101
|
Abstract
Stem cell factor (SCF) and erythropoietin (Epo) effectively support erythroid cell development in vivo and in vitro. We have studied here an SCF/Epo-dependent erythroid progenitor cell from cord blood that can be efficiently amplified in liquid culture to large cell numbers in the presence of SCF, Epo, insulin-like growth factor-1 (IGF-1), dexamethasone, and estrogen. Additionally, by changing the culture conditions and by administration of Epo plus insulin, such progenitor cells effectively undergo terminal differentiation in culture and thereby faithfully recapitulate erythroid cell differentiation in vitro. This SCF/Epo-dependent erythroid progenitor is also present in CD34+ peripheral blood stem cells and human bone marrow and can be isolated, amplified, and differentiated in vitro under the same conditions. Thus, highly homogenous populations of SCF/Epo-dependent erythroid progenitors can be obtained in large cell numbers that are most suitable for further biochemical and molecular studies. We demonstrate that such cells express the recently identified adapter protein p62dok that is involved in signaling downstream of the c-kit/SCF receptor. Additionally, cells express the cyclin-dependent kinase (CDK) inhibitors p21cip1 and p27kip1 that are highly induced when cells differentiate. Thus, the in vitro system described allows the study of molecules and signaling pathways involved in proliferation or differentiation of human erythroid cells.
Collapse
|
102
|
Suzuki J, Kaziro Y, Koide H. Synergistic action of R-Ras and IGF-1 on Bcl-xL expression and caspase-3 inhibition in BaF3 cells: R-Ras and IGF-1 control distinct anti-apoptotic kinase pathways. FEBS Lett 1998; 437:112-6. [PMID: 9804182 DOI: 10.1016/s0014-5793(98)01213-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
R-Ras and insulin-like growth factor-1 (IGF-1) synergistically inhibit apoptosis of BaF3 cells upon interleukin-3 deprivation. To characterize the mechanism of this synergistic inhibition, we examined the effect of R-Ras and IGF-1 on several apoptosis-related proteins. Extracellular signal-regulated kinase (ERK) was activated by IGF-1, but not by R-Ras. In contrast, Akt was activated strongly by R-Ras, but weakly by IGF-1. It was also found that R-Ras and IGF-1 cooperatively induced Bcl-xL expression and inhibited caspase-3 activation.
Collapse
Affiliation(s)
- J Suzuki
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
103
|
Affiliation(s)
- K Kaushansky
- Division of Hematology, University of Washington, Seattle 98195, USA
| |
Collapse
|
104
|
Okajima Y, Matsumura I, Nishiura T, Hashimoto K, Yoshida H, Ishikawa J, Wakao H, Yoshimura A, Kanakura Y, Tomiyama Y, Matsuzawa Y. Insulin-like growth factor-I augments erythropoietin-induced proliferation through enhanced tyrosine phosphorylation of STAT5. J Biol Chem 1998; 273:22877-83. [PMID: 9722506 DOI: 10.1074/jbc.273.36.22877] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor (IGF-I) is known to synergistically stimulate the proliferation of hematopoietic cells in combination with other hematopoietic growth factors. However, the precise mechanism underlying the cooperative effects of IGF-I is unknown. In a human interleukin-3 or erythropoietin (EPO)-dependent cell line, F-36P, IGF-I alone failed to stimulate DNA synthesis but did augment the EPO-dependent DNA synthesis of F-36P cells. The treatment of F-36P cells with a combination of EPO and IGF-I (EPO/IGF-I) was found to enhance EPO-induced tyrosine phosphorylation of STAT5, whereas IGF-I alone did not. Furthermore, c-CIS mRNA expression, one of the target molecules of STAT5, was more effectively induced by EPO/IGF-I than by EPO alone. To examine the mechanisms of the EPO- and EPO/IGF-I-induced proliferation of F-36P cells, we expressed dominant negative (dn) mutants of STAT5 and Ras in an inducible system. The EPO-induced DNA synthesis and the cooperative effect of EPO/IGF-I were significantly inhibited by the inducible expression of dn-STAT5 or dn-Ras. In addition, the inducible expression of dn-Ras abolished the IGF-I-enhanced tyrosine phosphorylation of STAT5. These results suggest that IGF-I may augment EPO-induced proliferation by enhancing tyrosine phosphorylation of STAT5 and raise the possibility that Ras may be involved in the augmentation of STAT5 tyrosyl phosphorylation.
Collapse
Affiliation(s)
- Y Okajima
- Department of Internal Medicine II, Osaka University Medical School, 2-2, Yamada-oka, Suita, Osaka 565, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
The Prolactin Receptor Rescues EpoR−/− Erythroid Progenitors and Replaces EpoR in a Synergistic Interaction With c-kit. Blood 1998. [DOI: 10.1182/blood.v92.5.1491.417k40_1491_1496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently showed that a retrovirally transduced prolactin receptor (PrlR) efficiently supports the differentiation of wild-type burst-forming unit erythroid (BFU-e) and colony-forming unit erythroid (CFU-e) progenitors in response to prolactin and in the absence of erythropoietin (Epo). To examine directly whether the Epo receptor (EpoR) expressed by wild-type erythroid progenitors was essential for their terminal differentiation, we infected EpoR−/−progenitors with retroviral constructs encoding either the PrlR or a chimeric receptor containing the extracellular domain of the PrlR and intracellular domain of EpoR. In response to prolactin, both receptors were equally efficient in supporting full differentiation of the EpoR−/− progenitors into erythroid colonies in vitro. Therefore, there is no requirement for an EpoR-unique signal in erythroid differentiation; EpoR signaling has no instructive role in red blood cell differentiation. A synergistic interaction between EpoR and c-kit is essential for the production of normal numbers of red blood cells, as demonstrated by the severe anemia of mice mutant for either c-kit or its ligand, stem cell factor. We show that the addition of stem cell factor potentiates the ability of the PrlR to support differentiation of both EpoR−/− and wild-type CFU-e progenitors. This synergism is quantitatively equivalent to that observed between c-kit and EpoR. Therefore, there is no requirement for an EpoR-unique signal in the synergistic interaction between c-kit and EpoR.© 1998 by The American Society of Hematology.
Collapse
|
106
|
The Prolactin Receptor Rescues EpoR−/− Erythroid Progenitors and Replaces EpoR in a Synergistic Interaction With c-kit. Blood 1998. [DOI: 10.1182/blood.v92.5.1491] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe recently showed that a retrovirally transduced prolactin receptor (PrlR) efficiently supports the differentiation of wild-type burst-forming unit erythroid (BFU-e) and colony-forming unit erythroid (CFU-e) progenitors in response to prolactin and in the absence of erythropoietin (Epo). To examine directly whether the Epo receptor (EpoR) expressed by wild-type erythroid progenitors was essential for their terminal differentiation, we infected EpoR−/−progenitors with retroviral constructs encoding either the PrlR or a chimeric receptor containing the extracellular domain of the PrlR and intracellular domain of EpoR. In response to prolactin, both receptors were equally efficient in supporting full differentiation of the EpoR−/− progenitors into erythroid colonies in vitro. Therefore, there is no requirement for an EpoR-unique signal in erythroid differentiation; EpoR signaling has no instructive role in red blood cell differentiation. A synergistic interaction between EpoR and c-kit is essential for the production of normal numbers of red blood cells, as demonstrated by the severe anemia of mice mutant for either c-kit or its ligand, stem cell factor. We show that the addition of stem cell factor potentiates the ability of the PrlR to support differentiation of both EpoR−/− and wild-type CFU-e progenitors. This synergism is quantitatively equivalent to that observed between c-kit and EpoR. Therefore, there is no requirement for an EpoR-unique signal in the synergistic interaction between c-kit and EpoR.© 1998 by The American Society of Hematology.
