by the induction of the hypha-specific genes (HSG) ECE1, HWP1 and HGC1. However, filament formation occurred in the absence of the transcription factors Efg1 and Cph1, even though disruption of EFG1 prevented expression of HSG. Therefore, expression of HSG genes accompanies but is dispensable for rad52Delta filamentation. However, deletion of adenylate cyclase severely impaired filamentation, this effect being largely reverted by the addition of exogenous cAMP. Filaments resembled elongated pseudohyphae, but some of them looked like true hyphae. Following depletion of Rad52, many cells arrested at the G2/M phase of the cell cycle with a single nucleus suggesting the early induction of the DNA-damage checkpoint. Filaments formed later, preferentially from G2/M cells. The filamentation process was accompanied by the uncoupling of several landmark events of the cell cycle and was partially dependent on the action of the cell cycle modulator Swe1. Hyphae were still induced by serum, but a large number of rad52 cells myceliated in G2/M.
Collapse
Affiliation(s)
- Encarnación Andaluz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | | | |
Collapse
|
128
|
Abstract
Many fungi undergo a developmental transition from a unicellular yeast form to an invasive filamentous form in response to environmental cues. Here we describe a quorum signaling pathway that links environmental sensing to morphogenesis in Saccharomyces cerevisiae. Saccharomyces cells secrete aromatic alcohols that stimulate morphogenesis by inducing the expression of FLO11 through a Tpk2p-dependent mechanism. Mutants defective in synthesis of these alcohols show reduced filamentous growth, which is partially suppressed by the addition of these aromatic alcohols. The production of these auto signaling alcohols is regulated by nitrogen: High ammonia restricts it by repressing the expression of their biosynthetic pathway, whereas nitrogen-poor conditions activate it. Moreover, the production of these aromatic alcohols is controlled by cell density and subjected to positive feedback regulation, which requires the transcription factor Aro80p. These interactions define a quorum-sensing circuit that allows Saccharomyces to respond to both cell density and the nutritional state of the environment. These same autoregulatory molecules do not evoke the morphological switch in Candida albicans, suggesting that these molecular signals are species-specific.
Collapse
Affiliation(s)
- Hao Chen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
129
|
Martín H, Flández M, Nombela C, Molina M. Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 2006; 58:6-16. [PMID: 16164545 DOI: 10.1111/j.1365-2958.2005.04822.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of their key role in cell signalling, a rigorous regulation of mitogen-activated protein kinases (MAPKs) is essential in eukaryotic physiology. Whereas the use of binding motifs and scaffold proteins guarantees the selective activation of a specific MAPK pathway, activating kinases and downregulating phosphatases control the appropriate intensity and timing of MAPK activation. Tyrosine, serine/threonine and dual-specificity phosphatases co-ordinately dephosphorylate and thereby inactivate MAPKs. In budding yeast, enzymes that belong to these three types of phosphatases have been shown to counteract the MAPKs that govern the cellular response to varied extracellular stimuli. Studies carried out with these yeast phosphatases have expanded our knowledge of essential key aspects of the biology of these negative regulators, such as their function, the mechanisms that operate in their modulation by MAPK pathways and their binding to MAPK substrates. Furthermore, yeast MAPK phosphatases have been shown to play additional and essential roles in MAPK-mediated signalling, controlling MAPK localization or cross-talk among pathways. This review stresses the importance of these negative regulators in eukaryotic signalling by discussing the recent developments and perspectives in the study of yeast MAPK phosphatases.
