151
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
152
|
Hsu CC, Lin CJ, Lu T, Hu LY. Risperidone exacerbates Psychosis: A paradoxical phenomenon? Aust N Z J Psychiatry 2015; 49:669-70. [PMID: 25715194 DOI: 10.1177/0004867415574749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Chih-Chao Hsu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaoshiung, Taiwan
| | - Chia-Jung Lin
- Department of Nursing, Yuanshan & Su'ao Branch, Taipei Veterans General Hospital, Yilan, Taiwan
| | - Ti Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaoshiung, Taiwan
| | - Li-Yu Hu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaoshiung, Taiwan
| |
Collapse
|
153
|
Ramsay H, Barnett JH, Miettunen J, Mukkala S, Mäki P, Liuhanen J, Murray GK, Jarvelin MR, Ollila H, Paunio T, Veijola J. Association between Dopamine Receptor D2 (DRD2) Variations rs6277 and rs1800497 and Cognitive Performance According to Risk Type for Psychosis: A Nested Case Control Study in a Finnish Population Sample. PLoS One 2015; 10:e0127602. [PMID: 26114663 PMCID: PMC4482687 DOI: 10.1371/journal.pone.0127602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/16/2015] [Indexed: 01/21/2023] Open
Abstract
Background There is limited research regarding the association between genes and cognitive intermediate phenotypes in those at risk for psychotic disorders. Methods We measured the association between established psychosis risk variants in dopamine D2 receptor (DRD2) and cognitive performance in individuals at age 23 years and explored if associations between cognition and these variants differed according to the presence of familial or clinical risk for psychosis. The subjects of the Oulu Brain and Mind Study were drawn from the general population-based Northern Finland 1986 Birth Cohort (NFBC 1986). Using linear regression, we compared the associations between cognitive performance and two candidate DRD2 polymorphisms (rs6277 and rs1800497) between subjects having familial (n=61) and clinical (n=45) risk for psychosis and a random sample of participating NFBC 1986 controls (n=74). Cognitive performance was evaluated using a comprehensive battery of tests at follow-up. Results Principal components factor analysis supported a three-factor model for cognitive measures. The minor allele of rs6277 was associated with poorer performance on a verbal factor (p=0.003) but this did not significantly interact with familial or clinical risk for psychosis. The minor allele of rs1800497 was associated with poorer performance on a psychomotor factor (p=0.038), though only in those at familial risk for psychotic disorders (interaction p=0.049). Conclusion The effect of two DRD2 SNPs on cognitive performance may differ according to risk type for psychosis, suggesting that cognitive intermediate phenotypes differ according to the type (familial or clinical) risk for psychosis.
Collapse
Affiliation(s)
- Hugh Ramsay
- Department of Psychiatry, Centre for Clinical Neuroscience, University of Oulu, Oulu, Finland
- Health Service Executive, Dublin, Ireland
- * E-mail:
| | - Jennifer H. Barnett
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge Cognition Ltd., Bottisham, Cambridge, United Kingdom
| | - Jouko Miettunen
- Department of Psychiatry, Centre for Clinical Neuroscience, University of Oulu, Oulu, Finland
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Sari Mukkala
- Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Pirjo Mäki
- Department of Psychiatry, Centre for Clinical Neuroscience, University of Oulu, Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, Oulu, Finland
- Department of Psychiatry, Länsi-Pohja healthcare district, Finland
- Department of Psychiatry, the Middle Ostrobothnia Central Hospital, Kiuru, Finland
- Mental health services, Joint Municipal Authority of Wellbeing in Raahe District, Finland
- Mental health services, Basic Health Care District of Kallio, Finland
- Visala Hospital, the Northern Ostrobothnia Hospital District, Finland
| | - Johanna Liuhanen
- Public Health Genomics Unit, National Institute for Health and Welfare and Institute for Molecular Medicine, Helsinki, Finland
| | - Graham K. Murray
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Marjo-Riitta Jarvelin
- Department of Public Health Science and General Practice, Institute of Health Sciences, University of Oulu, Oulu, Finland
- Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | - Hanna Ollila
- Public Health Genomics Unit, National Institute for Health and Welfare and Institute for Molecular Medicine, Helsinki, Finland
| | - Tiina Paunio
- Public Health Genomics Unit, National Institute for Health and Welfare and Institute for Molecular Medicine, Helsinki, Finland
- Department of Psychiatry, Institute of Clinical Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Juha Veijola
- Department of Psychiatry, Centre for Clinical Neuroscience, University of Oulu, Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
154
|
Rosen AM, Spellman T, Gordon JA. Electrophysiological endophenotypes in rodent models of schizophrenia and psychosis. Biol Psychiatry 2015; 77:1041-9. [PMID: 25910423 PMCID: PMC4444383 DOI: 10.1016/j.biopsych.2015.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/03/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia is caused by a diverse array of risk factors and results in a similarly diverse set of symptoms. Electrophysiological endophenotypes lie between risks and symptoms and have the potential to link the two. Electrophysiological studies in rodent models, described here, demonstrate that widely differing risk factors result in a similar set of core electrophysiological endophenotypes, suggesting the possibility of a shared neurobiological substrate.
