101
|
Pirillo A, Uboldi P, Ferri N, Corsini A, Kuhn H, Catapano AL. Upregulation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human endothelial cells by modified high density lipoproteins. Biochem Biophys Res Commun 2012; 428:230-3. [PMID: 23073138 DOI: 10.1016/j.bbrc.2012.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/09/2023]
Abstract
Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) is the main endothelial receptor for oxidized low density lipoprotein (OxLDL). LOX-1 is highly expressed in endothelial cells of atherosclerotic lesions, but also in macrophages and smooth muscle cells. LOX-1 expression is upregulated by several inflammatory cytokines (such as TNF-α), by oxidative stress, and by pathological conditions, such as dyslipidemia, hypertension, and diabetes. High density lipoprotein (HDL) possess several atheroprotective properties; however under pathological conditions associated with inflammation and oxidative stress, HDL become dysfunctional and exhibit pro-inflammatory properties. In vitro, HDL can be modified by 15-lipoxygenase, an enzyme overexpressed in the atherosclerotic lesions. Here we report that, after modification with 15-lipoxygenase, HDL(3) lose their ability to inhibit TNFα-induced LOX-1 expression in endothelial cells; in addition, 15LO-modified HDL(3) induce LOX-1 mRNA and protein expression and bind to LOX-1 with increased affinity compared to native HDL(3). Altogether these findings confirm that 15LO-modified HDL(3) possess a pro-atherogenic role.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.
| | | | | | | | | | | |
Collapse
|
102
|
Tian C, Zhang R, Ye X, Zhang C, Jin X, Yamori Y, Hao L, Sun X, Ying C. Resveratrol ameliorates high-glucose-induced hyperpermeability mediated by caveolae via VEGF/KDR pathway. GENES AND NUTRITION 2012; 8:231-9. [PMID: 22983702 DOI: 10.1007/s12263-012-0319-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/28/2012] [Indexed: 12/31/2022]
Abstract
Endothelial hyperpermeability induced by hyperglycemia is the initial step in the development of atherosclerosis, one of the most serious cardiovascular complications in diabetes. In the present study, we investigated the effects of resveratrol (RSV), a bioactive ingredient extracted from Chinese herb rhizoma polygonum cuspidatum, on permeability in vitro and the molecular mechanisms involved. Permeability was assessed by the efflux of fluorescein isothiocyanate (FITC)-dextran permeated through the monolayer endothelial cells (ECs). The mRNA levels, protein expressions, and secretions were measured by quantitative real-time PCR, western blot, and ELISA, respectively. Increased permeability and caveolin-1 (cav-1) expression were observed in monolayer ECs exposed to high glucose. Resveratrol treatment alleviated the hyperpermeability and the overexpression of cav-1 induced by high glucose in a dose-dependent manner. β-Cyclodextrin, a structural inhibitor of caveolae, reduced the hyperpermeability caused by high glucose. Resveratrol also down-regulated the increased expressions of vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR, or VEGF receptor-2) induced by high glucose. Inhibition of VEGF/KDR pathway by using SU5416, a selective inhibitor of KDR, alleviated the hyperpermeability and the cav-1 overexpression induced by high glucose. The above results demonstrate that RSV ameliorates caveolae-mediated hyperpermeability induced by high glucose via VEGF/KDR pathway.
Collapse
Affiliation(s)
- Chong Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Otsuka F, Finn AV, Yazdani SK, Nakano M, Kolodgie FD, Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol 2012; 9:439-53. [PMID: 22614618 DOI: 10.1038/nrcardio.2012.64] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deployment of drug-eluting stents instead of bare-metal stents has dramatically reduced restenosis rates, but rates of very late stent thrombosis (>1 year postimplantation) have increased. Vascular endothelial cells normally provide an efficient barrier against thrombosis, lipid uptake, and inflammation. However, endothelium that has regenerated after percutaneous coronary intervention is incompetent in terms of its integrity and function, with poorly formed cell junctions, reduced expression of antithrombotic molecules, and decreased nitric oxide production. Delayed arterial healing, characterized by poor endothelialization, is the primary cause of late (1 month-1 year postimplantation) and very late stent thrombosis following implantation of drug-eluting stents. Impairment of vasorelaxation in nonstented proximal and distal segments of stented coronary arteries is more severe with drug-eluting stents than bare-metal stents, and stent-induced flow disturbances resulting in complex spatiotemporal shear stress can also contribute to increased thrombogenicity and inflammation. The incompetent endothelium leads to late stent thrombosis and the development of in-stent neoatherosclerosis. The process of neoatherosclerosis occurs more rapidly, and more frequently, following deployment of drug-eluting stents than bare-metal stents. Improved understanding of vascular biology is crucial for all cardiologists, and particularly interventional cardiologists, as maintenance of a competently functioning endothelium is critical for long-term vascular health.
Collapse
Affiliation(s)
- Fumiyuki Otsuka
- CVPath Institute Inc., 19 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | | | | | | | | |
Collapse
|
104
|
Stancu CS, Toma L, Sima AV. Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis. Cell Tissue Res 2012; 349:433-46. [DOI: 10.1007/s00441-012-1437-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/12/2012] [Indexed: 12/28/2022]
|
105
|
Chan W, Dart AM. Vascular stiffness and aging in HIV. Sex Health 2012; 8:474-84. [PMID: 22127032 DOI: 10.1071/sh10160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/31/2011] [Indexed: 12/19/2022]
Abstract
Large artery stiffening is a biological index of vascular aging. Vascular aging and atherosclerosis are two closely linked processes that develop in parallel and in synergy, sharing common aetiological determinants. Vascular stiffening increases left ventricular work and can lead to diminished coronary perfusion, and may therefore contribute to the development of cardiovascular disease. There is emerging evidence that large artery stiffness and vascular aging are accelerated in HIV infection because of the high prevalence of cardiovascular risk factors among HIV-infected patients. Moreover, the biological effects of HIV and the metabolic perturbations associated with antiretroviral therapies appear to accelerate vascular stiffening in HIV-infected patients. Further studies evaluating the effects of general and targeted therapies and various combinations of antiretroviral therapies on measures of large artery stiffness are urgently needed.
Collapse
Affiliation(s)
- William Chan
- Department of Cardiovascular Medicine, the Alfred Hospital, Melbourne, Vic. 3004, Australia
| | | |
Collapse
|
106
|
Wu HJ, Hao J, Wang SQ, Jin BL, Chen XB. Protective effects of ligustrazine on TNF-α-induced endothelial dysfunction. Eur J Pharmacol 2012; 674:365-9. [DOI: 10.1016/j.ejphar.2011.10.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/07/2011] [Accepted: 10/30/2011] [Indexed: 12/29/2022]
|
107
|
Yi F, Jin S, Zhang F, Xia M, Bao JX, Hu J, Poklis JL, Li PL. Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteine-induced glomerular injury. J Cell Mol Med 2011; 13:3303-14. [PMID: 20196779 PMCID: PMC3752605 DOI: 10.1111/j.1582-4934.2009.00743.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The present study tested the hypothesis that homocysteine (Hcys)-induced ceramide production stimulates lipid rafts (LRs) clustering on the membrane of glomerular endothelial cells (GECs) to form redox signalling platforms by aggregation and activation of NADPH oxidase subunits and thereby enhances superoxide (O2*-) production, leading to glomerular endothelial dysfunction and ultimate injury or sclerosis. Using confocal microscopy, we first demonstrated a co-localization of LR clusters with NADPH oxidase subunits, gp91(phox) and p47(phox) in the GECs membrane upon Hcys stimulation. Immunoblot analysis of floated detergent-resistant membrane fractions found that in LR fractions NADPH oxidase subunits gp91(phox) and p47(phox) are enriched and that the activity of this enzyme dramatically increased. We also examined the effect of elevated Hcys on the cell monolayer permeability in GECs. It was found that Hcys significantly increased GEC permeability, which was blocked by inhibition of LR redox signalling platform formation. Finally, we found that Hcys-induced enhancement of GEC permeability is associated with the regulation of microtubule stability through these LR-redox platforms. It is concluded that the early injurious effect of Hcys on the glomerular endothelium is associated with the formation of redox signalling platforms via LR clustering, which may lead to increases in glomerular permeability by disruption of microtubule network in GECs.