Collapse
|
107
|
Synergistic Activation of MAP Kinase (ERK1/2) by Erythropoietin and Stem Cell Factor Is Essential for Expanded Erythropoiesis. Blood 1998. [DOI: 10.1182/blood.v92.4.1142] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractStem cell factor (SCF) and erythropoietin (EPO) work synergistically to support erythropoiesis, but the mechanism for this synergism is unknown. By using purified human erythroid colony-forming cells (ECFC), we have found that SCF and EPO synergistically activate MAP kinase (MAPK, ERK1/2), which correlates with the cell growth and thus may be responsible for the synergistic effects. Treatment of the cells with PD98059 and wortmannin, inhibitors of MEK and PI-3 kinase, respectively, inhibited the synergistic activation of MAPK and also the cell growth, further supporting this conclusion. Wortmannin only inhibits MAPK activation induced by EPO but not that by SCF, suggesting that SCF and EPO may activate MAPK through different pathways, which would facilitate synergy. Furthermore, EPO, but not SCF, led to activation of STAT5, whereas SCF and wortmannin had no effect on the EPO-induced STAT5 activation, suggesting that STAT5 is not involved in the synergistic action of SCF and EPO. Together, the data suggest that synergistic activation of MAPK by SCF and EPO is essential for expanded erythropoiesis.© 1998 by The American Society of Hematology.
Collapse
|
108
|
Abstract
Erythrocyte production in mammals is known to depend on the exposure of committed progenitor cells to the glycoprotein hormone erythropoietin (Epo). In chimeric mice, gene disruption experiments have demonstrated a critical role for Epo signaling in development beyond the erythroid colony-forming unit (CFU-e) stage. However, whether this might include the possible Epo-specific induction of red blood cell differentiation events is largely unresolved. To address this issue, mechanisms of induced globin expression in Epo-responsive SKT6 cells have been investigated. Chimeric receptors containing an epidermal growth factor (EGF) receptor extracellular domain and varied Epo receptor cytoplasmic domains first were expressed stably at physiological levels in SKT6 cells, and their activities in mediating induced hemoglobinization were assayed. While activity was exerted by a full-length chimera (EE483), truncation to remove 7 of 8 carboxyl-terminal tyrosine sites (EE372) markedly enhanced differentiation signaling. Moreover, mutation of a STAT5 binding site in this construct (EE372-Y343F) inhibited induced globin expression and SKT6 cell hemoglobinization, as did the ectopic expression of dominant-negative forms of STAT5 in parental SKT6 cells. As in normal CFU-e, SKT6 cells also were shown to express functional receptors for stem cell factor (SCF). To further define possible specific requirements for differentiation signaling, effects of SCF on SKT6 cell hemoglobinization were tested. Interestingly, SCF not only failed to promote globin expression but inhibited this Epo-induced event in a dose-dependent, STAT5-independent fashion. Thus, effects of Epo on globin expression may depend specifically on STAT5-dependent events, and SCF normally may function to attenuate terminal differentiation while promoting CFU-e expansion.© 1998 by The American Society of Hematology.
Collapse
|
109
|
Synergistic Activation of MAP Kinase (ERK1/2) by Erythropoietin and Stem Cell Factor Is Essential for Expanded Erythropoiesis. Blood 1998. [DOI: 10.1182/blood.v92.4.1142.416k42_1142_1149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cell factor (SCF) and erythropoietin (EPO) work synergistically to support erythropoiesis, but the mechanism for this synergism is unknown. By using purified human erythroid colony-forming cells (ECFC), we have found that SCF and EPO synergistically activate MAP kinase (MAPK, ERK1/2), which correlates with the cell growth and thus may be responsible for the synergistic effects. Treatment of the cells with PD98059 and wortmannin, inhibitors of MEK and PI-3 kinase, respectively, inhibited the synergistic activation of MAPK and also the cell growth, further supporting this conclusion. Wortmannin only inhibits MAPK activation induced by EPO but not that by SCF, suggesting that SCF and EPO may activate MAPK through different pathways, which would facilitate synergy. Furthermore, EPO, but not SCF, led to activation of STAT5, whereas SCF and wortmannin had no effect on the EPO-induced STAT5 activation, suggesting that STAT5 is not involved in the synergistic action of SCF and EPO. Together, the data suggest that synergistic activation of MAPK by SCF and EPO is essential for expanded erythropoiesis.© 1998 by The American Society of Hematology.
Collapse
|
110
|
Abstract
AbstractErythrocyte production in mammals is known to depend on the exposure of committed progenitor cells to the glycoprotein hormone erythropoietin (Epo). In chimeric mice, gene disruption experiments have demonstrated a critical role for Epo signaling in development beyond the erythroid colony-forming unit (CFU-e) stage. However, whether this might include the possible Epo-specific induction of red blood cell differentiation events is largely unresolved. To address this issue, mechanisms of induced globin expression in Epo-responsive SKT6 cells have been investigated. Chimeric receptors containing an epidermal growth factor (EGF) receptor extracellular domain and varied Epo receptor cytoplasmic domains first were expressed stably at physiological levels in SKT6 cells, and their activities in mediating induced hemoglobinization were assayed. While activity was exerted by a full-length chimera (EE483), truncation to remove 7 of 8 carboxyl-terminal tyrosine sites (EE372) markedly enhanced differentiation signaling. Moreover, mutation of a STAT5 binding site in this construct (EE372-Y343F) inhibited induced globin expression and SKT6 cell hemoglobinization, as did the ectopic expression of dominant-negative forms of STAT5 in parental SKT6 cells. As in normal CFU-e, SKT6 cells also were shown to express functional receptors for stem cell factor (SCF). To further define possible specific requirements for differentiation signaling, effects of SCF on SKT6 cell hemoglobinization were tested. Interestingly, SCF not only failed to promote globin expression but inhibited this Epo-induced event in a dose-dependent, STAT5-independent fashion. Thus, effects of Epo on globin expression may depend specifically on STAT5-dependent events, and SCF normally may function to attenuate terminal differentiation while promoting CFU-e expansion.© 1998 by The American Society of Hematology.