Collapse
Affiliation(s)
- Andrew M. Rosen
- Department of Psychiatry, College of Physicians and Surgeons Columbia University New York, NY 10032
| | - Timothy Spellman
- Department of Physiology, College of Physicians and Surgeons Columbia University New York, NY 10032
| | - Joshua A. Gordon
- Department of Psychiatry, College of Physicians and Surgeons Columbia University New York, NY 10032,Division of Integrative Neuroscience New York State Psychiatric Institute New York NY 10032,Correspondence to: Joshua A. Gordon 1051 Riverside Drive Unit 87 Kolb Annex Room 140 New York, NY 10032 Ph. 646 774-7116 Fax. 646 774-7101
| |
Collapse
|
155
|
Marsango S, Caltabiano G, Pou C, Varela Liste MJ, Milligan G. Analysis of Human Dopamine D3 Receptor Quaternary Structure. J Biol Chem 2015; 290:15146-62. [PMID: 25931118 PMCID: PMC4463457 DOI: 10.1074/jbc.m114.630681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/23/2015] [Indexed: 01/11/2023] Open
Abstract
The dopamine D3 receptor is a class A, rhodopsin-like G protein-coupled receptor that can form dimers and/or higher order oligomers. However, the molecular basis for production of these complexes is not well defined. Using combinations of molecular modeling, site-directed mutagenesis, and homogenous time-resolved FRET, the interfaces that allow dopamine D3 receptor monomers to interact were defined and used to describe likely quaternary arrangements of the receptor. These were then compared with published crystal structures of dimeric β1-adrenoreceptor, μ-opioid, and CXCR4 receptors. The data indicate important contributions of residues from within each of transmembrane domains I, II, IV, V, VI, and VII as well as the intracellular helix VIII in the formation of D3-D3 receptor interfaces within homo-oligomers and are consistent with the D3 receptor adopting a β1-adrenoreceptor-like quaternary arrangement. Specifically, results suggest that D3 protomers can interact with each other via at least two distinct interfaces: the first one comprising residues from transmembrane domains I and II along with those from helix VIII and a second one involving transmembrane domains IV and V. Moreover, rather than existing only as distinct dimeric species, the results are consistent with the D3 receptor also assuming a quaternary structure in which two transmembrane domain I-II-helix VIII dimers interact to form a "rhombic" tetramer via an interface involving residues from transmembrane domains VI and VII. In addition, the results also provide insights into the potential contribution of molecules of cholesterol to the overall organization and potential stability of the D3 receptor and possibly other GPCR quaternary structures.
Collapse
Affiliation(s)
- Sara Marsango
- From the Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - Gianluigi Caltabiano
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Chantevy Pou
- From the Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - María José Varela Liste
- From the Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| | - Graeme Milligan
- From the Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom and
| |
Collapse
|
156
|
mTORC2/rictor signaling disrupts dopamine-dependent behaviors via defects in striatal dopamine neurotransmission. J Neurosci 2015; 35:8843-54. [PMID: 26063917 PMCID: PMC4461689 DOI: 10.1523/jneurosci.0887-15.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Disrupted neuronal protein kinase B (Akt) signaling has been associated with dopamine (DA)-related neuropsychiatric disorders, including schizophrenia, a devastating mental illness. We hypothesize that proper DA neurotransmission is therefore dependent upon intact neuronal Akt function. Akt is activated by phosphorylation of two key residues: Thr308 and Ser473. Blunted Akt phosphorylation at Ser473 (pAkt-473) has been observed in lymphocytes and postmortem brains of schizophrenia patients, and psychosis-prone normal individuals. Mammalian target of rapamycin (mTOR) complex 2 (mTORC2) is a multiprotein complex that is responsible for phosphorylation of Akt at Ser473 (pAkt-473). We demonstrate that mice with disrupted mTORC2 signaling in brain exhibit altered striatal DA-dependent behaviors, such as increased basal locomotion, stereotypic counts, and exaggerated response to the psychomotor effects of amphetamine (AMPH). Combining in vivo and ex vivo pharmacological, electrophysiological, and biochemical techniques, we demonstrate that the changes in striatal DA neurotransmission and associated behaviors are caused, at least in part, by elevated D2 DA receptor (D2R) expression and upregulated ERK1/2 activation. Haloperidol, a typical antipsychotic and D2R blocker, reduced AMPH hypersensitivity and elevated pERK1/2 to the levels of control animals. By viral gene delivery, we downregulated mTORC2 solely in the dorsal striatum of adult wild-type mice, demonstrating that striatal mTORC2 regulates AMPH-stimulated behaviors. Our findings implicate mTORC2 signaling as a novel pathway regulating striatal DA tone and D2R signaling.