Collapse
Affiliation(s)
- Humberto Martín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | |
Collapse
|
130
|
Lu A, Hirsch JP. Cyclic AMP-independent regulation of protein kinase A substrate phosphorylation by Kelch repeat proteins. EUKARYOTIC CELL 2006; 4:1794-800. [PMID: 16278446 PMCID: PMC1287861 DOI: 10.1128/ec.4.11.1794-1800.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudohyphal and invasive growth in the yeast Saccharomyces cerevisiae is regulated by the kelch repeat-containing proteins Gpb1p and Gpb2p, which act downstream of the G protein alpha-subunit Gpa2p. Here we show that deletion of GPB1 and GPB2 causes increased haploid invasive growth in cells containing any one of the three protein kinase A (PKA) catalytic subunits, suggesting that Gpb1p and Gpb2p are able to inhibit each of these kinases. Cells containing gpb1Delta gpb2Delta mutations also display increased phosphorylation of the PKA substrates Sfl1p and Msn2p, indicating that Gpb1p and Gpb2p are negative regulators of PKA substrate phosphorylation. Stimulation of PKA-dependent signaling by gpb1Delta gpb2Delta mutations occurs in cells that lack both adenylyl cyclase and the high-affinity cyclic AMP (cAMP) phosphodiesterase. This effect is also seen in cells that lack the low-affinity cAMP phosphodiesterase. Given that these three enzymes control the synthesis and degradation of cAMP, these results indicate that the effect of Gpb1p and Gpb2p on PKA substrate phosphorylation does not occur by regulating the intracellular cAMP concentration. These findings suggest that Gpb1p and Gpb2p mediate their effects on the cAMP/PKA signaling pathway either by inhibiting the activity of PKA in a cAMP-independent manner or by activating phosphatases that act on PKA substrates.
Collapse
Affiliation(s)
- Ailan Lu
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
131
|
Huang GH, Nie XY, Chen JY. CaMac1, a Candida albicans copper ion-sensing transcription factor, promotes filamentous and invasive growth in Saccharomyces cerevisiae. Acta Biochim Biophys Sin (Shanghai) 2006; 38:213-7. [PMID: 16518547 DOI: 10.1111/j.1745-7270.2006.00146.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Molecular mechanisms of morphogenesis share many common components between Candida albicans and Saccharomyces cerevisiae. The Kss1-associated MAPK cascade and the cAMP/PKA pathway are two important signal transduction pathways that control morphogenesis in S. cerevisiae. A C. albicans copper ion-sensing transcription factor gene, CaMAC1, was cloned from C. albicans SC5314. Ectopic expression of CaMAC1 in S. cerevisiae promoted filamentous and invasive growth. In diploid cells, CaMac1 could suppress the filamentous growth defect of mutants in the Kss1-associated MAPK pathway and the cAMP/PKA pathway. In haploid strains, ectopic expression of CaMAC1 suppressed the invasive growth defect of mutants in the MAPK pathway (ste7, ste12 and tec1), but failed to suppress the invasive growth defect of the flo8 mutant. Our results suggest that the activation of CaMac1 is independent of the MAPK and cAMP/PKA pathways in filament formation, but requires Flo8 factor for invasive growth. In the media containing a high concentration of CuSO4, the yeast filamentous and invasive growth was blocked. The activating effect of CaMac1 is inhibited by copper ions.
Collapse
Affiliation(s)
- Guang-Hua Huang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | |
Collapse
|
132
|
Truckses DM, Bloomekatz JE, Thorner J. The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:912-28. [PMID: 16428446 PMCID: PMC1347046 DOI: 10.1128/mcb.26.3.912-928.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, pheromone response requires Ste5 scaffold protein, which ensures efficient G-protein-dependent recruitment of mitogen-activated protein kinase (MAPK) cascade components Ste11 (MAPK kinase kinase), Ste7 (MAPK kinase), and Fus3 (MAPK) to the plasma membrane for activation by Ste20 protein kinase. Ste20, which phosphorylates Ste11 to initiate signaling, is activated by binding to Cdc42 GTPase (membrane anchored via its C-terminal geranylgeranylation). Less clear is how activated and membrane-localized Ste20 contacts Ste11 to trigger invasive growth signaling, which also requires Ste7 and the MAPK Kss1, but not Ste5. Ste50 protein associates constitutively via an N-terminal sterile-alpha motif domain with Ste11, and this interaction is required for optimal invasive growth and hyperosmotic stress (high-osmolarity glycerol [HOG]) signaling but has a lesser role in pheromone response. We show that a conserved C-terminal, so-called "Ras association" (RA) domain in Ste50 is also essential for invasive growth and HOG signaling in vivo. In vitro the Ste50 RA domain is not able to associate with Ras2, but it does associate with Cdc42 and binds to a different face than does Ste20. RA domain function can be replaced by the nine C-terminal, plasma membrane-targeting residues (KKSKKCAIL) of Cdc42, and membrane-targeted Ste50 also suppresses the signaling deficiency of cdc42 alleles specifically defective in invasive growth. Thus, Ste50 serves as an adaptor to tether Ste11 to the plasma membrane and can do so via association with Cdc42, thereby permitting the encounter of Ste11 with activated Ste20.