Collapse
Affiliation(s)
- Fan Yi
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Cysteine proteases from Porphyromonas gingivalis and TLR ligands synergistically induce the synthesis of the cytokine IL-8 in human artery endothelial cells. Arch Oral Biol 2011; 56:1583-91. [DOI: 10.1016/j.archoralbio.2011.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 06/08/2011] [Accepted: 06/29/2011] [Indexed: 11/21/2022]
|
109
|
Carpentier Y, Komsa-Penkova R. Clinical Nutrition University. The place of nutrition in the prevention of cardiovascular diseases (CVDs). ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.eclnm.2011.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
110
|
The role of uridine adenosine tetraphosphate in the vascular system. Adv Pharmacol Sci 2011; 2011:435132. [PMID: 22110488 PMCID: PMC3206368 DOI: 10.1155/2011/435132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022] Open
Abstract
The endothelium plays a pivotal role in vascular homeostasis, and endothelial dysfunction is a major feature of cardiovascular diseases, such as arterial hypertension, atherosclerosis, and diabetes. Recently, uridine adenosine tetraphosphate (Up(4)A) has been identified as a novel and potent endothelium-derived contracting factor (EDCF). Up(4)A structurally contains both purine and pyrimidine moieties, which activate purinergic receptors. There is an accumulating body of evidence to show that Up(4)A modulates vascular function by actions on endothelial and smooth muscle cells. In this paper, we discuss the effects of Up(4)A on vascular function and a potential role for Up(4)A in cardiovascular diseases.
Collapse
|
111
|
Quantifying the evolution of vascular barrier disruption in advanced atherosclerosis with semipermeant nanoparticle contrast agents. PLoS One 2011; 6:e26385. [PMID: 22028868 PMCID: PMC3196552 DOI: 10.1371/journal.pone.0026385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/26/2011] [Indexed: 12/13/2022] Open
Abstract
Rationale Acute atherothrombotic occlusion in heart attack and stroke implies disruption of the vascular endothelial barrier that exposes a highly procoagulant intimal milieu. However, the evolution, severity, and pathophysiological consequences of vascular barrier damage in atherosclerotic plaque remain unknown, in part because quantifiable methods and experimental models are lacking for its in vivo assessment. Objective To develop quantitative nondestructive methodologies and models for detecting vascular barrier disruption in advanced plaques. Methods and Results Sustained hypercholesterolemia in New Zealand White (NZW) rabbits for >7–14 months engendered endothelial barrier disruption that was evident from massive and rapid passive penetration and intimal trapping of perfluorocarbon-core nanoparticles (PFC-NP: ∼250 nm diameter) after in vivo circulation for as little as 1 hour. Only older plaques (>7 mo), but not younger plaques (<3 mo) demonstrated the marked enhancement of endothelial permeability to these particles. Electron microscopy revealed a complex of subintimal spongiform channels associated with endothelial apoptosis, superficial erosions, and surface-penetrating cholesterol crystals. Fluorine (19F) magnetic resonance imaging and spectroscopy (MRI/MRS) enabled absolute quantification (in nanoMolar) of the passive permeation of PFC-NP into the disrupted vascular lesions by sensing the unique spectral signatures from the fluorine core of plaque-bound PFC-NP. Conclusions The application of semipermeant nanoparticles reveals the presence of profound barrier disruption in later stage plaques and focuses attention on the disrupted endothelium as a potential contributor to plaque vulnerability. The response to sustained high cholesterol levels yields a progressive deterioration of the vascular barrier that can be quantified with fluorine MRI/MRS of passively permeable nanostructures. The possibility of plaque classification based on the metric of endothelial permeability to nanoparticles is suggested.
Collapse
|
112
|
Anraku M, Takeuchi K, Watanabe H, Kadowaki D, Kitamura K, Tomita K, Kuniyasu A, Suenaga A, Maruyama T, Otagiri M. Quantitative Analysis of Cysteine-34 On the Anitioxidative Properties of Human Serum Albumin in Hemodialysis Patients. J Pharm Sci 2011; 100:3968-76. [DOI: 10.1002/jps.22571] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/01/2011] [Accepted: 03/16/2011] [Indexed: 12/16/2022]
|
113
|
Wang N, Han Y, Tao J, Huang M, You Y, Zhang H, Liu S, Zhang X, Yan C. Overexpression of CREG attenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway. Atherosclerosis 2011; 218:543-51. [PMID: 21872252 DOI: 10.1016/j.atherosclerosis.2011.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022]
Abstract
AIMS Cellular repressor of E1A-stimulated genes (CREG) is a homeostasis-modulating gene abundantly expressed in adult artery endothelium. Previous studies have demonstrated a protective effect of CREG against atherosclerosis through prevention of vascular smooth muscle cell apoptosis. However, the role of CREG in endothelial cells (ECs) apoptosis and the underlying signaling mechanisms are unknown. METHOD AND RESULTS We ascertained that CREG expression was decreased in atherogenesis-prone endothelium in apolipoprotein E-null (apoE(-/-)) mice compared with their wild-type littermates using in situ immunofluorescent staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) staining and caspase-3 activity assays determined that treatment of apoE(-/-) mice arteries with staurosporine (STS) significantly induced endothelial apoptosis associated with a reduction of CREG expression. Gain- and loss-of-function analyses revealed that silencing CREG expression significantly enhanced ECs apoptosis, whereas CREG overexpression abrogated apoptosis stimulated by STS or etoposide (VP-16). Blocking assays using the neutralizing antibody for vascular endothelial growth factor (VEGF) and the specific inhibitor of phosphoinositide 3-kinase (PI3K), such as LY294002 or wortmannin, demonstrated that the protective effect of CREG on ECs apoptosis was mainly mediated by activation of the VEGF/PI3K/AKT signaling pathway. CONCLUSIONS These data demonstrate that CREG plays a critical role in protecting the vascular endothelium from apoptosis, and the protective effort of CREG against ECs apoptosis is through the activation of the VEGF/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Na Wang
- Department of Cardiology, Cardiovascular Research Institute, Shenyang Northern Hospital, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Anraku M, Michihara A, Yasufuku T, Akasaki K, Tsuchiya D, Nishio H, Maruyama T, Otagiri M, Maezaki Y, Kondo Y, Tomida H. The antioxidative and antilipidemic effects of different molecular weight chitosans in metabolic syndrome model rats. Biol Pharm Bull 2011; 33:1994-8. [PMID: 21139239 DOI: 10.1248/bpb.33.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of high and low molecular weight chitosans (HMC; 1000 kDa, LMC; 30 kDa) on oxidative stress and hypercholesterolemia was investigated using male 6-week-old Wistar Kyoto rats as a normal model (Normal-rats) and spontaneously hypertensive rat/ND mcr-cp (SHP/ND) as a metabolic syndrome model (MS-rats), respectively. In Normal-rats, the ingestion of both chitosans over a 4 week period resulted in a significant decrease in total body weight (BW), glucose (Gl), triglyceride (TG), low density lipoprotein (LDL) and serum creatinine (Cre) levels. The ingestion of both chitosans also resulted in a lowered ratio of oxidized to reduced albumin and an increase in total plasma antioxidant activity. In addition to similar results in Normal-rats, the ingestion of only HMC over a 4 week period resulted in a significant decrease in total cholesterol levels in MS-rats. Further, the ingestion of LMC resulted in a significantly higher antioxidant activity than was observed for HMC in both rat models. In in vitro studies, LMC caused a significantly higher reduction in the levels of two stable radicals, compared to HMC, and the effect was both dose- and time-dependent. The findings also show that LDL showed strong binding in the case of HMC. These results suggest that LMC has a high antioxidant activity as well as antilipidemic effects, while HMC results in a significant reduction in the levels of pro-oxidants such as LDL in the gastrointestinal tract, thereby inhibiting the subsequent development of oxidative stress in the systemic circulation in metabolic model rats.