Collapse
|
157
|
Deletion of Rapgef6, a candidate schizophrenia susceptibility gene, disrupts amygdala function in mice. Transl Psychiatry 2015; 5:e577. [PMID: 26057047 PMCID: PMC4490285 DOI: 10.1038/tp.2015.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/22/2015] [Accepted: 04/23/2015] [Indexed: 02/01/2023] Open
Abstract
In human genetic studies of schizophrenia, we uncovered copy-number variants in RAPGEF6 and RAPGEF2 genes. To discern the effects of RAPGEF6 deletion in humans, we investigated the behavior and neural functions of a mouse lacking Rapgef6. Rapgef6 deletion resulted in impaired amygdala function measured as reduced fear conditioning and anxiolysis. Hippocampal-dependent spatial memory and prefrontal cortex-dependent working memory tasks were intact. Neural activation measured by cFOS phosphorylation demonstrated a reduction in hippocampal and amygdala activation after fear conditioning, while neural morphology assessment uncovered reduced spine density and primary dendrite number in pyramidal neurons of the CA3 hippocampal region of knockout mice. Electrophysiological analysis showed enhanced long-term potentiation at cortico-amygdala synapses. Rapgef6 deletion mice were most impaired in hippocampal and amygdalar function, brain regions implicated in schizophrenia pathophysiology. The results provide a deeper understanding of the role of the amygdala in schizophrenia and suggest that RAPGEF6 may be a novel therapeutic target in schizophrenia.
Collapse
|
158
|
Ward RD, Winiger V, Higa KK, Kahn JB, Kandel ER, Balsam PD, Simpson EH. The impact of motivation on cognitive performance in an animal model of the negative and cognitive symptoms of schizophrenia. Behav Neurosci 2015; 129:292-9. [PMID: 25914923 DOI: 10.1037/bne0000051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interactions between motivation and cognition are implicated in producing functional impairments and poor quality of life in psychiatric patients. This interaction, however, is not well understood at either the behavioral or neural level. We developed a procedure for mice in which a cognitive measure, sustained attention, is modulated by a motivationally relevant signal that predicts reward probability on a trial-by-trial basis. Using this paradigm, we tested the interaction between motivation and cognition in mice that model the increased striatal D2 receptor activity observed in schizophrenia patients (D2R-OE mice). In control mice, attention was modulated by signaled-reward probability. In D2R-OE mice, however, attention was not modulated by reward-related cues. This impairment was not due to any global deficits in attention or maintenance of the trial-specific information in working memory. Turning off the transgene in D2R-OE mice rescued the motivational modulation of attention. These results indicate that deficits in motivation impair the ability to use reward-related cues to recruit attention and that improving motivation improves functional cognitive performance. These results further suggest that addressing motivational impairments in patients is critical to achieving substantive cognitive and functional gains.