Collapse
Affiliation(s)
- Dagmar M Truckses
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Room 16, Barker Hall, Berkeley, CA 94720-3202, USA
| | | | | |
Collapse
|
133
|
Borneman AR, Leigh-Bell JA, Yu H, Bertone P, Gerstein M, Snyder M. Target hub proteins serve as master regulators of development in yeast. Genes Dev 2006; 20:435-48. [PMID: 16449570 PMCID: PMC1369046 DOI: 10.1101/gad.1389306] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 12/20/2005] [Indexed: 01/20/2023]
Abstract
To understand the organization of the transcriptional networks that govern cell differentiation, we have investigated the transcriptional circuitry controlling pseudohyphal development in Saccharomyces cerevisiae. The binding targets of Ste12, Tec1, Sok2, Phd1, Mga1, and Flo8 were globally mapped across the yeast genome. The factors and their targets form a complex binding network, containing patterns characteristic of autoregulation, feedback and feed-forward loops, and cross-talk. Combinatorial binding to intergenic regions was commonly observed, which allowed for the identification of a novel binding association between Mga1 and Flo8, in which Mga1 requires Flo8 for binding to promoter regions. Further analysis of the network showed that the promoters of MGA1 and PHD1 were bound by all of the factors used in this study, identifying them as key target hubs. Overexpression of either of these two proteins specifically induced pseudohyphal growth under noninducing conditions, highlighting them as master regulators of the system. Our results indicate that target hubs can serve as master regulators whose activity is sufficient for the induction of complex developmental responses and therefore represent important regulatory nodes in biological networks.
Collapse
Affiliation(s)
- Anthony R Borneman
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | | | | | |
Collapse
|
134
|
Wang Y, Dohlman HG. Pheromone-regulated Sumoylation of Transcription Factors That Mediate the Invasive to Mating Developmental Switch in Yeast. J Biol Chem 2006; 281:1964-9. [PMID: 16306045 DOI: 10.1074/jbc.m508985200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fundamental question in biology is how different signaling pathways use common signaling proteins to attain different developmental outcomes. The yeast transcription factor Ste12 is required in at least two distinct signaling processes, each regulated by many of the same protein kinases. Whereas Ste12-Ste12 homodimers promote transcription of genes required for mating, Ste12-Tec1 heterodimers activate genes required for invasive growth. We report that Ste12 and Tec1 undergo covalent modification by the ubiquitin-related modifier SUMO. Stimulation by mating pheromone promotes sumoylation of Ste12 and diminishes the sumoylation of Tec1. In the absence of sumoylation Tec1 is more rapidly degraded. We propose that pheromone-regulated sumoylation of Ste12 and Tec1 promotes a developmental switch from the invasive to the mating differentiation program.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | |
Collapse
|
135
|
Wu X, Jiang YW. Genetic/genomic evidence for a key role of polarized endocytosis in filamentous differentiation of S. cerevisiae. Yeast 2005; 22:1143-53. [PMID: 16240455 DOI: 10.1002/yea.1305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Unicellular S. cerevisiae cells switch from the yeast form to pseudohyphal or filamentous form in response to environmental cues. We report that wild-type BY diploids (in which yeast ORFs have been systematically deleted) undergo normal HU-induced filamentous growth and discernable nitrogen starvation-induced filamentous growth, despite their perceived filamentation-deficient S288C genetic background. This finding allowed us to perform a genome-wide survey for non-essential genes that are required for filamentous growth with the homozygous deletion strains. We report that genes involved in endocytosis are required for both HU-induced and nitrogen