Collapse
|
115
|
Li W, Ghosh M, Eftekhari S, Yuan XM. Lipid accumulation and lysosomal pathways contribute to dysfunction and apoptosis of human endothelial cells caused by 7-oxysterols. Biochem Biophys Res Commun 2011; 409:711-6. [DOI: 10.1016/j.bbrc.2011.05.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 11/26/2022]
|
116
|
Badimon L, Storey RF, Vilahur G. Update on lipids, inflammation and atherothrombosis. Thromb Haemost 2011; 105 Suppl 1:S34-42. [PMID: 21479344 DOI: 10.1160/ths10-11-0717] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is an inflammatory disease that involves the arterial wall and is characterised by the progressive accumulation of lipids in the vessel wall. The first step is the internalisation of lipids (LDL) in the intima with endothelial activation which enhances the permeability of the endothelial layer and the expression of cytokines/chemokines and adhesion molecules. These events increase LDL particles accumulation in the extracellular matrix where they aggregate/fuse, are retained by proteoglycans and become targets for oxidative and enzymatic modifications. In turn, retained pro-atherogenic LDLs enhance selective leukocyte recruitment and attachment to the endothelial layer inducing their transmigration across the endothelium into the intima. While smooth muscle cell numbers decline with the severity of plaque progression, monocytes differentiate into macrophages, a process associated with the upregulation of pattern recognition receptors including scavenger receptors and Toll-like receptors leading to foam cell formation. Foam cells release growth factors, cytokines, metalloproteinases and reactive oxygen species all of which perpetuate and amplify the vascular remodelling process. In addition, macrophages release tissue factor that, upon plaque rupture, contributes to thrombus formation. Smooth muscle cells exposed in eroded lesions are also able to internalise LDL through LRP-1 receptors acquiring a pro-thrombotic phenotype and releasing tissue factor. Platelets recognise ligands in the ruptured or eroded atherosclerotic plaque, initiate platelet activation and aggregation leading to thrombosis and to the clinical manifestation of the atherothrombotic disease. Additionally, platelets contribute to the local inflammatory response and may also participate in progenitor cell recruitment.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center, c/Sant Antoni Ma. Claret 167, Barcelona, Spain.
| | | | | |
Collapse
|
117
|
Xiang Y, Li Q, Li M, Wang W, Cui C, Zhang J. Ghrelin inhibits AGEs-induced apoptosis in human endothelial cells involving ERK1/2 and PI3K/Akt pathways. Cell Biochem Funct 2011; 29:149-55. [PMID: 21370247 DOI: 10.1002/cbf.1736] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 02/05/2023]
Abstract
Endothelial dysfunction caused by cell apoptosis is thought to be a major cause of diabetic vascular complications. Advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic vascular complications by inducing apoptosis of endothelial cells. The aim of this study was to explore the effect of ghrelin on AGEs-induced apoptosis in cultured human umbilical vein endothelial cells (HUVECs) and the potential mechanisms involved in this process. Exposure to AGEs (200 mg l(-1) ) for 48 h caused a significant increase in cell apoptosis, while pretreatment with ghrelin eliminated AGEs-induced apoptosis in HUVECs, as evaluated by MTT assays, flow cytometry and Hoechst 33258 staining. The induction of caspase-3 activation was also prevented by ghrelin in cells incubated with AGEs. Exposure to ghrelin (10(-6) M) resulted in a rapid activation of extracellular signal-regulated protein kinase (ERK)1/2 and Akt. The inhibitory effect of ghrelin on caspase-3 activity was attenuated by inhibitors of ERK1/2 (PD98059), PI3K/Akt (LY294002) and growth hormone secretagogue receptor (GHSR)-1a (D-Lys(3) -growth hormone releasing peptide-6). The results of this study indicated that ghrelin could inhibit AGEs-mediated cell apoptosis via the ERK1/2 and PI3K/Akt pathways and GHSR-1a was also involved in the protective action of ghrelin in HUVECs. As such, ghrelin demonstrates significant potential for preventing diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Ying Xiang
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
118
|
Fenyo IM, Florea IC, Raicu M, Manea A. Tyrphostin AG490 reduces NAPDH oxidase activity and expression in the aorta of hypercholesterolemic apolipoprotein E-deficient mice. Vascul Pharmacol 2011; 54:100-6. [DOI: 10.1016/j.vph.2011.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/01/2011] [Accepted: 03/24/2011] [Indexed: 11/28/2022]
|
119
|
Bai Q, Xu L, Kakiyama G, Runge-Morris MA, Hylemon PB, Yin L, Pandak WM, Ren S. Sulfation of 25-hydroxycholesterol by SULT2B1b decreases cellular lipids via the LXR/SREBP-1c signaling pathway in human aortic endothelial cells. Atherosclerosis 2011; 214:350-6. [PMID: 21146170 PMCID: PMC3031658 DOI: 10.1016/j.atherosclerosis.2010.11.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 11/15/2022]
Abstract
OBJECTIVE 25-Hydroxycholesterol (25HC) and its sulfated metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), regulate certain aspects of lipid metabolism in opposite ways. Hence, the enzyme for the biosynthesis of 25HC3S, oxysterol sulfotransferase (SULT2B1b), may play a crucial role in regulating lipid metabolism. We evaluate the effect of 25HC sulfation on lipid metabolism by overexpressing the gene encoding SULT2B1b in human aortic endothelial cells (HAECs) in culture. METHODS AND RESULTS The human SULT2B1b gene was successfully overexpressed in HAECs following infection using a recombinant adenovirus. HPLC analysis demonstrated that more than 50% of (3)H-25HC was sulfated in 24h following overexpression of the SULT2B1b gene. In the presence of 25HC, SULT2B1b overexpression significantly decreased mRNA and protein levels of LXR, ABCA1, SREBP-1c, ACC-1, and FAS, which are key regulators of lipid biosynthesis and transport; and subsequently reduced cellular lipid levels. Overexpression of the gene encoding SULT2B1b gave similar results as adding exogenous 25HC3S. However, in the absence of 25HC or in the presence of T0901317, synthetic liver oxysterol receptor (LXR) agonist, SULT2B1b overexpression had no effect on the regulation of key genes involved in lipid metabolism. CONCLUSIONS Our data indicate that sulfation of 25HC by SULT2B1b plays an important role in the maintenance of intracellular lipid homeostasis via the LXR/SREBP-1c signaling pathway in HAECs.