Collapse
Affiliation(s)
- Ryan D Ward
- Department of Psychology, Columbia University
| | | | | | | | - Eric R Kandel
- Department of Neuroscience and Psychiatry, Columbia University
| | | | | |
Collapse
|
159
|
Pyramidal cell selective ablation of N-methyl-D-aspartate receptor 1 causes increase in cellular and network excitability. Biol Psychiatry 2015; 77:556-68. [PMID: 25156700 PMCID: PMC4297754 DOI: 10.1016/j.biopsych.2014.06.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/05/2014] [Accepted: 06/22/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuronal activity at gamma frequency is impaired in schizophrenia (SZ) and is considered critical for cognitive performance. Such impairments are thought to be due to reduced N-methyl-D-aspartate receptor (NMDAR)-mediated inhibition from parvalbumin interneurons, rather than a direct role of impaired NMDAR signaling on pyramidal neurons. However, recent studies suggest a direct role of pyramidal neurons in regulating gamma oscillations. In particular, a computational model has been proposed in which phasic currents from pyramidal cells could drive synchronized feedback inhibition from interneurons. As such, impairments in pyramidal neuron activity could lead to abnormal gamma oscillations. However, this computational model has not been tested experimentally and the molecular mechanisms underlying pyramidal neuron dysfunction in SZ remain unclear. METHODS In the present study, we tested the hypothesis that SZ-related phenotypes could arise from reduced NMDAR signaling in pyramidal neurons using forebrain pyramidal neuron specific NMDA receptor 1 knockout mice. RESULTS The mice displayed increased baseline gamma power, as well as sociocognitive impairments. These phenotypes were associated with increased pyramidal cell excitability due to changes in inherent membrane properties. Interestingly, mutant mice showed decreased expression of GIRK2 channels, which has been linked to increased neuronal excitability. CONCLUSIONS Our data demonstrate for the first time that NMDAR hypofunction in pyramidal cells is sufficient to cause electrophysiological, molecular, neuropathological, and behavioral changes related to SZ.
Collapse
|
160
|
Kim SW, Seo M, Kim DS, Kang M, Kim YS, Koh HY, Shin HS. Knockdown of phospholipase C-β1 in the medial prefrontal cortex of male mice impairs working memory among multiple schizophrenia endophenotypes. J Psychiatry Neurosci 2015; 40:78-88. [PMID: 25268789 PMCID: PMC4354821 DOI: 10.1503/jpn.130285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Decreased expression of phospholipase C-β1 (PLC-β1) has been observed in the brains of patients with schizophrenia, but, to our knowledge, no studies have shown a possible association between this altered PLC-β1 expression and the pathogenesis of schizophrenia. Although PLC-β1-null (PLC-β1(-/-)) mice exhibit multiple endophenotypes of schizophrenia, it remains unclear how regional decreases in PLC-β1 expression in the brain contribute to specific behavioural defects. METHODS We selectively knocked down PLC-β1 in the medial prefrontal cortex (mPFC) using a small hairpin RNA strategy in mice. RESULTS Silencing PLC-β1 in the mPFC resulted in working memory deficits, as assayed using the delayed non-match-to-sample T-maze task. Notably, however, other schizophrenia-related behaviours observed in PLC-β1-/- mice, including phenotypes related to locomotor activity, sociability and sensorimotor gating, were normal in PLC-β1 knockdown mice. LIMITATIONS Phenotypes of PLC-β1 knockdown mice, such as locomotion, anxiety and sensorimotor gating, have already been published in our previous studies. Further, the neural mechanisms underlying the working memory deficit in mice may be different from those in human schizophrenia. CONCLUSION These results indicate that PLC-β1 signalling in the mPFC is required for working memory. Importantly, these results support the notion that the decrease in PLC-β1 expression in the brains of patients with schizophrenia is a pathogenically relevant molecular marker of the disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hee-Sup Shin
- Correspondence to: H.-S. Shin, Center for Cognition and Sociality, Institute for Basic Science (IBS), 70 Yuseong-daero 1689-gil, Yusung-gu, Daejeon 305-811, Republic of Korea;
| |
Collapse
|
161
|
Graham DL, Durai HH, Garden JD, Cohen EL, Echevarria FD, Stanwood GD. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex. ACS Chem Neurosci 2015; 6:297-305. [PMID: 25393953 PMCID: PMC4372074 DOI: 10.1021/cn500235m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
![]()
Disruption
to dopamine homeostasis during brain development has been implicated
in a variety of neuropsychiatric disorders, including depression and
schizophrenia. Inappropriate expression or activity of GABAergic interneurons
are common features of many of these disorders. We discovered a persistent
upregulation of GAD67+ and parvalbumin+ neurons within the anterior
cingulate cortex of dopamine D2 receptor knockout mice, while other
GABAergic interneuron markers were unaffected. Interneuron distribution
and number were not altered in the striatum or in the dopamine-poor
somatosensory cortex. The changes were already present by postnatal
day 14, indicating a developmental etiology. D2eGFP BAC transgenic
mice demonstrated the presence of D2 receptor expression within a
subset of parvalbumin-expressing cortical interneurons, suggesting
the possibility of a direct cellular mechanism through which D2 receptor
stimulation regulates interneuron differentiation or survival. D2
receptor knockout mice also exhibited decreased depressive-like behavior
compared with wild-type controls in the tail suspension test. These
data indicate that dopamine signaling modulates interneuron number
and emotional behavior and that developmental D2 receptor loss or
blockade could reveal a potential mechanism for the prodromal basis
of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Devon L. Graham