starvation-induced filamentous growth. Surprisingly, no known genes involved in exocytosis are required. Despite the fact that polarized growth involves transport of vesicles to the site of growth, we failed to obtain genetic/genomic evidence that exocytosis plays an essential role in filamentous growth. A possible key role of polarized endocytosis (from the growth tip) is consistent with the proposed biological function of filamentous growth as a foraging behaviour. In addition, BUD8 that encodes the distal landmark in yeast-form bipolar budding is required for nitrogen starvation-induced but not HU-induced filamentous growth. Moreover, BUD5, SPA2, PEA2 and BUD6 that regulate bipolar bud site selection do not regulate the unipolar distal budding pattern in HU-induced filamentous growth.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Medical Biochemistry and Genetics, Texas A&M University System, Health Science Center, 428 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | |
Collapse
|
136
|
Svarovsky MJ, Palecek SP. Disruption of LRG1 inhibits mother-daughter separation in Saccharomyces cerevisiae. Yeast 2005; 22:1117-32. [PMID: 16240460 DOI: 10.1002/yea.1301] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
LRG1, previously characterized as a Rho-GAP that regulates beta-1,3-glucan synthesis, was identified using a filtration screen designed to isolate genes that promote cell aggregation in Sigma1278b Saccharomyces cerevisiae. Disruption of LRG1 in haploid cells resulted in enhanced invasive growth and a strain-specific 'clustered' phenotype that is a consequence of failed separation of mother and daughter cells. Genetic analysis revealed that clustering required functional ROM2, FKS1 and STE12 but not FLO8 or FLO11. Additionally, this phenotype required sufficient nitrogen. beta-1,3-Glucan content was elevated in lrg1 haploids and these cells possessed a thicker cell wall and septum than wild-type strains. Additional glucan at the bud site inhibited separation of lrg1 mutants as the clustered phenotype was repressed by expression of the glucanases ENG1 or EGT2.
Collapse
Affiliation(s)
- Michael J Svarovsky
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
137
|
Wang L, Griffiths K, Zhang YH, Ivey FD, Hoffman CS. Schizosaccharomyces pombe adenylate cyclase suppressor mutations suggest a role for cAMP phosphodiesterase regulation in feedback control of glucose/cAMP signaling. Genetics 2005; 171:1523-33. [PMID: 16143612 PMCID: PMC1456081 DOI: 10.1534/genetics.105.047233] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 08/18/2005] [Indexed: 11/18/2022] Open
Abstract
Mutations affecting the Schizosaccharomyces pombe cAMP phosphodiesterase (PDE) gene cgs2+ were identified in a screen for suppressors of mutant alleles of the adenylate cyclase gene (git2+/cyr1+), which encode catalytically active forms of the enzyme that cannot be stimulated by extracellular glucose signaling. These mutations suppress both the git2(-) mutant alleles used in the suppressor selection and mutations in git1+, git3+, git5+, git7+, git10+, and git11+, which are all required for adenylate cyclase activation. Notably, these cgs2 mutant alleles fail to suppress mutations in gpa2+, which encodes the Galpha subunit of a heterotrimeric G protein required for adenylate cyclase activation, although the previously identified cgs2-2 allele does suppress loss of gpa2+. Further analysis of the cgs2-s1 allele reveals a synthetic interaction with the gpa2(R176H)-activated allele, with respect to derepression of fbp1-lacZ transcription in glucose-starved cells. In addition, direct measurements of cAMP levels show that cgs2-s1 cells maintain normal basal cAMP levels, but are severely defective in feedback regulation upon glucose detection. These results suggest that PDE activity in S. pombe may be coordinately regulated with adenylate cyclase activity as part of the feedback regulation mechanism to limit the cAMP response to glucose detection.