Collapse
Affiliation(s)
- Qianming Bai
- Department of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, 23249
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China 200032
| | - Leyuan Xu
- Department of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, 23249
| | - Genta Kakiyama
- Department of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, 23249
| | | | - Phillip B. Hylemon
- Department of Microbiology/Immunology, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, 23249
| | - Lianhua Yin
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China 200032
| | - William M. Pandak
- Department of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, 23249
| | - Shunlin Ren
- Department of Medicine, Virginia Commonwealth University/Veterans Affairs McGuire Medical Center, Richmond, VA, 23249
- Address correspondence to: Dr. Shunlin Ren, McGuire Veterans Affairs Medical Center/Virginia Commonwealth University, Research 151, 1201 Broad Rock Blvd, Richmond, VA, 23249. Tel. (804) 675-5000 x 4973;
| |
Collapse
|
120
|
Tan Z, Zhou LJ, Li Y, Cui YH, Xiang QL, Lin GP, Wang TH. E₂-BSA activates caveolin-1 via PI₃K/ERK1/2 and lysosomal degradation pathway and contributes to EPC proliferation. Int J Cardiol 2011; 158:46-53. [PMID: 21255851 DOI: 10.1016/j.ijcard.2010.12.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/03/2010] [Accepted: 12/30/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND The mechanism that estrogen (E(2)) increases the number of endothelial progenitor cells (EPC) is largely unknown. Here we used E(2)-conjugated bovine serum albumin (E(2)-BSA, membrane impermeable) to investigate whether the membrane estrogen receptor (mER) and its related protein caveolin-1 (CAV-1) are involved in these processes. METHODS AND RESULTS E(2)-BSA promoted [(3)H]-thymidine incorporation of EPC through increasing CAV-1 expression via mER (ERα, but not ERβ or GPR30). Both cholesterol depletion and CAV-1 knockdown with use of CAV-1 siRNA significantly attenuated E(2)-BSA-induced [(3)H]-thymidine incorporation. Western blot showed that E(2)-BSA increased membrane CAV-1 protein expression 12h after treatment, whereas mRNA levels of CAV-1 were augmented until 24h after E(2)-BSA treatment. Furthermore, pre-incubated EPC with ICI 182780 (a specific ER antagonist), LY 294002 (a selective PI(3)K inhibitor) or PD 98059 (a specific ERK1/2 inhibitor) before E(2)-BSA inhibited the late-stage effect of E(2)-BSA (≥24 h) on up-regulation of CAV-1 mRNA and protein expression. Pulse chase results demonstrated that E(2)-BSA inhibited lysosome-mediated degradation of CAV-1 protein at the early stage (≤12 h), and then resulted in the increased CAV-1 protein. CONCLUSION In the present work we demonstrated that E(2)-BSA promotes EPC proliferation through mER (ERα) in CAV-1-dependent manner: prolonging the stability of CAV-1 protein through quick inhibition of the lysosomal degradation pathway at the early stage (≤12 h) and up-regulating CAV-1 at transcription levels through PI(3)K/ERK1/2 signaling pathway at the late stage (≥24 h). These data indicated that a there is a novel mechanism of E(2)-BSA in the regulation of EPC proliferation through CAV-1.
Collapse
Affiliation(s)
- Zhi Tan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China.
| | | | | | | | | | | | | |
Collapse
|
121
|
Witte I, Horke S. Assessment of endoplasmic reticulum stress and the unfolded protein response in endothelial cells. Methods Enzymol 2011; 489:127-46. [PMID: 21266228 DOI: 10.1016/b978-0-12-385116-1.00008-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the vascular wall, the most inner cell layer that separates the blood from organelles is comprised of only a single layer of endothelial cells (ECs). This cell type is fundamental to a large variety of processes, ranging from blood coagulation and interaction with inflammatory cells to cardiovascular diseases such as hypertension, diabetes, and atherosclerosis. Dysfunction of ECs is often causally linked to these processes such that research exploring such events attracted much attention. Damage of ECs and subsequent disruption of the intact endothelial barrier can result not only from oxidative stress, but also from conditions that stress the endoplasmic reticulum (ER) and induce a signaling pathway termed unfolded protein response (UPR). While its primary goal is to alleviate ER stress, the UPR can also induce cell death. Cultured ECs are often used in in vitro approaches to understand various pathophysiological events, but they behave differently from many other cell types such that cell-type-specific procedures are needed. Here, we describe how ER stress can be induced and assessed in cultured ECs and demonstrate their specific responses to classical ER stress conditions.
Collapse
Affiliation(s)
- Ines Witte
- Institute of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | |
Collapse
|
122
|
Stapleton PA, Goodwill AG, James ME, Brock RW, Frisbee JC. Hypercholesterolemia and microvascular dysfunction: interventional strategies. JOURNAL OF INFLAMMATION-LONDON 2010; 7:54. [PMID: 21087503 PMCID: PMC2996379 DOI: 10.1186/1476-9255-7-54] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 11/18/2010] [Indexed: 11/10/2022]
Abstract
Hypercholesterolemia is defined as excessively high plasma cholesterol levels, and is a strong risk factor for many negative cardiovascular events. Total cholesterol levels above 200 mg/dl have repeatedly been correlated as an independent risk factor for development of peripheral vascular (PVD) and coronary artery disease (CAD), and considerable attention has been directed toward evaluating mechanisms by which hypercholesterolemia may impact vascular outcomes; these include both results of direct cholesterol lowering therapies and alternative interventions for improving vascular function. With specific relevance to the microcirculation, it has been clearly demonstrated that evolution of hypercholesterolemia is associated with endothelial cell dysfunction, a near-complete abrogation in vascular nitric oxide bioavailability, elevated oxidant stress, and the creation of a strongly pro-inflammatory condition; symptoms which can culminate in profound impairments/alterations to vascular reactivity. Effective interventional treatments can be challenging as certain genetic risk factors simply cannot be ignored. However, some hypercholesterolemia treatment options that have become widely used, including pharmaceutical therapies which can decrease circulating cholesterol by preventing either its formation in the liver or its absorption in the intestine, also have pleiotropic effects with can directly improve peripheral vascular outcomes. While physical activity is known to decrease PVD/CAD risk factors, including obesity, psychological stress, impaired glycemic control, and hypertension, this will also increase circulating levels of high density lipoprotein and improving both cardiac and vascular function. This review will provide an overview of the mechanistic consequences of the predominant pharmaceutical interventions and chronic exercise to treat hypercholesterolemia through their impacts on chronic sub-acute inflammation, oxidative stress, and microvascular structure/function relationships.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV 26506, USA.
| | | | | | | | | |
Collapse
|
123
|
NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology. Cell Tissue Res 2010; 342:325-39. [PMID: 21052718 DOI: 10.1007/s00441-010-1060-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/13/2010] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) are essential mediators of normal cell physiology. However, in the last few decades, it has become evident that ROS overproduction and/or alterations of the antioxidant system associated with inflammation and metabolic dysfunction are key pathological triggers of cardiovascular disorders. NADPH oxidases (Nox) represent a class of hetero-oligomeric enzymes whose primary function is the generation of ROS. In the vasculature, Nox-derived ROS contribute to the maintenance of vascular tone and regulate important processes such as cell growth, proliferation, differentiation, apoptosis, cytoskeletal organization, and cell migration. Under pathological conditions, excessive Nox-dependent ROS formation, which is generally associated with the up-regulation of different Nox subtypes, induces dysregulation of the redox control systems and promotes oxidative injury of the cardiovascular cells. The molecular mechanism of Nox-derived ROS generation and the means by which this class of molecule contributes to vascular damage remain debatable issues. This review focuses on the processes of ROS formation, molecular targets, and neutralization in the vasculature and provides an overview of the novel concepts regarding Nox functions, expression, and regulation in vascular health and disease. Because Nox enzymes are the most important sources of ROS in the vasculature, therapeutic perspectives to counteract Nox-dependent oxidative stress in the cardiovascular system are discussed.