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Heather H. Durai
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Jamie D. Garden
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Evan L. Cohen
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Franklin D. Echevarria
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Gregg D. Stanwood
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
162
|
Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area. Proc Natl Acad Sci U S A 2015; 112:E1498-506. [PMID: 25675529 DOI: 10.1073/pnas.1500450112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There is strong evidence that the core deficits of schizophrenia result from dysfunction of the dopamine (DA) system, but details of this dysfunction remain unclear. We previously reported a model of transgenic mice that selectively and reversibly overexpress DA D2 receptors (D2Rs) in the striatum (D2R-OE mice). D2R-OE mice display deficits in cognition and motivation that are strikingly similar to the deficits in cognition and motivation observed in patients with schizophrenia. Here, we show that in vivo, both the firing rate (tonic activity) and burst firing (phasic activity) of identified midbrain DA neurons are impaired in the ventral tegmental area (VTA), but not in the substantia nigra (SN), of D2R-OE mice. Normalizing striatal D2R activity by switching off the transgene in adulthood recovered the reduction in tonic activity of VTA DA neurons, which is concordant with the rescue in motivation that we previously reported in our model. On the other hand, the reduction in burst activity was not rescued, which may be reflected in the observed persistence of cognitive deficits in D2R-OE mice. We have identified a potential molecular mechanism for the altered activity of DA VTA neurons in D2R-OE mice: a reduction in the expression of distinct NMDA receptor subunits selectively in identified mesolimbic DA VTA, but not nigrostriatal DA SN, neurons. These results suggest that functional deficits relevant for schizophrenia symptoms may involve differential regulation of selective DA pathways.
Collapse
|
163
|
Methods for Dissecting Motivation and Related Psychological Processes in Rodents. Curr Top Behav Neurosci 2015; 27:451-70. [PMID: 26272262 DOI: 10.1007/7854_2015_380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Motivational impairments are increasingly recognized as being critical to functional deficits and decreased quality of life in patients diagnosed with psychiatric disease. Accordingly, much preclinical research has focused on identifying psychological and neurobiological processes which underlie motivation . Inferring motivation from changes in overt behavioural responding in animal models, however, is complicated, and care must be taken to ensure that the observed change is accurately characterized as a change in motivation , and not due to some other, task-related process. This chapter discusses current methods for assessing motivation and related psychological processes in rodents. Using an example from work characterizing the motivational impairments in an animal model of the negative symptoms of schizophrenia, we highlight the importance of careful and rigorous experimental dissection of motivation and the related psychological processes when characterizing motivational deficits in rodent models . We suggest that such work is critical to the successful translation of preclinical findings to therapeutic benefits for patients.
Collapse
|
164
|
Mechanisms Underlying Motivational Deficits in Psychopathology: Similarities and Differences in Depression and Schizophrenia. Curr Top Behav Neurosci 2015; 27:411-49. [PMID: 26026289 DOI: 10.1007/7854_2015_376] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Motivational and hedonic impairments are core aspects of a variety of types of psychopathology. These impairments cut across diagnostic categories and may be critical to understanding major aspects of the functional impairments accompanying psychopathology. Given the centrality of motivational and hedonic systems to psychopathology, the Research Domain Criteria (RDoC) initiative includes a "positive valence" systems domain that outlines a number of constructs that may be key to understanding the nature and mechanisms of motivational and hedonic impairments in psychopathology. These component constructs include initial responsiveness to reward, reward anticipation or expectancy, incentive or reinforcement learning, effort valuation, and action selection. Here, we review behavioral and neuroimaging studies providing evidence for impairments in these constructs in individuals with psychosis versus in individuals with depressive pathology. There are important differences in the nature of reward-related and hedonic deficits associated with psychosis versus depression that have major implications for our understanding of etiology and treatment development. In particular, the literature strongly suggests the presence of impairments in in-the-moment hedonics or "liking" in individuals with depressive pathology, particularly among those who experience anhedonia. Such deficits may propagate forward and contribute to impairments in other constructs that are dependent on hedonic responses, such as anticipation, learning, effort, and action selection. Such hedonic impairments could reflect alterations in dopamine and/or opioid signaling in the striatum related to depression or specifically to anhedonia in depressed populations. In contrast, the literature points to relatively intact in-the-moment hedonic processing in psychosis, but provides much evidence for impairments in other components involved in translating reward to action selection. Particularly, individuals with schizophrenia exhibit altered reward prediction and associated striatal and prefrontal activation, impaired reward learning, and impaired reward-modulated action selection.