Collapse
|
111
|
Toms SA, Hercbergs A, Liu J, Kondo S, Haqqi T, Casey G, Iwasaki K, Barnett GH, Barna BP. Antagonist effect of insulin-like growth factor I on protein kinase inhibitor-mediated apoptosis in human glioblastoma cells in association with bcl-2 and bcl-xL. J Neurosurg 1998; 88:884-9. [PMID: 9576258 DOI: 10.3171/jns.1998.88.5.0884] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECT Tamoxifen (TAM) has been found to be effective in inhibiting proliferation of glioblastoma cells in vitro, but clinical studies have been disappointing. The purpose of this study was to determine whether insulin-like growth factor I (IGF-I), a potential autocrine/paracrine mitogen produced by glioblastomas, interferes with the antimitogenic actions of TAM. METHODS Human glioblastoma cells were treated with or without TAM and/or IGF-I in vitro and evaluated for: viability by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenol tetrazolium bromide cleavage assay; apoptosis by histochemical analysis of nuclear morphology and 3'-OH DNA fragments; and expression of the IGF-I receptor, and the bcl-2, bcl-xL, and bax proteins by immunoblot analysis. In addition, p53 status was determined by DNA sequencing and by transient transfection with luciferase reporter plasmids containing wild-type or mutant p53. Results indicated that after 72 hours of exposure to 2 mg/ml TAM in vitro, 56.3% of WITG3 and 43.8% of U87-MG glioblastoma cells contained apoptotic nuclei (p < 0.01 compared with untreated cells). Apoptosis was independent of the presence of p53 because the WITG3 cells, in contrast to the U87-MG cells, expressed a mutant, nonfunctional p53. The WITG3 cells expressed IGF-I receptor proteins and demonstrated IGF-I binding. Exogenous IGF-I stimulated WITG3 cell proliferation and significantly (p < 0.05) antagonized the cytotoxic effects of TAM in a dose-dependent fashion; IGF-I, but not TAM, enhanced expression of bcl-2 and bcl-xL proteins; however, bax protein expression was unchanged by either treatment. CONCLUSIONS Because many gliomas secrete large amounts of IGF-I in autocrine/paracrine growth pathways, these data may, in part, explain the failure of TAM to achieve clinical results as dramatic as those in vitro.
Collapse
Affiliation(s)
- S A Toms
- Department of Neurological Surgery, The Cleveland Clinic Foundation, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
Hemoglobinopathies, such as β-thalassemias and sickle cell anemia (SCA), are among the most common inherited gene defects. Novel models of human erythropoiesis that result in terminally differentiated red blood cells (RBCs) would be able to address the pathophysiological abnormalities in erythrocytes in congenital RBC disorders and to test the potential of reversing these problems by gene therapy. We have developed an in vitro model of production of human RBCs from normal CD34+ hematopoietic progenitor cells, using recombinant growth factors to promote terminal RBC differentiation. Enucleated RBCs were then isolated to a pure population by flow cytometry in sufficient numbers for physiological studies. Morphologically, the RBCs derived in vitro ranged from early polylobulated forms, resembling normal reticulocytes to smooth biconcave discocytes. The hemoglobin pattern in the in vitro-derived RBCs mimicked the in vivo adult or postnatal pattern of β-globin production, with negligible γ-globin synthesis. To test the gene therapy potential using this model, CD34+ cells were genetically marked with a retroviral vector carrying a cell-surface reporter. Gene transfer into CD34+ cells followed by erythroid differentiation resulted in expression of the marker gene on the surface of the enucleated RBC progeny. This model of human erythropoiesis will allow studies on pathophysiology of congenital RBC disorders and test effective therapeutic strategies.
Collapse
|
113
|
Liesveld JL, Martin BA, Harbol AW, Rosell KE, Belanger TJ, Reykdal SE, Plekavich DL, Abboud CN. Effect of stromal cell coculture on progenitor cell expansion and myeloid effector function in vitro. JOURNAL OF HEMATOTHERAPY 1998; 7:127-39. [PMID: 9597570 DOI: 10.1089/scd.1.1998.7.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stimulation of CD34(+)-enriched marrow or light density marrow with various growth factor combinations can generate granulocyte progenitors and mature neutrophils in vitro. In this work, we have examined the influence of irradiated marrow stromal layers on growth factor-induced myeloid and early multipotential progenitor expansion from enriched marrow CD34+ progenitors. We have also explored whether the addition of early-acting growth factors known to enhance myelopoiesis in long-term culture, such as fibroblast growth factor (b-FGF), insulin growth factor (IGF-1), c-kit ligand or stem cell factor (SCF), and flk-2flt-3 ligand (FL), can lengthen survival of CD34+ progenitors in these cultures. Stromal cell coculture resulted in greater numbers of total cells and CFU-GM at day 7 and day 14, but with the addition of multiple growth factors, these effects of stromal cell coculture were diminished. At day 14, generally < 1% of the expanded cells over stromal coculture conditions were CD34+, with up to 90% demonstrating CD15 positivity. Culture of CD34+ cells in the presence of early-acting growth factors did not cause significant expansion of CD34+ cells over a 14-day life span, even in the presence of marrow stromal cells. These data suggest that although stromal cell coculture for a period up to 14 days can enhance expansion of total cell numbers and CFU-GMs, stromal cell presence does not lead to expansion of CD34+ cells in these cultures and may diminish the number of clonogenic cells present when growth factors with differentiating capacity are present. Mature neutrophils harvested from such cultures are capable of chemotaxis, actin polymerization, and migration, suggesting a replete functional status.
Collapse
Affiliation(s)
- J L Liesveld
- Department of Medicine, University of Rochester School of Medicine & Dentistry, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Stallmach T, Karolyi L, Lichtlen P, Maurer M, Hebisch G, Joller H, Marti HH, Gassmann M. Fetuses from preeclamptic mothers show reduced hepatic erythropoiesis. Pediatr Res 1998; 43:349-54. [PMID: 9505273 DOI: 10.1203/00006450-199803000-00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The fetal liver is the main hematopoietic organ during intrauterine life. Morphometrical studies were performed on liver sections to detect changes occurring with intrauterine growth retardation and preeclampsia. Compared with the controls (n = 10), fetuses from preeclamptic mothers showed a severe reduction of erythroid cells by 60% on average (n = 18). Closer examination revealed that the erythroid cells at early stages of differentiation were more affected (80% reduction) than at later stages (55%). Seven out of 18 fetuses from preeclamptic mothers did not show growth retardation but exhibited severely reduced hepatic erythropoiesis. We suggest that the prime factor for impaired red blood cell production is preeclampsia itself rather than intrauterine growth retardation. Regulation of erythropoiesis in utero might depend on the interaction of many hematopoietic growth factors, and preeclampsia might alter the balance. To test this notion, we quantitated erythropoietin in fetal blood and various cytokines in the amniotic fluid. An elevation of erythropoietin and interleukin (IL)-3 levels was seen in babies born under the conditions of preeclampsia, whereas the concentrations of granulocyte/macrophage-colony-stimulating factor (CSF), granulocyte-CSF, and IL-1 beta were reduced, and the levels of IL-6 and IL-8 remained constant. With preeclampsia, a discrepancy between elevation of erythrocyte numbers in peripheral blood and depression of hematopoiesis at the main production site, the fetal liver, is seen. Concomitantly, there is elevation of some but reduction of other hematopoietic cytokines. We envision that during the course of preeclampsia quantitation of hematopoietic growth factors might allow to predict the deterioration of in utero life conditions.