Collapse
|
124
|
|
125
|
Boini KM, Zhang C, Xia M, Han WQ, Brimson C, Poklis JL, Li PL. Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1294-304. [PMID: 20858552 DOI: 10.1016/j.bbalip.2010.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 08/16/2010] [Accepted: 09/14/2010] [Indexed: 02/07/2023]
Abstract
Adipokines have been reported to contribute to glomerular injury during obesity or diabetes mellitus. However, the mechanisms mediating the actions of various adipokines on the kidney remained elusive. The present study was performed to determine whether acid sphingomyelinase (ASM)-ceramide associated lipid raft (LR) clustering is involved in local oxidative stress in glomerular endothelial cells (GECs) induced by adipokines such as visfatin and adiponectin. Using confocal microscopy, visfatin but not adiponectin was found to increase LRs clustering in the membrane of GECs in a dose and time dependent manner. Upon visfatin stimulation ASMase activity was increased, and an aggregation of ASMase product, ceramide and NADPH oxidase subunits, gp91(phox) and p47(phox) was observed in the LR clusters, forming a LR redox signaling platform. The formation of this signaling platform was blocked by prior treatment with LR disruptor filipin, ASMase inhibitor amitriptyline, ASMase siRNA, gp91(phox) siRNA and adiponectin. Corresponding to LR clustering and aggregation of NADPH subunits, superoxide (O(2)(-)) production was significantly increased (2.7 folds) upon visfatin stimulation, as measured by electron spin resonance (ESR) spectrometry. Functionally, visfatin significantly increased the permeability of GEC layer in culture and disrupted microtubular networks, which were blocked by inhibition of LR redox signaling platform formation. In conclusion, the injurious effect of visfatin, but not adiponectin on the glomerular endothelium is associated with the formation of LR redox signaling platforms via LR clustering, which produces local oxidative stress resulting in the disruption of microtubular networks in GECs and increases the glomerular permeability.
Collapse
Affiliation(s)
- Krishna M Boini
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Ivan L, Antohe F. Hyperlipidemia induces endothelial-derived foam cells in culture. J Recept Signal Transduct Res 2010; 30:106-14. [PMID: 20196626 DOI: 10.3109/10799891003630606] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Endothelial cells (ECs) play a major role in the pathophysiology of various diseases, conditions in which stress proteins are most probably involved. Both in humans and in experimental models, hyperlipidemia induces early alterations of plasma components that in turn have a profound effect on EC. Activated ECs change their basal characteristics becoming more permeable to lipoproteins, increasing the synthesis of their basal lamina, and express new adhesion molecules; the cells are "activated". In lesion-prone areas, the ECs are the first cells to experience the impact of hyperlipidemia. In this study, human ECs were activated by exposure to serum from hyperlipidemic human subjects. In this condition, the EC gradually become loaded with lipid droplets and turn into endothelial-derived foam cells. The EC-derived foam cells express adhesion molecules (VCAM-1, VLA-4), show enhanced intracellular Ca(2+) release, and demonstrate high level of heat shock proteins (Hsp27, Hsp70, and Hsp90). In this study, we bring evidence that the EC-derived foam cells in culture proved to be an useful model to identify the multiple changes induced in activated ECs under hyperlipidemic stress. On the basis of these considerations, future studies using this model system will help to elucidate the molecular basis of the modulator role of molecular chaperones (Hsp) in atherosclerosis under various environmental conditions.
Collapse
Affiliation(s)
- Luminita Ivan
- Institute of Cellular Biology and Pathology N. Simionescu, Bucharest, Romania.
| | | |
Collapse
|
127
|
Manea A, Tanase LI, Raicu M, Simionescu M. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochem Biophys Res Commun 2010; 396:901-7. [PMID: 20457132 DOI: 10.1016/j.bbrc.2010.05.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-kappaB (NF-kappaB) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-kappaB signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-alpha (TNFalpha), a potent inducer of both Nox and NF-kappaB, up to 24h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-kappaB pathway reduced significantly the TNFalpha-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-kappaB elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-kappaB significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-kappaB proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-kappaB is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-kappaB and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.
Collapse
Affiliation(s)
- Adrian Manea
- Institute of Cellular Biology and Pathology Nicolae Simionescu, 8, B.P. Hasdeu Street, Bucharest, P.O. Box 35-14, Romania.
| | | | | | | |
Collapse
|
128
|
|
129
|
Koenen RR, Weber C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat Rev Drug Discov 2010; 9:141-53. [PMID: 20118962 DOI: 10.1038/nrd3048] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall that is characterized by a disturbed equilibrium of immune responses and lipid accumulation, leading to the development of plaques. The atherogenic influx of mononuclear cells is orchestrated by chemokines and their receptors. Studies using gene-deficient mice and antagonists based on peptides and small molecules have generated insight into targeting chemokine-receptor axes for treating atherosclerosis, which might complement lipid-lowering strategies and risk factor modulation. Combined inhibition of multiple chemokine axes could interfere with the contributions of chemokines to disease progression at specific cells, stages or sites. In addition, the recently characterized heterophilic interactions of chemokines might present a novel target for the treatment and prevention of inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Rory R Koenen
- The Institute for Molecular Cardiovascular Research, Uni ver sitäts klinikum Aachen, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Pauwelsstrasse 30, 52074 Aachen, Germany
| | | |
Collapse
|
130
|
Abstract
Atherosclerosis and thrombosis associated with the rupture of vulnerable plaque are the main causes of cardiovascular events, including acute coronary syndrome. Low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherothrombotic processes. LDLs modify the antithrombotic properties of the vascular endothelium and change vessel contractility by reducing the availability of endothelial nitric oxide and activating proinflammatory signaling pathways. In addition, LDLs also influence the functions and interactions of cells present in atherosclerotic lesions, whether they come from the circulation or are resident in vessel walls. In fact, LDLs entering affected vessels undergo modifications (e.g. oxidation, aggregation and glycosylation) that potentiate their atherogenic properties. Once modified, these intravascular LDLs promote the formation of foam cells derived from smooth muscle cells and macrophages, thereby increasing the vulnerability of atherosclerotic plaque. Moreover, they also increase the thrombogenicity of both plaque and blood, in which circulating tissue factor levels are raised and platelet reactivity is enhanced. This review focuses on the importance of native and modified LDL for the pathogenesis of atherothrombosis. It also discusses current studies on LDL and its effects on the actions of vascular cells and blood cells, particularly platelets, and considers novel potential therapeutic targets.
Collapse
Affiliation(s)
- Lina Badimón
- Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau Barcelona, España.
| | | | | |
Collapse
|
131
|
Affiliation(s)
| | - Akira Yamashina
- Second Department of Internal Medicine, Tokyo Medical University
| |
Collapse
|
132
|
Cui X, Kushiyama A, Yoneda M, Nakatsu Y, Guo Y, Zhang J, Ono H, Kanna M, Sakoda H, Ono H, Kikuchi T, Fujishiro M, Shiomi M, Kamata H, Kurihara H, Kikuchi M, Kawazu S, Nishimura F, Asano T. Macrophage foam cell formation is augmented in serum from patients with diabetic angiopathy. Diabetes Res Clin Pract 2010; 87:57-63. [PMID: 19939487 DOI: 10.1016/j.diabres.2009.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 10/18/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
The differentiation of macrophages into cytokine-secreting foam cells plays a critical role in the development of diabetic angiopathy. J774.1, a murine macrophage cell line, reportedly differentiates into foam cells when incubated with oxidized LDL, ApoE-rich VLDL or WHHLMI (myocardial infarction-prone Watanabe heritable hyperlipidemic) rabbit serum. In this study, serum samples from Type 2 diabetic patients were added to the medium with J774.1 cells and the degree of foam cell induction was quantified by measuring lipid accumulation. These values were calculated relative to the activities of normal and WHHLMI rabbit sera as 0% and 100%, respectively, and termed the MMI (Macrophage Maturation Index). These MMI values reflected intracellular lipids, including cholesteryl ester assayed by GC/MS. Statistical analysis revealed MMI to correlate positively and independently with serum triglycerides, the state of diabetic retinopathy, nephropathy and obesity, but negatively with administration of alpha-glucosidase inhibitors or thiazolidinediones. Taken together, our results suggest that this novel assay may be applicable to the identification of patients at risk for rapidly progressive angiopathic disorders.