Collapse
|
165
|
Kim SW, Cho T, Lee S. Phospholipase C-β1 Hypofunction in the Pathogenesis of Schizophrenia. Front Psychiatry 2015; 6:159. [PMID: 26635636 PMCID: PMC4648068 DOI: 10.3389/fpsyt.2015.00159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/26/2015] [Indexed: 01/30/2023] Open
Abstract
Schizophrenia is a mental disorder that is characterized by various abnormal symptoms. Previous studies indicate decreased expression of phospholipase C-β1 (PLC-β1) in the brains of patients with schizophrenia. PLC-β1-null (PLC-β1(-/-)) mice exhibit multiple endophenotypes of schizophrenia. Furthermore, a study of PLC-β1 knockdown in the medial prefrontal cortex of mice has shown a specific behavioral deficit, impaired working memory. These results support the notion that disruption of PLC-β1-linked signaling in the brain is strongly involved in the pathogenesis of schizophrenia. In this review, we broadly investigate recent studies regarding schizophrenia-related behaviors as well as their various clinical and biological correlates in PLC-β1(-/-) and knockdown mouse models. This will provide a better understanding of the pathological relevance of the altered expression of PLC-β1 in the brains of patients with schizophrenia. Evidence accumulated will shed light on future in-depth studies, possibly in human subjects.
Collapse
Affiliation(s)
- Seong-Wook Kim
- Center for Cognition and Sociality, Institute for Basic Science , Daejeon , South Korea
| | - Taesup Cho
- Center for Cognition and Sociality, Institute for Basic Science , Daejeon , South Korea
| | - Sukchan Lee
- Department of Physiology, Seoul National University College of Medicine , Seoul , South Korea
| |
Collapse
|
166
|
Sumiyoshi T, Kunugi H, Nakagome K. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia. Front Neurosci 2014; 8:395. [PMID: 25538549 PMCID: PMC4255483 DOI: 10.3389/fnins.2014.00395] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/18/2014] [Indexed: 11/17/2022] Open
Abstract
Negative symptoms (e.g., decreased spontaneity, social withdrawal, blunt affect) and disturbances of cognitive function (e.g., several types of memory, attention, processing speed, executive function, fluency) provide a major determinant of long-term outcome in patients with schizophrenia. Specifically, motivation deficits, a type of negative symptoms, have been attracting interest as (1) a moderator of cognitive performance in schizophrenia and related disorders, and (2) a modulating factor of cognitive enhancers/remediation. These considerations suggest the need to clarify neurobiological substrates regulating motivation. Genetic studies indicate a role for the monoamine systems in motivation and key cognitive domains. For example, polymorphism of genes encoding catecholamine-O-methyltransferase, an enzyme catabolizing dopamine (DA), affects performance on tests of working memory and executive function in a phenotype (schizophrenia vs. healthy controls)-dependent fashion. On the other hand, motivation to maximize rewards has been shown to be influenced by other genes encoding DA-related substrates, such as DARPP-32 and DA-D2 receptors. Serotonin (5-HT) receptors may also play a significant role in cognitive and motivational disabilities in psychoses and mood disorders. For example, mutant mice over-expressing D2 receptors in the striatum, an animal model of schizophrenia, exhibit both decreased willingness to work for reward and up-regulation of 5-HT2C receptors. Taken together, genetic predisposition related to 5-HT receptors may mediate the diversity of incentive motivation that is impaired in patients receiving biological and/or psychosocial treatments. Thus, research into genetic and neurobiological measures of motivation, in association with 5-HT receptors, is likely to facilitate intervention into patients seeking better social consequences.