Collapse
Affiliation(s)
- Lili Wang
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
138
|
Wu X, Jiang YW. Possible integration of upstream signals at Cdc42 in filamentous differentiation of S. cerevisiae. Yeast 2005; 22:1069-77. [PMID: 16200521 DOI: 10.1002/yea.1294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Various environmental stimuli (such as nitrogen starvation, short-chain alcohols and slowed DNA synthesis) induce filamentous differentiation in S. cerevisiae. Genetic mutations (such as deletion of the mitotic cyclin gene CLB2) cause constitutive filamentous differentiation. Although different stimulus-induced filamentous differentiation involves different signalling pathways, Cdc42 has been identified as a common regulator. We show here that Cdc42 is also required for hydroxyurea (HU)-induced and clb2Delta-caused filamentous growth. We show that the mitotic CDK Clb2/Cdc28 functions upstream of Cdc42 in regulating filamentous differentiation. This result points to possible existence of a Cdc42-MAPK-Clb2/Cdc28 positive feedback loop in the signalling of filamentous differentiation. We report isolation of a cdc42-Y40F allele that blocks HU-induced, but not nitrogen starvation-induced, short-chain alcohol-induced or clb2Delta-caused, filamentation. Based on these results, we propose a model in which Cdc42 functions as a possible integrator for the upstream signals of filamentous differentiation (from the filamentous growth MAPK pathway, the cAMP pathway and the Mec1/Rad53 checkpoint pathway). We also show evidence that the mitotic CDK inhibitor Swe1 may mediate the cross-talk between the cAMP and MAPK pathways.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Medical Biochemistry and Genetics, Texas A&M University System, Health Science Center, 428 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | |
Collapse
|
139
|
Hoffman CS. Except in every detail: comparing and contrasting G-protein signaling in Saccharomyces cerevisiae and Schizosaccharomyces pombe. EUKARYOTIC CELL 2005; 4:495-503. [PMID: 15755912 PMCID: PMC1087802 DOI: 10.1128/ec.4.3.495-503.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Charles S Hoffman
- Biology Department, Boston College, 140 Commonwealth Ave., Higgins Hall 401B, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
140
|
Fujita A, Hiroko T, Hiroko F, Oka C. Enhancement of superficial pseudohyphal growth by overexpression of the SFG1 gene in yeast Saccharomyces cerevisiae. Gene 2005; 363:97-104. [PMID: 16289536 DOI: 10.1016/j.gene.2005.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/14/2005] [Accepted: 06/27/2005] [Indexed: 11/20/2022]
Abstract
In response to nitrogen limitation, diploid yeast strains of Saccharomyces cerevisiae undergo a dimorphic transition to a filamentous growth form known as pseudohyphal growth. This developmental change can be classified into two distinct growing forms: invasive pseudohyphal growth and superficial pseudohyphal growth. We identified a yeast gene, SFG1, whose overexpression predominantly enhances superficial pseudohyphal growth when starved for nitrogen. Sfg1 has a sequence similarity to members of a family of transcriptional regulators of fungal development. Cells of a homozygous sfg1/sfg1 diploid strain have a serious defect in pseudohyphal growth, indicating that Sfg1 has an essential function for pseudohyphal development. Our analyses show that Sfg1 may act separately from mitogen-activated protein kinase (MAPK) pathway and cAMP-dependent protein kinase A (PKA) pathway.
Collapse
Affiliation(s)
- Atsushi Fujita
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6-4, 1-1 Higashi, Tsukuba 305-8566, Japan.
| | | | | | | |
Collapse
|
141
|
Magherini F, Busti S, Gamberi T, Sacco E, Raugei G, Manao G, Ramponi G, Modesti A, Vanoni M. In Saccharomyces cerevisiae an unbalanced level of tyrosine phosphorylation down-regulates the Ras/PKA pathway. Int J Biochem Cell Biol 2005; 38:444-60. [PMID: 16297653 DOI: 10.1016/j.biocel.2005.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 10/01/2005] [Accepted: 10/07/2005] [Indexed: 02/07/2023]
Abstract
The role of tyrosyl phosphorylation/dephosphorylation in the budding yeast Saccharomyces cerevisiae, whose genome does not encode typical tyrosine kinases, has long remained elusive. Nevertheless, several protein kinases phosphorylating poly(TyrGlu) substrates have been identified. In this work, we use the expression of the low molecular weight tyrosine phosphatase Stp1 from the distantly related yeast Schizosaccharomyces pombe, as a tool to investigate whether an unbalanced level of protein tyrosine phosphorylation affects S. cerevisiae growth and metabolism. We correlate the previously reported down-regulation of the phosphotyrosine level brought about by overexpression of Stp1 with a large number of phenotypes indicative of down-regulation of the Ras pathway. These phenotypes include reduction in both glucose- and acidification-induced GTP loading of the Ras2 protein and cAMP signaling, impaired growth on a non-fermentable carbon source, alteration of cell cycle parameters, delayed recovery from nitrogen starvation, increased heat-shock resistance, attenuated pseudohyphal and invasive growth. Genetic data suggest that Stp1 acts either at, or above, the level of Ras2, possibly on the Ira proteins. Consistently, Stp1 was found to bind to immunoprecipitated Ira2. Since a catalytically inactive mutant form of Stp1 (Stp1(C11S)) effectively binds to Ira2 without producing any effect on yeast physiology, we conclude that down-regulation of the Ras pathway by Stp1 requires its phosphatase activity. In conclusion, our data suggest a possible cross-talk between tyrosine phosphorylation and the Ras pathway in yeast.