Collapse
Affiliation(s)
- Xinglong Cui
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Similar effects of resistin and high glucose on P-selectin and fractalkine expression and monocyte adhesion in human endothelial cells. Biochem Biophys Res Commun 2009; 391:1443-8. [PMID: 20034466 DOI: 10.1016/j.bbrc.2009.12.089] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/16/2009] [Indexed: 11/23/2022]
Abstract
Resistin and high glucose (HG) are concomitantly present at elevated concentration in diabetic's plasma; both are pro-inflammatory agents acting on vascular cells by mechanisms that are not fully understood. We questioned whether resistin and HG affect the expression of major adhesion molecules, P-selectin and fractalkine in human endothelial cells (HEC). The results showed that in HEC (i) resistin increased P-selectin expression; (ii) HG up-regulated Fk expression; (iii) P-selectin and fractalkine were functional increasing monocyte adhesion to activated cells. Co-stimulation with resistin and HG increased P-selectin and fractalkine mRNA and protein and induced monocyte adhesion, generated an increase in NADPH oxidase activity and of the intracellular reactive oxygen species and activated the NF-kB and AP-1 transcription factors at similar values as those of each activator. In conclusion in HEC, resistin and HG induce the up-regulation of P-selectin and fractalkine and the ensuing increased monocyte adhesion by a mechanism involving oxidative stress and NF-kB and AP-1 activation.
Collapse
|
134
|
Simionescu M. Cellular dysfunction in inflammatory-related vascular disorders' review series. The inflammatory process: a new dimension of a 19 century old story. J Cell Mol Med 2009; 13:4291-2. [PMID: 19968737 PMCID: PMC4515046 DOI: 10.1111/j.1582-4934.2009.00979.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Maya Simionescu
- Institute of Cellular Biology and Pathology, Nicolae SimionescuBucharest, Romania
- * Correspondence to: Maya SIMIONESCU, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania. Tel.: 4021-319-45-18 Fax: 4021-319-45-19 E-mail:
| |
Collapse
|
135
|
Abstract
The initial event in atherogenesis is the increased transcytosis of low density lipoprotein, and its subsequent deposition, retention and modification in the subendothelium. It is followed by the infiltration of activated inflammatory cells from the coronary circulation into the arterial wall. There they secrete reactive oxygen species (ROS) and produce oxidized lipoproteins capable of inducing endothelial cell apoptosis, and thereby plaque erosion. Activated T lymphocytes, macrophages and mast cells, accumulate in the eroded plaque where they secrete a variety of proteases capable of inducing degradation of extracellular proteins, thereby rendering the plaques more prone to rupture. This review summarizes the recent advancements in the understanding of the roles of ROS and oxidized lipoproteins in the activation of inflammatory cells and inducing signalling pathways related to cell death and apoptosis. In addition, it presents evidence that this vicious circle between oxidative stress and inflammation does not only occur in the diseased arterial wall, but also in adipose tissues. There, oxidative stress and inflammation impair adipocyte maturation resulting in defective insulin action and adipocytokine signalling. The latter is associated with increased infiltration of inflammatory cells, loss of anti-oxidant protection and cell death in the arterial wall.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
136
|
Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis. FASEB J 2009; 25:2515-27. [PMID: 19968738 DOI: 10.1096/fj.11-181149] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The initial event in atherogenesis is the increased transcytosis of low density lipoprotein, and its subsequent deposition, retention and modification in the subendothelium. It is followed by the infiltration of activated inflammatory cells from the coronary circulation into the arterial wall. There they secrete reactive oxygen species (ROS) and produce oxidized lipoproteins capable of inducing endothelial cell apoptosis, and thereby plaque erosion. Activated T lymphocytes, macrophages and mast cells, accumulate in the eroded plaque where they secrete a variety of proteases capable of inducing degradation of extracellular proteins, thereby rendering the plaques more prone to rupture. This review summarizes the recent advancements in the understanding of the roles of ROS and oxidized lipoproteins in the activation of inflammatory cells and inducing signalling pathways related to cell death and apoptosis. In addition, it presents evidence that this vicious circle between oxidative stress and inflammation does not only occur in the diseased arterial wall, but also in adipose tissues. There, oxidative stress and inflammation impair adipocyte maturation resulting in defective insulin action and adipocytokine signalling. The latter is associated with increased infiltration of inflammatory cells, loss of anti-oxidant protection and cell death in the arterial wall.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
137
|
Parkington HC, Coleman HA, Wintour EM, Tare M. Prenatal alcohol exposure: implications for cardiovascular function in the fetus and beyond. Clin Exp Pharmacol Physiol 2009; 37:e91-8. [PMID: 19930419 DOI: 10.1111/j.1440-1681.2009.05342.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The effects of heavy maternal alcohol consumption during pregnancy on cognitive and behavioural performance and craniofacial malformations in the offspring have been studied extensively. In contrast, the impact of maternal alcohol intake on the cardiovascular system of the offspring and the effects of more modest consumption have received very scant consideration. 2. Adverse conditions in the pre- and neonatal periods can have a profound legacy on offspring health, including the risk of cardiovascular disease. Prenatal alcohol exposure can modulate vascular reactivity, including endothelial and smooth muscle function. 3. Other effects of prenatal alcohol exposure are emerging, including impairment of nephrogenesis and kidney function and increased arterial stiffness. The impact of even modest prenatal alcohol exposure on cardiovascular health in the offspring remains to be determined. 4. It is envisaged that the culmination of reduced renal and vascular capacity will render the offspring more vulnerable to cardiovascular disease with ageing and exposure to additional insults and lifestyle factors.
Collapse
Affiliation(s)
- Helena C Parkington
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
138
|
Aidagulova SV, Zhornik TM, Nepomnyashchikh DL, Marinkin IO, Vinogradova EV, Nokhrina ZV. Ultrastructural modification of the endothelium in placental insufficiency and microangiopathies. Bull Exp Biol Med 2009; 147:650-4. [PMID: 19907761 DOI: 10.1007/s10517-009-0590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structural reorganization of endotheliocytes was studied on models of various pathological processes: placental dysfunction, glomerular pathology, vibration syndrome, antiphospholipid syndrome, and diffuse angiokeratoma, all of these characterized by endothelial insufficiency. Universal modification of endothelial associations was revealed. It included a chain of stereotypical reactions: from degeneration alternating with compensatory hypertrophy to subsequent atrophy and death of endotheliocytes. The time course of the process was confirmed by the results of light microscopy in combination with ultrastructural examination and by evaluation of the biosynthetic reactions by in vitro radioautography.
Collapse
Affiliation(s)
- S V Aidagulova
- Institute of Regional Pathology and Pathomorphology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | | | | | | | |
Collapse
|
139
|
Civelek M, Grant GR, Irolla CR, Shi C, Riley RJ, Chiesa OA, Stoeckert CJ, Karanian JW, Pritchard WF, Davies PF. Prelesional arterial endothelial phenotypes in hypercholesterolemia: universal ABCA1 upregulation contrasts with region-specific gene expression in vivo. Am J Physiol Heart Circ Physiol 2009; 298:H163-70. [PMID: 19897713 DOI: 10.1152/ajpheart.00652.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis originates as focal arterial lesions having a predictable distribution to regions of bifurcations, branches, and inner curvatures where blood flow characteristics are complex. Distinct endothelial phenotypes correlate with regional hemodynamics. We propose that systemic risk factors modify regional endothelial phenotype to influence focal susceptibility to atherosclerosis. Transcript profiles of freshly isolated endothelial cells from three atherosusceptible and three atheroprotected arterial regions in adult swine were analyzed to determine the initial prelesional effects of hypercholesterolemia on endothelial phenotypes in vivo. Cholesterol efflux transporter ATP-binding cassette transporter A1 (ABCA1) was upregulated at all sites in response to short-term high-fat diet. Proinflammatory and antioxidative endothelial gene expression profiles were induced in atherosusceptible and atheroprotected regions, respectively. However, markers for endoplasmic reticulum stress, a signature of susceptible endothelial phenotype, were not further enhanced by brief hypercholesterolemia. Both region-specific and ubiquitous (ABCA1) phenotype changes were identified as early prelesional responses of the endothelium to hypercholesterolemia.