Collapse
Affiliation(s)
- T Stallmach
- Department of Pathology, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
AbstractStudies of hematopoietic progenitor cell development in vivo, ex vivo, and in factor-dependent cell lines have shown that c-kit promotes proliferation through synergistic effects with at least certain type 1 cytokine receptors, including the erythropoietin (Epo) receptor. Presently, c-kit is shown to efficiently support both mitogenesis and survival in the FDCP1 cell subline, FDC2. In this system, mitogenic synergy with c-kit was observed for ectopically expressed wild-type Epo receptors (wt-ER), an epidermal growth factor (EGF) receptor/Epo receptor chimera, and a highly truncated Epo receptor construct ER-Bx1. Thus, the Epo receptor cytoplasmic box 1 subdomain appears, at least in part, to mediate mitogenic synergy with c-kit. In studies of potential effectors of this response, Jak2 tyrosine phosphorylation was shown to be induced by Epo, but not by stem cell factor (SCF). In addition and in contrast to signaling in Mo7e and BM6 cell lines, in FDC2-ER cells SCF and Epo each were shown to rapidly activate Pim 1 gene expression. Recently, roles also have been suggested for the nuclear trans-factor GATA-1 in regulating progenitor cell proliferation. In FDC2-ER cells, the ectopic expression of GATA-1 had no detectable effect on Epo inhibition of apoptosis. However, GATA-1 expression did result in a selective and marked inhibition in mitogenic responsiveness to SCF and to a decrease in c-kit transcript expression. These studies of SCF and Epo signaling in FDC2–wt-ER cells serve to functionally map the ERB1 region as a c-kit–interactive domain, suggest that Pim1 might contribute to SCF and Epo mitogenic synergy and support the notion that SCF and Epo may act in opposing ways during red cell differentiation.
Collapse
|
116
|
Interferon γ Downregulates Stem Cell Factor and Erythropoietin Receptors But Not Insulin-Like Growth Factor-I Receptors in Human Erythroid Colony-Forming Cells. Blood 1997. [DOI: 10.1182/blood.v90.6.2244.2244_2244_2252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon γ (IFNγ) has been shown to inhibit proliferation and differentiation of erythroid progenitor cells and to produce apoptosis of erythroid cells, whereas stem cell factor (SCF ), erythropoietin (EP), and insulin-like growth factor-I (IGF-I) have distinct roles in enhancing erythroid cell production and preventing apoptosis. The mechanism by which IFNγ exerts an inhibitory effect on the positive roles of these growth factors is unknown. Although some inhibitory cytokines including IFNγ have been shown to downregulate growth factor receptors, the effect of IFNγ on SCF, EP, and IGF-I receptors of human erythroid progenitor cells has not been defined. We obtained highly purified day-5 or day-6 erythroid colony-forming cells (ECFCs) from human blood in sufficient quantity and purity for radiolabeled cytokine binding studies and analysis of mRNA. When day-5 ECFCs were incubated with increasing concentrations of recombinant human (rh) IFNγ for 24 hours at 37°C, specific binding of 125I-rhSCF to SCF receptors was significantly decreased by 25% to 40% in a dose-dependent fashion, with the maximum effect at 2,500 to 5,000 U/mL of IFNγ. The decrease was apparent by 12 hours of incubation and was only slightly lower by 24 hours. The numbers of SCF and EP receptors, but not of IGF-I receptors, per ECFC, calculated by Scatchard analysis, were significantly decreased by 30% and 23% to 25%, respectively, after incubation with 2,500 U/mL rhIFNγ for 24 hours at 37°C, whereas the binding affinities were not affected. This decrease in SCF receptors was confirmed by flow cytometry using an anti–c-kit mouse monoclonal antibody. Northern blot analysis showed that the mRNAs for the SCF and EP receptors, but not for the IGF-I receptors, were decreased by 50% to 60% after 3 hours of incubation at 37°C with 2,500 U/mL of rhIFNγ. This persisted for 24 hours without alteration of the stability of the SCF and EP receptor mRNAs. These observations suggest that one means by which IFNγ inhibits erythroid cell proliferation and differentiation and produces apoptosis may be through the reduction of the number of target receptors for SCF and EP and that this occurs through transcriptional inhibition of the corresponding mRNAs.
Collapse
|
117
|
Interferon γ Downregulates Stem Cell Factor and Erythropoietin Receptors But Not Insulin-Like Growth Factor-I Receptors in Human Erythroid Colony-Forming Cells. Blood 1997. [DOI: 10.1182/blood.v90.6.2244] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Interferon γ (IFNγ) has been shown to inhibit proliferation and differentiation of erythroid progenitor cells and to produce apoptosis of erythroid cells, whereas stem cell factor (SCF ), erythropoietin (EP), and insulin-like growth factor-I (IGF-I) have distinct roles in enhancing erythroid cell production and preventing apoptosis. The mechanism by which IFNγ exerts an inhibitory effect on the positive roles of these growth factors is unknown. Although some inhibitory cytokines including IFNγ have been shown to downregulate growth factor receptors, the effect of IFNγ on SCF, EP, and IGF-I receptors of human erythroid progenitor cells has not been defined. We obtained highly purified day-5 or day-6 erythroid colony-forming cells (ECFCs) from human blood in sufficient quantity and purity for radiolabeled cytokine binding studies and analysis of mRNA. When day-5 ECFCs were incubated with increasing concentrations of recombinant human (rh) IFNγ for 24 hours at 37°C, specific binding of 125I-rhSCF to SCF receptors was significantly decreased by 25% to 40% in a dose-dependent fashion, with the maximum effect at 2,500 to 5,000 U/mL of IFNγ. The decrease was apparent by 12 hours of incubation and was only slightly lower by 24 hours. The numbers of SCF and EP receptors, but not of IGF-I receptors, per ECFC, calculated by Scatchard analysis, were significantly decreased by 30% and 23% to 25%, respectively, after incubation with 2,500 U/mL rhIFNγ for 24 hours at 37°C, whereas the binding affinities were not affected. This decrease in SCF receptors was confirmed by flow cytometry using an anti–c-kit mouse monoclonal antibody. Northern blot analysis showed that the mRNAs for the SCF and EP receptors, but not for the IGF-I receptors, were decreased by 50% to 60% after 3 hours of incubation at 37°C with 2,500 U/mL of rhIFNγ. This persisted for 24 hours without alteration of the stability of the SCF and EP receptor mRNAs. These observations suggest that one means by which IFNγ inhibits erythroid cell proliferation and differentiation and produces apoptosis may be through the reduction of the number of target receptors for SCF and EP and that this occurs through transcriptional inhibition of the corresponding mRNAs.