Collapse
Affiliation(s)
- Francesca Magherini
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Firenze, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Cao F, Lane S, Raniga PP, Lu Y, Zhou Z, Ramon K, Chen J, Liu H. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol Biol Cell 2005; 17:295-307. [PMID: 16267276 PMCID: PMC1345667 DOI: 10.1091/mbc.e05-06-0502] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transcription factor Flo8 is essential for filamentous growth in Saccharomyces cerevisiae and is regulated under the cAMP/protein kinase A (PKA) pathway. To determine whether a similar pathway/regulation exists in Candida albicans, we have cloned C. albicans FLO8 by its ability to complement S. cerevisiae flo8. Deleting FLO8 in C. albicans blocked hyphal development and hypha-specific gene expression. The flo8/flo8 mutant is avirulent in a mouse model of systemic infection. Genome-wide transcription profiling of efg1/efg1 and flo8/flo8 using a C. albicans DNA microarray suggests that Flo8 controls subsets of Efg1-regulated genes. Most of these genes are hypha specific, including HGC1 and IHD1. We also show that Flo8 interacts with Efg1 in yeast and hyphal cells by in vivo immunoprecipitation. Similar to efg1/efg1, flo8/flo8 and cdc35/cdc35 show enhanced hyphal growth under an embedded growth condition. Our results suggest that Flo8 may function downstream of the cAMP/PKA pathway, and together with Efg1, regulates the expression of hypha-specific genes and genes that are important for the virulence of C. albicans.
Collapse
Affiliation(s)
- Fang Cao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Devit M, Cullen PJ, Branson M, Sprague GF, Fields S. Forcing interactions as a genetic screen to identify proteins that exert a defined activity. Genome Res 2005; 15:560-5. [PMID: 15805496 PMCID: PMC1074370 DOI: 10.1101/gr.3259905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The interaction of proteins to form macromolecular complexes is the basis for most biological processes. Approaches have been described that employ artificial constructs to promote such complexes and assess the consequences. For example, a protein interaction scheme has been described that examines the effects of a specific phosphorylation event catalyzed by a protein kinase via the provision of an artificial protein binding interface between a modified version of the kinase and a single substrate. We have generalized this type of approach to form the basis for a genetic selection to identify proteins that exert an activity when recruited to a target protein. The assay uses the leucine zipper domains from the mammalian transcription factors Fos and Jun to force the interaction of two proteins. With a target protein fused to the Jun zipper and a library of open reading frames fused to the Fos zipper, we demonstrate this approach in yeast with both a selection to identify membrane-associated proteins and a selection to identify candidate components of the filamentous growth MAP kinase pathway.