Collapse
Affiliation(s)
- Mete Civelek
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Borradaile NM, Pickering JG. Polyploidy impairs human aortic endothelial cell function and is prevented by nicotinamide phosphoribosyltransferase. Am J Physiol Cell Physiol 2009; 298:C66-74. [PMID: 19846757 DOI: 10.1152/ajpcell.00357.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyploid endothelial cells are found in aged and atherosclerotic arteries. However, whether increased chromosome content has an impact on endothelial cell function is unknown. We show here that human aortic endothelial cells become tetraploid as they approach replicative senescence. Furthermore, accumulation of tetraploid endothelial cells was accelerated during growth in high glucose. Interestingly, induction of polyploidy was completely prevented by modest overexpression of the NAD+ regenerating enzyme, nicotinamide phosphoribosyltransferase (Nampt). To determine the impact of polyploidy on endothelial cell function, independent of replicative senescence, we induced tetraploidy using the spindle poison, nocodazole. Global gene expression analyses of tetraploid endothelial cells revealed a dysfunctional phenotype characterized by a cell cycle arrest profile (decreased CCNE2/A2, RBL1, BUB1B; increased CDKN1A) and increased expression of genes involved in inflammation (IL32, TNFRSF21/10C, PTGS1) and extracellular matrix remodeling (COL5A1, FN1, MMP10/14). The protection from polyploidy conferred by Nampt was not associated with enhanced poly(ADP-ribose) polymerase-1 or sirtuin (SIRT) 2 activity, but with increased SIRT1 activity, which reduced cellular reactive oxygen species and the associated oxidative stress stimulus for the induction of polyploidy. We conclude that human aortic endothelial cells are prone to chromosome duplication that, in and of itself, can induce characteristics of endothelial dysfunction. Moreover, the emergence of polyploid endothelial cells during replicative aging and glucose overload can be prevented by optimizing the Nampt-SIRT1 axis.
Collapse
Affiliation(s)
- Nica M Borradaile
- London Health Sciences Centre, 339 Windermere Rd., London, Ontario, Canada N6A 5A5
| | | |
Collapse
|
141
|
Manea A, Tanase LI, Raicu M, Simionescu M. Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 2009; 30:105-12. [PMID: 19834108 DOI: 10.1161/atvbaha.109.193896] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Oxidative stress mediated by Nox1- and Nox4-based NADPH oxidase (Nox) plays a key role in vascular diseases. The molecular mechanisms involved in the regulation of Nox are not entirely elucidated. Because JAK/STAT regulates many genes linked to inflammation, cell proliferation, and differentiation, we questioned whether this pathway is involved in the regulation of Nox1 and Nox4 in human aortic smooth muscle cells (SMCs). METHODS AND RESULTS Cultured SMCs were exposed to interferon gamma (IFNgamma) for 24 hours. Using lucigenin-enhanced chemiluminescence and dihydroethidium assays, real-time polymerase chain reaction, and Western blot analysis, we found that JAK/STAT inhibitors significantly diminished the IFNgamma-dependent upregulation of Nox activity, Nox1 and Nox4 expression. In silico analysis revealed the presence of highly conserved GAS elements within human Nox1, Nox4, p22phox, p47phox, and p67phox promoters. Transient overexpression of STAT1/STAT3 augmented the promoter activities of each subunit. JAK/STAT blockade reduced the Nox subunits transcription. Chromatin immunoprecipitation demonstrated the physical interaction of STAT1/STAT3 proteins with the predicted GAS elements from Nox1 and Nox4 promoters. CONCLUSIONS JAK/STAT is a key regulator of Nox1 and Nox4 in human vascular SMCs. Inhibition of JAK/STAT pathway and the consequent Nox-dependent oxidative stress may be an efficient therapeutic strategy to reduce atherogenesis.
Collapse
Affiliation(s)
- Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 8, BP Hasdeu St, Bucharest, PO Box 35-14, Romania
| | | | | | | |
Collapse
|
142
|
|
143
|
Heparin cofactor II in atherosclerotic lesions from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Exp Mol Pathol 2009; 87:178-83. [PMID: 19747479 DOI: 10.1016/j.yexmp.2009.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 09/03/2009] [Indexed: 11/21/2022]
Abstract
Heparin cofactor II (HCII) is a serine protease inhibitor (serpin) that has been shown to be a predictor of decreased atherosclerosis in the elderly and protective against atherosclerosis in mice. HCII inhibits thrombin in vitro and HCII-thrombin complexes have been detected in human plasma. Moreover, the mechanism of protection against atherosclerosis in mice was determined to be the inhibition of thrombin. Despite this evidence, the presence of HCII in human atherosclerotic tissue has not been reported. In this study, using samples of coronary arteries obtained from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, we explore the local relationship between HCII and (pro)thrombin in atherosclerosis. We found that HCII and (pro)thrombin are co-localized in the lipid-rich necrotic core of atheromas. A significant positive correlation between each protein and the severity of the atherosclerotic lesion was present. These results suggest that HCII is in a position to inhibit thrombin in atherosclerotic lesions where thrombin can exert a proatherogenic inflammatory response. However, these results should be tempered by the additional findings from this, and other studies, that indicate the presence of other plasma proteins (antithrombin, albumin, and alpha(1)-protease inhibitor) in the same localized region of the atheroma.
Collapse
|
144
|
von Eckardstein A, Rohrer L. Transendothelial lipoprotein transport and regulation of endothelial permeability and integrity by lipoproteins. Curr Opin Lipidol 2009; 20:197-205. [PMID: 19395962 DOI: 10.1097/mol.0b013e32832afd63] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Previously, the endothelium was considered as a passive exchange barrier of lipoproteins between plasma and extravascular tissues. This dogma is challenged by recent findings on a dual relationship between lipoproteins and endothelial permeability. RECENT FINDINGS LDL and HDL as well as apolipoprotein A-I pass the intact endothelium through transcytosis by processes, which involve caveolin-1, the LDL-receptor, ATP-binding cassette transporters A1 and G1 or scavenger receptor BI. Moreover, HDL help the endothelium to maintain structural integrity and hence selective permeability for biomolecules by keeping interendothelial junctions closed, by inhibiting endothelial cell apoptosis and by stimulating endothelial proliferation, migration and tube formation as well as the recruitment and differentiation of endothelial progenitor cells in damaged parts of the endothelium. Both apolipoprotein A-I and sphingosin-1-phosphate mediate many of the protective effects of HDL on the endothelium by interacting with endothelial scavenger receptor BI and sphingosin-1-phosphate receptors, respectively, and by activating intracellular signalling cascades, including the small G protein Rac, src-kinase, phosphoinositol 3 kinase, protein kinase B (Akt) and mitogen-activated protein kinases. SUMMARY The endothelium actively controls the trafficking of lipoproteins between intravascular and extravascular compartments. In addition, lipoproteins affect the integrity and permeability of the endothelium.