Collapse
|
118
|
|
119
|
|
120
|
Tarantal AF, Hunter MK, Gargosky SE. Direct administration of insulin-like growth factor to fetal rhesus monkeys (Macaca mulatta). Endocrinology 1997; 138:3349-58. [PMID: 9231787 DOI: 10.1210/endo.138.8.5300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A potential treatment for the amelioration of fetal growth failure is insulin-like growth factor-I (IGF-I). To address concerns of safety and efficacy, IGF-I (80 microg/kg; GroPep Pty.) was administered i.p. to healthy rhesus monkey fetuses via ultrasound guidance every other day between gestational days (GD) 110-120 and 130-140 (third trimester; term = approximately GD 165 +/- 10; n = 6). Pregnancies were monitored sonographically, and fetal/maternal blood samples were collected for complete blood counts, immunophenotyping, and biochemical analyses. Blood samples, external measures of the fetus and newborn, and tissue and organ weights were collected at fetal necropsy (GD 150; n = 2) or at term delivery of neonates (GD 160; n = 4). The results of these investigations have shown no evidence of hypoglycemia in the fetus or dam during the course of treatment. Circulating concentrations of fetal, but not maternal, IGF-I increased with treatment (approximately 80 to approximately 1015 ng/ml), and there was no evidence of a change in serum IGF-II or an increase in IGF binding protein-3 compared with historical control values. Fetal lymphocytes and select red cell parameters increased, and a significant elevation in circulating B cells and CD4/CD8 ratios in fetal lymph nodes was shown. Although no changes were detected in body weights, increases in thymic, splenic, and kidney weights and small intestine lengths occurred. Thus, administration of IGF-I to the fetal monkey is safe and results in 1) transient increases in circulating IGF-I, 2) a significant effect on fetal hematopoietic and lymphoid tissues, and 3) an increase in select fetal organ weights and measures. These data suggest that IGF-I may represent a potential candidate for therapeutic treatment of growth-compromised human fetuses in utero.
Collapse
Affiliation(s)
- A F Tarantal
- California Regional Primate Research Center and the Department of Pediatrics, University of California, Davis 95616, USA.
| | | | | |
Collapse
|
121
|
Identification of Increased Protein Tyrosine Phosphatase Activity in Polycythemia Vera Erythroid Progenitor Cells. Blood 1997. [DOI: 10.1182/blood.v90.2.651.651_651_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycythemia vera (PV) is a clonal hematologic disease characterized by hyperplasia of the three major bone marrow lineages. PV erythroid progenitor cells display hypersensitivity to several growth factors, which might be caused by an abnormality of tyrosine phosphorylation. In the present study, we have investigated protein tyrosine phosphatase (PTP) activity in highly purified erythroid progenitor cells and found that the total PTP activity in the PV cells was twofold to threefold higher than that in normal cells. Protein separation on anion-exchange and gel-filtration columns showed that the increased activity was due to a major PTP eluted at approximately 170 kD. This enzyme was sensitive to PTP inhibitors and it did not cross-react with antibodies to SHP-1, SHP-2, or CD45. Subcellular fractionation showed that the PTP localized with the membrane fraction, where its activity was increased by threefold in PV erythroid progenitors when compared with normal cells. As the erythroid progenitors progressively matured, activity of the PTP declined rapidly in the normal cells but at a much slower rate in the PV cells. These studies suggest that a potentially novel membrane or membrane-associated PTP, representing a major PTP activity, may have an important role in proliferation and/or survival of human erythroid progenitors and that its hyperactivation in PV erythroid progenitors might be responsible for the increased erythropoiesis in PV patients.
Collapse
|
122
|
Identification of Increased Protein Tyrosine Phosphatase Activity in Polycythemia Vera Erythroid Progenitor Cells. Blood 1997. [DOI: 10.1182/blood.v90.2.651] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPolycythemia vera (PV) is a clonal hematologic disease characterized by hyperplasia of the three major bone marrow lineages. PV erythroid progenitor cells display hypersensitivity to several growth factors, which might be caused by an abnormality of tyrosine phosphorylation. In the present study, we have investigated protein tyrosine phosphatase (PTP) activity in highly purified erythroid progenitor cells and found that the total PTP activity in the PV cells was twofold to threefold higher than that in normal cells. Protein separation on anion-exchange and gel-filtration columns showed that the increased activity was due to a major PTP eluted at approximately 170 kD. This enzyme was sensitive to PTP inhibitors and it did not cross-react with antibodies to SHP-1, SHP-2, or CD45. Subcellular fractionation showed that the PTP localized with the membrane fraction, where its activity was increased by threefold in PV erythroid progenitors when compared with normal cells. As the erythroid progenitors progressively matured, activity of the PTP declined rapidly in the normal cells but at a much slower rate in the PV cells. These studies suggest that a potentially novel membrane or membrane-associated PTP, representing a major PTP activity, may have an important role in proliferation and/or survival of human erythroid progenitors and that its hyperactivation in PV erythroid progenitors might be responsible for the increased erythropoiesis in PV patients.
Collapse
|
123
|
|
124
|
Polycythemia Vera V. Enhanced Proliferation and Phosphorylation Due to Vanadate Are Diminished in Polycythemia Vera Erythroid Progenitor Cells: A Possible Defect of Phosphatase Activity in Polycythemia Vera. Blood 1997. [DOI: 10.1182/blood.v89.10.3574.3574_3574_3581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (EP) and stem cell factor (SCF ) are essential growth factors for erythroid progenitor cell proliferation and differentiation in serum-free culture. It has been previously shown that burst-forming units-erythroid and colony-forming units-erythroid from patients with polycythemia vera (PV) have enhanced sensitivity to EP and SCF compared with normal erythroid progenitors, but little is known about the mechanism for this difference. In the present investigation, the effect of EP and SCF on protein tyrosine phosphorylation in day-8 normal and PV erythroid colony-forming cells, which give rise to colonies of 2-49 hemoglobinized cells, was studied. EP rapidly induced tyrosine phosphorylation of the EP receptor, whereas the most prominent phosphorylated protein induced by SCF was identified as the SCF receptor. No additional phosphorylated proteins were evident when PV cells were compared with normal cells. Culture of normal erythroid progenitors with orthovanadate, an inhibitor of protein tyrosine phosphatases, resulted in an increased number of erythroid colonies and enhanced protein tyrosine phosphorylation. However, in contrast, little enhancement was evident with PV cells. These results indicate that, although vanadate may be acting in normal erythroid progenitors as a phosphatase inhibitor that potentiates the kinase activity induced by SCF and EP, this function is diminished in PV cells. Because erythropoiesis is regulated by a balance between protein tyrosine kinase activity and protein tyrosine phosphatase activity, PV patients may have an abnormal phosphatase activity allowing increased cell proliferation.