Collapse
Affiliation(s)
- Michael Devit
- Howard Hughes Medical Institute, Departments of Genome Sciences and Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
144
|
Hughes CF, Perlin MH. Differential expression of mepA, mepCand smtEduring growth and development of Microbotryum violaceum. Mycologia 2005. [DOI: 10.1080/15572536.2006.11832791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Michael H. Perlin
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
145
|
Kleinschmidt M, Grundmann O, Blüthgen N, Mösch HU, Braus GH. Transcriptional profiling of Saccharomyces cerevisiae cells under adhesion-inducing conditions. Mol Genet Genomics 2005; 273:382-93. [PMID: 15843968 DOI: 10.1007/s00438-005-1139-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 03/02/2005] [Indexed: 01/09/2023]
Abstract
The ability to adhere to other cells is one of the most prominent determinants of fungal pathogenicity. Thus, adherence of fungi to human tissues or plastics triggers hospital-acquired fungal infections, which are an increasing clinical problem, especially in immunocompromised persons. In the model fungus Saccharomyces cerevisiae adhesion can be induced by starvation for amino acids, and depends on the transcriptional activator of the general amino acid control system, Gcn4p. However, not much is known about the transcriptional program that mediates adhesive growth under such conditions. In this study, we present a genome-wide transcriptional analysis of Sigma1278b yeast cells that were subjected to adhesion-inducing conditions imposed by amino acid starvation. Twenty-two novel genes were identified as inducible by amino acid starvation; 72 genes belonging to different functional groups, which were not previously known to be regulated by Gcn4p, require Gcn4p for full transcriptional induction under adhesion-inducing conditions. In addition, several genes were identified in Sigma1278b cells that were inducible by amino acid starvation in a Gcn4p-independent manner. Our data suggest that adhesion of yeast cells induced by amino acid starvation is regulated by a complex, Sigma1278b-specific transcriptional response.
Collapse
Affiliation(s)
- Malte Kleinschmidt
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077, Göttingen, Germany
| | | | | | | | | |
Collapse
|
146
|
Winters MJ, Pryciak PM. Interaction with the SH3 domain protein Bem1 regulates signaling by the Saccharomyces cerevisiae p21-activated kinase Ste20. Mol Cell Biol 2005; 25:2177-90. [PMID: 15743816 PMCID: PMC1061602 DOI: 10.1128/mcb.25.6.2177-2190.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae PAK (p21-activated kinase) family kinase Ste20 functions in several signal transduction pathways, including pheromone response, filamentous growth, and hyperosmotic resistance. The GTPase Cdc42 localizes and activates Ste20 by binding to an autoinhibitory motif within Ste20 called the CRIB domain. Another factor that functions with Ste20 and Cdc42 is the protein Bem1. Bem1 has two SH3 domains, but target ligands for these domains have not been described. Here we identify an evolutionarily conserved binding site for Bem1 between the CRIB and kinase domains of Ste20. Mutation of tandem proline-rich (PxxP) motifs in this region disrupts Bem1 binding, suggesting that it serves as a ligand for a Bem1 SH3 domain. These PxxP motif mutations affect signaling additively with CRIB domain mutations, indicating that Bem1 and Cdc42 make separable contributions to Ste20 function, which cooperate to promote optimal signaling. This PxxP region also binds another SH3 domain protein, Nbp2, but analysis of bem1Delta versus nbp2Delta strains shows that the signaling defects of PxxP mutants result from impaired binding to Bem1 rather than from impaired binding to Nbp2. Finally, the PxxP mutations also reduce signaling by constitutively active Ste20, suggesting that postactivation functions of PAKs can be promoted by SH3 domain proteins, possibly by colocalizing PAKs with their substrates. The overall results also illustrate how the final signaling function of a protein can be governed by combinatorial addition of multiple, independent protein-protein interaction modules.