Collapse
Affiliation(s)
- Arnold von Eckardstein
- Institute of Clinical Chemistry and Zurich Centre for Integrative Human Physiology, University Hospital and University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
145
|
Noschka E, Vandenplas ML, Hurley DJ, Moore JN. Temporal aspects of laminar gene expression during the developmental stages of equine laminitis. Vet Immunol Immunopathol 2009; 129:242-53. [DOI: 10.1016/j.vetimm.2008.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
146
|
Martín de Llano JJ, Fuertes G, Torró I, García Vicent C, Fayos JL, Lurbe E. Birth weight and characteristics of endothelial and smooth muscle cell cultures from human umbilical cord vessels. J Transl Med 2009; 7:30. [PMID: 19393064 PMCID: PMC2680391 DOI: 10.1186/1479-5876-7-30] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/24/2009] [Indexed: 11/13/2022] Open
Abstract
Background Low birth weight has been related to an increased risk for developing high blood pressure in adult life. The molecular and cellular analysis of umbilical cord artery and vein may provide information about the early vascular characteristics of an individual. We have assessed several phenotype characteristics of the four vascular cell types derived from human umbilical cords of newborns with different birth weight. Further follow-up studies could show the association of those vascular properties with infancy and adulthood blood pressure. Methods Endothelial and smooth muscle cell cultures were obtained from umbilical cords from two groups of newborns of birth weight less than 2.8 kg or higher than 3.5 kg. The expression of specific endothelial cell markers (von Willebrand factor, CD31, and the binding and internalization of acetylated low-density lipoprotein) and the smooth muscle cell specific α-actin have been evaluated. Cell culture viability, proliferation kinetic, growth fraction (expression of Ki67) and percentage of senescent cells (detection of β-galactosidase activity at pH 6.0) have been determined. Endothelial cell projection area was determined by morphometric analysis of cell cultures after CD31 immunodetection. Results The highest variation was found in cell density at the confluence of endothelial cell cultures derived from umbilical cord arteries (66,789 ± 5,093 cells/cm2 vs. 45,630 ± 11,927 cells/cm2, p < 0.05). Morphometric analysis indicated that the projection area of the artery endothelial cells (1,161 ± 198 and 1,544 ± 472 μm2, p < 0.05), but not those derived from the vein from individuals with a birth weight lower than 2.8 kg was lower than that of cells from individuals with a birth weight higher than 3.5 kg. Conclusion The analysis of umbilical cord artery endothelial cells, which demonstrated differences in cell size related to birth weight, can provide hints about the cellular and molecular links between lower birth weight and increased adult high blood pressure risk.
Collapse
Affiliation(s)
- José Javier Martín de Llano
- Pediatric Department, Consorcio Hospital General Universitario de Valencia, and CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain.
| | | | | | | | | | | |
Collapse
|
147
|
Roy H, Bhardwaj S, Yla-Herttuala S. Molecular genetics of atherosclerosis. Hum Genet 2009; 125:467-91. [DOI: 10.1007/s00439-009-0654-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/04/2009] [Indexed: 12/17/2022]
|
148
|
Calin MV, Manduteanu I, Dragomir E, Dragan E, Nicolae M, Gan AM, Simionescu M. Effect of depletion of monocytes/macrophages on early aortic valve lesion in experimental hyperlipidemia. Cell Tissue Res 2009; 336:237-48. [PMID: 19301037 DOI: 10.1007/s00441-009-0765-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/16/2008] [Indexed: 11/24/2022]
Abstract
Monocytes/macrophages are key players throughout atheroma development. The aim of this study was to determine the role of macrophages in lesion formation in heart valves in hyperlipidemia. We examined whether systemic depletion of monocytes/macrophages had a beneficial or adverse effect on the development of lesions in hyperlipemic hamsters injected twice weekly (for 2 months) with clodronate-encapsulated liposomes (H+Lclod), a treatment that selectively induces significant monocyte apoptosis. Hyperlipemic hamsters were employed as controls, as were hyperlipemic hamsters treated with plain liposomes. We assayed serum cholesterol (CH) and triglycerides (TG), the lipid and collagen contents and the size of the valve lesions, the matrix metalloproteinases (MMPs) in the serum and vessel wall, apolipoprotein E (ApoE), interleukin-1beta (IL-1beta), and superoxide anion production. In comparison with controls, H+Lclod hamsters exhibited: (1) increased lipid and collagen accumulation within the lesions, (2) decreased activity of MMP-9 and MMP-2 in sera and aortic homogenates, (3) decreased serum CH and TG and decreased expression of ApoE in sera and liver, (4) reduced expression of IL-1beta in aorta and liver homogenates, and (5) no change in the level of superoxide anion in the aorta. Thus, initially, the presence of the macrophages is beneficial in valvular lesion formation. Depletion of monocytes/macrophages is a two-edged sword having a beneficial effect by decreasing the expression of IL-1beta and MMP activities but an adverse effect by inducing a significant increase in the lipid and collagen content and expansion of valvular lesions.
Collapse
Affiliation(s)
- Manuela Voinea Calin
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania.
| | | | | | | | | | | | | |
Collapse
|
149
|
Eichhorn B, Muller G, Leuner A, Sawamura T, Ravens U, Morawietz H. Impaired vascular function in small resistance arteries of LOX-1 overexpressing mice on high-fat diet. Cardiovasc Res 2009; 82:493-502. [PMID: 19289377 DOI: 10.1093/cvr/cvp089] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS LOX-1 is a major vascular receptor for oxidized low-density lipoprotein (oxLDL). In this study, we analysed the impact of LOX-1 overexpression and high dietary fat intake on vascular function in small resistance arteries. METHODS AND RESULTS Relaxation of mesenteric arteries was measured using a wire myograph. Compared with the control group, mice overexpressing LOX-1 on a high-fat diet (FD) had preserved vascular smooth muscle relaxation, but impaired endothelium-dependent relaxation via NO. Vascular NO availability was decreased by exaggerated formation of reactive oxygen species and decreased endothelial NO synthase expression. Endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation via cytochrome P450 metabolites was increased in LOX-1 + FD animals, but did not completely compensate for the loss of NO. Currents of calcium-activated potassium channels with large conductance (BKCa channels) were measured by the voltage-clamp method. The BKCa current amplitudes were not altered in endothelial cells, but highly increased in vascular smooth muscle cells from resistance arteries of LOX-1-overexpressing mice on FD. BK(Ca) currents were activated by low-dose H2O2 and cytochrome P450 metabolites 11,12-EET and 14,15-EET as EDHF in control mice. CONCLUSION LOX-1 overexpression and FD caused functional changes in endothelial and vascular smooth muscle cells of small resistance arteries.
Collapse
Affiliation(s)
- Birgit Eichhorn
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, University of Technology, Fetscherstr. 74, D-01307 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
150
|
Zhou J, Austin RC. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms. Biofactors 2009; 35:120-9. [PMID: 19449439 DOI: 10.1002/biof.17] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hyperhomocysteinemia (HHcy) is considered an independent risk factor for cardiovascular disease, including ischemic heart disease, stroke, and peripheral vascular disease. Mutations in the enzymes and/or nutritional deficiencies in B vitamins required for homocysteine metabolism can induce HHcy. Studies using genetic- or diet-induced animal models of HHcy have demonstrated a causal relationship between HHcy and accelerated atherosclerosis. Oxidative stress and activation of proinflammatory factors have been proposed to explain the atherogenic effects of HHcy. Recently, HHcy-induced endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have been found to play a role in HHcy-induced atherogenesis. This review will focus on the cellular mechanisms of HHcy in atherosclerosis from both in vivo and in vitro studies. The contributions of ER stress and the UPR in atherogenesis will be emphasized. Results from recent clinical trials assessing the cardiovascular risk of lowering total plasma homocysteine levels and new findings examining the atherogenic role of HHcy in wild-type C57BL/6J mice will also be discussed. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|