Collapse
|
125
|
Polycythemia Vera V. Enhanced Proliferation and Phosphorylation Due to Vanadate Are Diminished in Polycythemia Vera Erythroid Progenitor Cells: A Possible Defect of Phosphatase Activity in Polycythemia Vera. Blood 1997. [DOI: 10.1182/blood.v89.10.3574] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractErythropoietin (EP) and stem cell factor (SCF ) are essential growth factors for erythroid progenitor cell proliferation and differentiation in serum-free culture. It has been previously shown that burst-forming units-erythroid and colony-forming units-erythroid from patients with polycythemia vera (PV) have enhanced sensitivity to EP and SCF compared with normal erythroid progenitors, but little is known about the mechanism for this difference. In the present investigation, the effect of EP and SCF on protein tyrosine phosphorylation in day-8 normal and PV erythroid colony-forming cells, which give rise to colonies of 2-49 hemoglobinized cells, was studied. EP rapidly induced tyrosine phosphorylation of the EP receptor, whereas the most prominent phosphorylated protein induced by SCF was identified as the SCF receptor. No additional phosphorylated proteins were evident when PV cells were compared with normal cells. Culture of normal erythroid progenitors with orthovanadate, an inhibitor of protein tyrosine phosphatases, resulted in an increased number of erythroid colonies and enhanced protein tyrosine phosphorylation. However, in contrast, little enhancement was evident with PV cells. These results indicate that, although vanadate may be acting in normal erythroid progenitors as a phosphatase inhibitor that potentiates the kinase activity induced by SCF and EP, this function is diminished in PV cells. Because erythropoiesis is regulated by a balance between protein tyrosine kinase activity and protein tyrosine phosphatase activity, PV patients may have an abnormal phosphatase activity allowing increased cell proliferation.
Collapse
|
126
|
Jacobs-Helber SM, Penta K, Sun Z, Lawson A, Sawyer ST. Distinct signaling from stem cell factor and erythropoietin in HCD57 cells. J Biol Chem 1997; 272:6850-3. [PMID: 9054369 DOI: 10.1074/jbc.272.11.6850] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A recent report (Wu, H., Klingmuller, U., Besmer, P., and Lodish, H. F. (1995) Nature 377, 242-246) documents the interaction of the erythropoietin (EPO) receptor (EPOR) with the stem cell factor (SCF) receptor (c-KIT) and suggests that SCF acts through the EPOR. To elucidate the ability of SCF to affect the erythropoietin signaling pathway, we studied the effect of SCF on EPOR phosphorylation, SHC/ERK-1 activity, and cell proliferation and apoptosis in EPO-dependent HCD57 cells. Treatment of these cells with SCF resulted in phosphorylation of the EPOR. However, SCF-dependent phosphorylation of the EPOR did not initiate an EPO-like intracellular signal. SCF induced proliferation, SHC phosphorylation, and activation of ERK-1 but did not activate the JAK/STAT pathway. SCF stimulated SHC phosphorylation and ERK-1 activation independent of the EPOR in cells where the EPOR was down-regulated; the presence of the EPOR appeared to facilitate SCF activation of SHC and ERK-1. Furthermore, treatment of HCD57 cells with SCF increased cell number over a 3-day treatment, but apoptosis was observed in these cells. These data may illustrate two distinct pathways for erythroid cell proliferation and prevention of apoptosis in response to EPO, thereby providing a system to discriminate these intracellular signals.
Collapse
Affiliation(s)
- S M Jacobs-Helber
- Department of Pharmacology/Toxicology, Medical College of Virginia/Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
127
|
Abstract
Until recently, platelet production was the least understood aspect of blood cell development. This gap in our understanding resulted from the scarcity of megakaryocytes, the marrow precursor of blood platelets, and from confusion surrounding the cytokines and hormones that support their development. The recent cloning and characterization of thrombopoietin (TPO) has profoundly changed our understanding of platelet production. Using in vitro assay systems, several groups have shown that TPO supports the proliferation of megakaryocytic progenitor cells and their differentiation into mature platelet-producing cells. Moreover, and somewhat surprisingly, TPO also acts in synergy with other pluripotent cytokines on the hematopoietic stem cell to augment development of erythroid and myeloid progenitors. These in vitro effects correlate well with the in vivo biology of the hormone. When administered to normal animals, TPO expands the numbers of hematopoietic progenitors of all lineages and greatly accelerates platelet production. Moreover, when TPO or its receptor is genetically eliminated, progenitor cell levels of all lineages are reduced, and platelet production is profoundly impaired. In animals administered cytoreductive therapy, the use of TPO is associated with accelerated hematopoietic recovery, not only of megakaryocytes and platelets, but also of erythrocytes and leukocytes. It, thus, is hoped that TPO may play an important role in reducing the myelosuppressive complications of naturally occurring and iatrogenic states of marrow failure.
Collapse
Affiliation(s)
- K Kaushansky
- Division of Hematology, University of Washington School of Medicine, Seattle 98195, USA.
| |
Collapse
|
128
|
Sakatoku H, Inoue S. In vitro proliferation and differentiation of erythroid progenitors of cord blood. Stem Cells 1997; 15:268-74. [PMID: 9253110 DOI: 10.1002/stem.150268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stem cell factor (SCF) is known to synergize with erythropoietin (EPO) for erythropoiesis in vitro. Clonogenic assay and suspension culture were used to assess the effect of EPO alone or its combination with SCF on the proliferation and differentiation of erythroid progenitors of cord blood. Colony formation, increase in cell count, and cell cycling status for the proliferation as well as expression of Glycophorin A (Gly A) and hemoglobinization as the marker of differentiation were determined with each stimulation. The cell cycle status of the cells in suspension cultures was determined using FACScan after labeling of cells with propidium iodide. Expression of Gly A and degree of hemoglobinization were determined by FACScan and spectrophotometer on the cells plucked from colonies in semisolid culture. Larger increases in cell counts in suspension culture were observed with EPO + SCF after 12 days of inoculation than with EPO alone. Mean doubling time was 14.2 h with EPO + SCF and 22.7 h with EPO alone. The proportion of cells in S and G2 + M phase in day 14 suspension culture was 48% with EPO + SCF and 43% with EPO alone (no significant difference). Mean colony counts per 10(5) nonadherent mononuclear cells were 76 +/- 14 with EPO + SCF and 51 +/- 15 with EPO at day 14 (p < 0.05). The number of macroscopic colonies with > 0.5 mm diameter was 10.7 +/- 1.2 with EPO + SCF and 0.3 +/- 0.5 with EPO (p < 0.05). Percent of Gly A+ cells was 75% for both EPO + SCF and EPO colonies at day 14. Hemoglobin concentration/10(5) cells at day 14 was 0.70 +/- 0.17 microgram with EPO + SCF, and 1.16 +/- 0.32 micrograms with EPO alone (p < 0.05). In conclusion, SCF in the combination with EPO showed a synergistic effect for erythroid proliferation in colony number as well as colony size derived from cord blood, while SCF with EPO decreased hemoglobin synthesis but not Gly A expression at day 14.