Collapse
Affiliation(s)
- Matthew J Winters
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 377 Plantation St., Four Biotech, Rm. 330, Worcester, MA 01605, USA
| | | |
Collapse
|
147
|
Flatauer LJ, Zadeh SF, Bardwell L. Mitogen-activated protein kinases with distinct requirements for Ste5 scaffolding influence signaling specificity in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:1793-803. [PMID: 15713635 PMCID: PMC549360 DOI: 10.1128/mcb.25.5.1793-1803.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scaffold proteins are believed to enhance specificity in cell signaling when different pathways share common components. The prototype scaffold Ste5 binds to multiple components of the Saccharomyces cerevisiae mating pheromone response pathway, thereby conducting the mating signal to the Fus3 mitogen-activated protein kinase (MAPK). Some of the kinases that Ste5 binds to, however, are also shared with other pathways. Thus, it has been presumed that Ste5 prevents its bound kinases from transgressing into other pathways and protects them from intrusions from those pathways. Here we found that Fus3MAPK required Ste5 scaffolding to receive legitimate signals from the mating pathway as well as misdirected signals leaking from other pathways. Furthermore, increasing the cellular concentration of active Ste5 enhanced the channeling of inappropriate stimuli to Fus3. This aberrant signal crossover resulted in the erroneous induction of cell cycle arrest and mating. In contrast to Fus3, the Kss1 MAPK did not require Ste5 scaffolding to receive either authentic or leaking signals. Furthermore, the Ste11 kinase, once activated via Ste5, was able to signal to Kss1 independently of Ste5 scaffolding. These results argue that Ste5 does not act as a barrier that actively prevents signal crossover to Fus3 and that Ste5 may not effectively sequester its activated kinases away from other pathways. Rather, we suggest that specificity in this network is promoted by the selective activation of Ste5 and the distinct requirements of the MAPKs for Ste5 scaffolding.
Collapse
Affiliation(s)
- Laura J Flatauer
- Department of Developmental and Cell Biology, 5205 McGaugh Hall, University of California, Irvine, CA 92697-2300, USA
| | | | | |
Collapse
|
148
|
Kang CM, Jiang YW. Genome-wide survey of non-essential genes required for slowed DNA synthesis-induced filamentous growth in yeast. Yeast 2005; 22:79-90. [PMID: 15645503 DOI: 10.1002/yea.1195] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We recently discovered that slowed DNA synthesis induces filamentous differentiation in S. cerevisiae. We screened the BY yeast deletion strains and identified four classes of non-essential genes that are required for both slowed DNA-induced filamentous growth and classic forms of filamentous growth: (a) genes encoding regulators of the actin cytoskeleton and cell polarity, ABP1, CAP2 and HUF1 (=YOR300W), in addition to the previously known BNI1, BUD2, PEA2, SPA2 and TPM1; (b) genes that are likely involved in cell wall biosynthesis, ECM25, GAS1 and PRS3; (c) genes encoding possible regulators of protein secretion, SEC66, RPL21A and RPL34B; (d) genes encoding factors for normal mitochondrial function, IML1 and UGO1. These results showed that pseudohyphal formation involves not the only previously known regulation of the actin cytoskeleton/cell polarity but also regulation of cell wall synthesis, protein secretion and mitochondrial function. Identification of multiple classes of genes that are required for both slowed DNA synthesis-induced and classic forms of filamentous growth confirms that slowed DNA synthesis-induced filamentous growth is bone fide filamentous differentiation.
Collapse
Affiliation(s)
- Christopher Minkyu Kang
- Department of Medical Biochemistry & Genetics, Texas A&M University System Health Science Center, 428 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | |
Collapse
|
149
|
Sato T, Watanabe T, Mikami T, Matsumoto T. Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol Pharm Bull 2005; 27:751-2. [PMID: 15133261 DOI: 10.1248/bpb.27.751] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Candida albicans grew in hyphal form in RPMI1640, however, addition of farnesol inhibited the formation. Farnesol did not affect the expression of mRNAs related to cAMP-EFG1 pathways. The mRNAs (HST7 and CPH1) in mitogen activated protein kinase (MAP) cascades were decreased in farnesol-treated cells, but CST20 was not. Furthermore, expression of general amino acid permease 1 (GAP1) was decreased by farnesol. We concluded that farnesol inhibits a MAP kinase cascades, and the suppression is a cause of interruption of hyphae formation.
Collapse
Affiliation(s)
- Tatsuki Sato
- Department of Microbiology, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | |
Collapse
|
150
|
Abstract
The intracellular signal transduction pathway by which the yeast Saccharomyces cerevisiae responds to the presence of peptide mating pheromone in its surroundings is one of the best understood signaling pathways in eukaryotes, yet continues to generate new surprises and insights. In this review, we take a brief walk down the pathway, focusing on how the signal is transmitted from the cell-surface receptor-coupled G protein, via a MAP kinase cascade, to the nucleus.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, 2208 Natural Sciences I, University of California, Irvine, CA 92697-2300, USA.
| |
Collapse
|