Collapse
Affiliation(s)
- Tomiki Sumiyoshi
- Department of Clinical Research Promotion, National Center Hospital, National Center of Neurology and Psychiatry Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo, Japan
| | - Kazuyuki Nakagome
- National Center Hospital, National Center of Neurology and Psychiatry Tokyo, Japan
| |
Collapse
|
167
|
Su P, Li S, Chen S, Lipina TV, Wang M, Lai TKY, Lee FHF, Zhang H, Zhai D, Ferguson SSG, Nobrega JN, Wong AHC, Roder JC, Fletcher PJ, Liu F. A dopamine D2 receptor-DISC1 protein complex may contribute to antipsychotic-like effects. Neuron 2014; 84:1302-16. [PMID: 25433637 DOI: 10.1016/j.neuron.2014.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 12/17/2022]
Abstract
Current antipsychotic drugs primarily target dopamine D2 receptors (D2Rs), in conjunction with other receptors such as those for serotonin. However, these drugs have serious side effects such as extrapyramidal symptoms (EPS) and diabetes. Identifying a specific D2R signaling pathway that could be targeted for antipsychotic effects, without inducing EPS, would be a significant improvement in the treatment of schizophrenia. We report here that the D2R forms a protein complex with Disrupted in Schizophrenia 1 (DISC1) that facilitates D2R-mediated glycogen synthase kinase (GSK)-3 signaling and inhibits agonist-induced D2R internalization. D2R-DISC1 complex levels are increased in conjunction with decreased GSK-3α/β (Ser21/9) phosphorylation in both postmortem brain tissue from schizophrenia patients and in Disc1-L100P mutant mice, an animal model with behavioral abnormalities related to schizophrenia. Administration of an interfering peptide that disrupts the D2R-DISC1 complex successfully reverses behaviors relevant to schizophrenia but does not induce catalepsy, a strong predictor of EPS in humans.
Collapse
Affiliation(s)
- Ping Su
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Shupeng Li
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Sheng Chen
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Min Wang
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Terence K Y Lai
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Frankie H F Lee
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Hailong Zhang
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Dongxu Zhai
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Stephen S G Ferguson
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 5 K8, Canada
| | - José N Nobrega
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; Departments of Psychology, Toronto, ON M5S 2J7, Canada; Psychiatry, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Albert H C Wong
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; Psychiatry, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Paul J Fletcher
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; Departments of Psychology, Toronto, ON M5S 2J7, Canada; Psychiatry, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; Psychiatry, University of Toronto, Toronto, ON M5S 2J7, Canada.
| |
Collapse
|
168
|
Darvas M, Palmiter RD. Specific contributions of N-methyl-D-aspartate receptors in the dorsal striatum to cognitive flexibility. Neuroscience 2014; 284:934-942. [PMID: 25446363 DOI: 10.1016/j.neuroscience.2014.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/11/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023]
Abstract
Behavioral flexibility is known to be mediated by corticostriatal systems and to involve several major neurotransmitter signaling pathways. The current study investigated the effects of inactivation of glutamatergic N-methyl-D-aspartate-(NMDA) receptor signaling in the dorsal striatum on behavioral flexibility in mice. NMDA-receptor inactivation was achieved by virus-mediated inactivation of the Grin1 gene, which encodes the essential NR1 subunit of NMDA receptors. To assess behavioral flexibility, we used a water U-maze paradigm in which mice had to shift from an initially acquired rule to a new rule (strategy shifting) or had to reverse an initially learned rule (reversal learning). Inactivation of NMDA-receptors in all neurons of the dorsal striatum did not affect learning of the initial rule or reversal learning, but impaired shifting from one strategy to another. Strategy shifting was also compromised when NMDA-receptors were inactivated only in dynorphin-expressing neurons in the dorsal striatum, which represent the direct pathway. These data suggest that NMDA-receptor-mediated synaptic plasticity in the dorsal striatum contributes to strategy shifting and that striatal projection neurons of the direct pathway are particularly relevant for this process.
Collapse
Affiliation(s)
- M Darvas
- Department of Pathology, University of Washington, Seattle, WA 98104, United States.
| | - R D Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98104, United States; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98104, United States
| |
Collapse
|
169
|
Simpson EH, Winiger V, Biezonski DK, Haq I, Kandel ER, Kellendonk C. Selective overexpression of dopamine D3 receptors in the striatum disrupts motivation but not cognition. Biol Psychiatry 2014; 76:823-31. [PMID: 24387821 PMCID: PMC4047204 DOI: 10.1016/j.biopsych.2013.11.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Evidence indicating an increase in dopamine D2 receptor (D2R) density and occupancy in patients with schizophrenia comes from positron emission tomography studies using ligands that bind both D2Rs and dopamine D3 receptors (D3Rs), questioning the role of D3Rs in the pathophysiology of the disease. Dopamine D3 receptor positron emission tomography ligands have recently been developed and antagonists with preferential affinity for D3R versus D2R are undergoing clinical evaluation. To determine if an increase in D3Rs in the striatum could produce phenotypes relevant to schizophrenia, we generated a transgenic model of striatal D3R overexpression. METHODS A bi-transgenic system was used to generate mice with increased D3Rs selectively in the striatum. Mice with overexpression of D3R were subjected to an extensive battery of behavioral tests, including several relevant to schizophrenia. Ligand binding and quantitative reverse transcription polymerase chain reaction methods were used to quantify the effect of D3R overexpression on dopamine D1 receptors (D1Rs) in the striatum. RESULTS Mice with overexpression of D3R show no abnormalities in basic behavioral functions or cognitive tests but do display a deficit in incentive motivation. This was associated with a reduction in striatal D1R ligand binding, driven by a downregulation at the level of transcription. Both motivation and D1R expression were rescued by switching off the transgene in adulthood. CONCLUSIONS Overexpression of D3Rs in the striatum of mice does not elicit cognitive deficits but disrupts motivation, suggesting that changes in D3Rs may be involved in the negative symptoms of schizophrenia. These data imply that it will be important to evaluate the effects of D3R antagonists on motivational symptoms, which are not improved by currently available antipsychotic medications.