Collapse
Affiliation(s)
- H Sakatoku
- Yamada Red Cross Hospital, Mie-Ken, Japan
| | | |
Collapse
|
129
|
Wu Y, Tewari M, Cui S, Rubin R. Activation of the insulin-like growth factor-I receptor inhibits tumor necrosis factor-induced cell death. J Cell Physiol 1996; 168:499-509. [PMID: 8816904 DOI: 10.1002/(sici)1097-4652(199609)168:3<499::aid-jcp2>3.0.co;2-k] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of insulin-like growth factor (IGF) on tumor necrosis factor (TNF)-induced cell killing was determined for mouse BALB/c3T3 fibroblasts in vitro. Cells maintained in 0.5% fetal bovine serum (FBS) were killed by TNF within 6 h in a concentration-dependent manner, an effect that was prevented by IGF-I. TNF-induced cytotoxicity of 3T3 cells that overexpress the human IGF-I receptor (p6 cells) was prevented by IGF-I alone in the absence of serum. TNF-induced cell death was associated with the morphologic features of apoptosis and the release of low-molecular-weight DNA, both of which were prevented by IGF-I. Neither epidermal growth factor (EGF) nor platelet-derived growth factor (PDGF) protected p6 cells from TNF-induced apoptosis. The specific protective action of the IGF-I receptor was demonstrated further by the marked sensitivity to TNF of embryo fibroblasts derived from mice with targeted disruption of the IGF-I receptor (R-cells) but not of fibroblasts derived from wild-type littermates or R-cells transfected with the cDNA for the human IGF-I receptor. Cycloheximide or actinomycin D markedly reduced the protection offered by IGF-I. IGF-I protection of BALB/c3T3 cells persisted for up to 5 days in the presence of PDGF and EGF, whereas IGF-I lost its effectiveness after 2 days in the absence of growth factors. IGF-I did not prevent TNF-induced release of arachidonic acid. The results demonstrate a specific role for the IGF-I receptor in the protection against TNF cytotoxicity. This action of the IGF-I receptor is mediated by protective cytosolic proteins that exhibit a high rate of turnover and whose levels are regulated principally by factors within serum other than IGF-I.
Collapse
Affiliation(s)
- Y Wu
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
130
|
de Haan G, Dontje B, Nijhof W. Concepts of hemopoietic cell amplification. Synergy, redundancy and pleiotropy of cytokines affecting the regulation of erythropoiesis. Leuk Lymphoma 1996; 22:385-94. [PMID: 8882951 DOI: 10.3109/10428199609054776] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hemopoietic cell amplification in vivo is regulated by various mechanisms which appear to be under control of many hemopoietic growth factors. Quiescent stem cells can be activated into cell cycle, dividing progenitor cells can reduce their cycle time, the differentiation velocity (i.e. transit-time) can be manipulated, apoptosis can be prevented, and finally, at least in the murine system, migration of cells between the microenvironments in marrow and spleen may take place. Perturbations of any of the parameters by which these mechanisms are defined, will affect in vivo blood cell production. In this review the consequences of these perturbations, and the role of growth factors herein, are discussed. These fundamental aspects of the regulation of hemopoiesis are illustrated with recent data showing the synergistic, redundant and pleiotropic effects of SCF, IL-11, EPO and G-CSF on the in vivo formation of erythrocytes. Given the overwhelming number of growth factor-related studies that are now appearing, a re-evaluation of data, available in the literature, in the context of the mechanistic approach of growth factor-dependent hemopoiesis which is presented in this paper, seems to be useful and warranted.
Collapse
Affiliation(s)
- G de Haan
- Department of Internal Medicine, University of Kentucky Medical Center, Lexington 40536-0093, USA
| | | | | |
Collapse
|
131
|
Bondurant MC, Yamashita T, Muta K, Krantz SB, Koury MJ. C-myc expression affects proliferation but not terminal differentiation or survival of explanted erythroid progenitor cells. J Cell Physiol 1996; 168:255-63. [PMID: 8707861 DOI: 10.1002/(sici)1097-4652(199608)168:2<255::aid-jcp4>3.0.co;2-o] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The expression of c-myc was analyzed in murine and human erythroblasts throughout their differentiation in vitro into reticulocytes. The murine cells were splenic erythroblasts from animals infected with the anemia strain of Friend virus (FVA cells). In FVA cells cultured without EPO, the c-myc mRNA and protein levels decrease sharply within 3 to 4 h, showing that continual EPO stimulation is required to maintain c-myc expression. When cultured with EPO, the c-myc mRNA level of FVA cells is raised within 30 min of exposure. The c-myc mRNA and protein reach maxima at 1 to 3 h, then decline slowly to very low levels by 18 h. In contrast, c-fos and c-jun mRNA levels are not regulated by EPO in FVA cells. The human cells analyzed were colony-forming units-erythroid, CFU-E, derived in vitro by the culture of peripheral blood burst-forming units-erythroid (BFU-E). When grown in EPO and insulin-like growth factor 1 (IGF-1) these cells differentiate into reticulocytes over 6 days rather than the 2 days required for murine cells, but the c-myc mRNA kinetics and response to EPO parallel those of mouse cells at similar stages of differentiation. Both IGF-1 and c-kit ligand (SCF) cause an additive increase in c-myc mRNA in human CFU-E in conjunction with EPO. These additive effects suggest that EPO, IGF-1, and SCF affect c-myc mRNA accumulation by distinct mechanisms. Addition of an antisense oligonucleotide to c-myc in cultures of human CFU-E specifically inhibited cell proliferation but did not affect erythroid cell differentiation or apoptosis. When human cells were grown in high SCF concentrations, an environment which enhances proliferation and retards differentiation, antisense oligonucleotide to c-myc strongly inhibited proliferation, but such inhibition did not induce differentiation. This latter result indicates that differentiation requires signals other than depression of c-Myc and resultant depression of proliferation.
Collapse
Affiliation(s)
- M C Bondurant
- Department of Medicine, Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
132
|
Sui X, Tsuji K, Tajima S, Tanaka R, Muraoka K, Ebihara Y, Ikebuchi K, Yasukawa K, Taga T, Kishimoto T, Nakahata T. Erythropoietin-independent erythrocyte production: signals through gp130 and c-kit dramatically promote erythropoiesis from human CD34+ cells. J Exp Med 1996; 183:837-45. [PMID: 8642288 PMCID: PMC2192354 DOI: 10.1084/jem.183.3.837] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Erythropoietin (EPO) is the primary humoral regulator of erythropoiesis and no other factor has previously been reported to support proliferation and terminal maturation of erythroid cells from hemopoietic stem cells. Here we show that stimulation of glycoprotein (gp130) by a combination of recombinant human soluble interleukin 6 receptor (sIL-6R) and IL-6 but not sIL-6R or IL-6 alone can support proliferation, differentiation, and terminal maturation of erythroid cells in the absence of EPO from purified human CD34+ cells in suspension culture containing stem cell factor (SCF). A number of erythroid bursts and mixed erythroid colonies also developed in methylcellulose culture under the same combination. The addition of anti-gp130 monoclonal antibodies but not anti-EPO antibody to the same culture completely abrogated the generation of erythroid cells. These results clearly demonstrate that mature erythroid cells can be emerged from hemopoietic progenitors without EPO in vitro. Together with the previous reports that human sera contain detectable levels of sIL-6R, IL-6, and SCF, current data suggest that gp130 signaling in association with c-kit activation may play a role in human erythropoiesis in vivo.
Collapse
Affiliation(s)
- X Sui
- Department of Clinical Oncology, The Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Dai CH, Krantz SB, Kollar K, Price JO. Stem cell factor can overcome inhibition of highly purified human burst-forming units-erythroid by interferon gamma. J Cell Physiol 1995; 165:323-32. [PMID: 7593210 DOI: 10.1002/jcp.1041650213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Highly purified human blood burst-forming units-erythroid (BFU-E) were used to study the effects of interferon gamma (IFN gamma). IFN gamma inhibited erythroid colony formation, cell proliferation, and differentiation of day 3 to day 6 mature BFU-E in a dose-dependent manner. The primitive BFU-E (day 1 and day 2 cells) and later day 7 cells were less affected. IFN gamma dose-response experiments demonstrated that the number and size of erythroid colonies were reduced at a concentration of 500 U/ml with more complete inhibition at 1,000 U/ml. Inhibition of day 4 to day 6 erythroid progenitors was first noted by 72 h of incubation with IFN gamma, and target cell growth and differentiation continued to decrease with further incubation. IFN gamma also induced erythroblast apoptosis which was demonstrated by both nuclear condensation and fragmentation plus flow cytometry with in situ end-labelling. Because day 3 to day 6 cells need stem cell factor (SCF) for development in serum-free culture, the relationship of IFN gamma inhibition to this growth factor was investigated. The reduction in the number of erythroid colonies by IFN gamma was reversed by SCF although the colony size was not completely re-established. In contrast, interleukin-3 did not have the capacity to overcome the inhibitory effects of IFN gamma. Since IFN gamma blood levels are elevated in some anemias of chronic disease, IFN gamma may have a role in promoting this anemia and its inhibitory effect might be better overcome by SCF plus EP. However, the mechanism by which these growth factors overcome the inhibition of IFN gamma, or vice versa, is unknown at the present time.
Collapse
Affiliation(s)
- C H Dai
- Department of Medicine, Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
134
|
Han P, Stacy D, Story C, Owens PC. The role of haemopoietic growth factors in the pathogenesis of the early anaemia of premature infants. Br J Haematol 1995; 91:327-9. [PMID: 8547069 DOI: 10.1111/j.1365-2141.1995.tb05297.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The anaemia of prematurity has been attributed to an insufficient erythropoietin (Epo) level. However, haemopoiesis is known to be regulated by a cohort of growth factors including interleukin-3 (IL-3), IL-6, stem cell factor (SCF), granulocyte monocyte-colony stimulating factor (GM-CSF) and insulin-like growth factors-I and -II (IGF-1, IGF-II). Circulating levels of these growth factors were measured in cord blood at the following gestational ages: 25-28 weeks, 29-32 weeks, 33-36 weeks and > 37 weeks. This study indicates that low concentrations of IGFs as well as a low Epo level in early gestational ages may play a role in anaemia of prematurity.
Collapse
Affiliation(s)
- P Han
- Department of Haematology, Women's and Children's Hospital, Adelaide, Australia
| | | | | | | |
Collapse
|
135
|
Muta K, Krantz SB. Inhibition of heme synthesis induces apoptosis in human erythroid progenitor cells. J Cell Physiol 1995; 163:38-50. [PMID: 7896899 DOI: 10.1002/jcp.1041630106] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heme synthesis by erythroid progenitor cells is maintained by erythropoietin (EP), insulin-like growth factor-I (IGF-I), and stem cell factor (SCF), and without these growth factors apoptosis (programmed cell death) occurs. To clarify the possible interaction between heme synthesis and programmed cell death of human erythroid progenitor cells, the effect of specific inhibition of heme synthesis on apoptosis of highly purified human erythroid colony forming cells (ECFC) was studied. When the amount of uncleaved DNA was determined as a measure of apoptosis, the heme synthesis inhibitors, succinylacetone (SA) (0.1 mmol/L) or isonicotinic acid hydrazide (INH) (10 mmol/L), significantly decreased the amount of uncleaved DNA (P < 0.01) in the presence of erythropoietin (EP). Addition of recombinant heavy-chain ferritin (rHF) (10 nmol/L), or deprivation of transferrin from the culture medium, which decreased heme synthesis, also reduced the amount of uncleaved DNA (P < 0.01). The production of apoptosis by diverse inhibitors of heme synthesis was in each case reversed by the addition of hemin (0.1 mmol/L) and did not occur with HL-60 cells. When the colony-forming capacity of ECFC was determined by plasma clot assay, SA, INH, or rHF reduced the number of CFU-E (P < 0.01), and the effect of SA was reversed by hemin. The addition of SA did not alter the c-myc response of ECFC to EP. These data indicate that inhibition of heme synthesis induces apoptosis of human erythroid progenitor cells, in a manner independent of an early c-myc response, and suggest that the presence of apoptosis in ineffective erythropoiesis may be secondary to impaired heme synthesis.
Collapse
Affiliation(s)
- K Muta
- Department of Medicine, Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | | |
Collapse
|
136
|
Dai CH, Krantz SB, Koury ST, Kollar K. Polycythaemia vera. IV. Specific binding of stem cell factor to normal and polycythaemia vera highly purified erythroid progenitor cells. Br J Haematol 1994; 88:497-505. [PMID: 7529530 DOI: 10.1111/j.1365-2141.1994.tb05065.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Polycythaemia vera (PV) patients' blood burst-forming units-erythroid (BFU-E) have an enhanced sensitivity to stem cell factor (SCF) compared to normal BFU-E. To characterize SCF receptors on erythroid progenitors from normal individuals and PV patients, we performed binding experiments using radioiodinated recombinant SCF (rSCF), day 1 BFU-E and day 8 erythroid colony-forming cells (ECFC), which are mostly colony-forming units-erythroid (CFU-E). 125I-rSCF binds to a single class of cell surface receptors (23,000/ECFC) at 0 degrees C with a high-binding affinity (Kd = 17 pM). Saturation occurred at 0.5 nM (10 ng/ml) which produces a nearly maximum biological effect. One half of the radiolabelled rSCF was internalized by the cells after 30 min at 37 degrees C. No significant differences in the receptor number, dissociation constant, or internalization rate were found between normal and PV ECFC. Autoradiographic analysis of 125I-rSCF binding to normal BFU-E and ECFC showed that no differences were present in either the percentage of positive cells or the number of radioactive grains/cell between the normal and PV erythroid progenitors. The enhanced sensitivity of PV BFU-E and CFU-E to SCF does not appear to be related to changes in SCF receptor number, binding affinity or internalization and the hypersensitivity of PV erythroid progenitors to SCF must reside in a further internal cellular abnormality.
Collapse
Affiliation(s)
- C H Dai
- Department of Medicine, Hematology Division, Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | | | | | | |
Collapse
|