Collapse
|
170
|
Brust TF, Hayes MP, Roman DL, Watts VJ. New functional activity of aripiprazole revealed: Robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling. Biochem Pharmacol 2014; 93:85-91. [PMID: 25449598 DOI: 10.1016/j.bcp.2014.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 01/11/2023]
Abstract
The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, "third generation" antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN - 47907, United States
| | - Michael P Hayes
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa - 115 S. Grand Ave, Iowa City, IA - 52242, United States
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa - 115 S. Grand Ave, Iowa City, IA - 52242, United States
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN - 47907, United States.
| |
Collapse
|
171
|
Abayomi O, Amato D, Bailey C, Bitanihirwe B, Bowen L, Burshtein S, Cullen A, Fusté M, Herrmann AP, Khodaie B, Kilian S, Lang QA, Manning EE, Massuda R, Nurjono M, Sadiq S, Sanchez-Gutierrez T, Sheinbaum T, Shivakumar V, Simon N, Spiteri-Staines A, Sirijit S, Toftdahl NG, Wadehra S, Wang Y, Wigton R, Wright S, Yagoda S, Zaytseva Y, O'Shea A, DeLisi LE. The 4th Schizophrenia International Research Society Conference, 5-9 April 2014, Florence, Italy: a summary of topics and trends. Schizophr Res 2014; 159:e1-22. [PMID: 25306204 PMCID: PMC4394607 DOI: 10.1016/j.schres.2014.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/07/2014] [Accepted: 08/26/2014] [Indexed: 11/26/2022]
Abstract
The 4th Schizophrenia International Research Society Conference was held in Florence, Italy, April 5-9, 2014 and this year had as its emphasis, "Fostering Collaboration in Schizophrenia Research". Student travel awardees served as rapporteurs for each oral session, summarized the important contributions of each session and then each report was integrated into a final summary of data discussed at the entire conference by topic. It is hoped that by combining data from different presentations, patterns of interest will emerge and thus lead to new progress for the future. In addition, the following report provides an overview of the conference for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research.
Collapse
Affiliation(s)
- Olukayode Abayomi
- Ladoke Akintola University of Technology Teaching Hospital, PMB 4007, Ogbomoso, Oyo, Nigeria
| | - Davide Amato
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Ulmenweg 19, 91054 Erlangen, Germany
| | - Candace Bailey
- University of Texas Medical Branch, School of Medicine, 215 Mechanic Street, Apt. M206, Galveston77550, TX, United States
| | - Byron Bitanihirwe
- Laboratory of System and Cell Biology of Neurodegeneration, University of Zurich, Wagistrasse 12, 8952 Schlieren, Zurich, Switzerland
| | - Lynneice Bowen
- Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, United States
| | | | - Alexis Cullen
- Health Services and Population Research Department, David Goldberg Centre, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Montserrat Fusté
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF London, UK
| | - Ana P Herrmann
- Pharmacology Department, Basic Health Sciences Institute, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | | | - Sanja Kilian
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Qortni A Lang
- Howard University College of Medicine, 520 W Street, Washington, DC 20059, United States
| | - Elizabeth E Manning
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, 30 Royal Parade, Parkville 3052, VIC, Australia
| | - Raffael Massuda
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350 Santa Cecília, Porto Alegre, RS 90035-903, Brazil
| | - Milawaty Nurjono
- Saw Swee Hock School of Public Health, National University of Singapore, MD3, 16 Medical Drive, Singapore 117597, Singapore
| | - Sarosh Sadiq
- Government College University, 170-S, 19/B, College Road, New Samanabad, Lahore, Pakistan
| | - Teresa Sanchez-Gutierrez
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, C/Ibiza, 43 28009, Madrid, Spain
| | - Tamara Sheinbaum
- Departament de Psicologia Clínica i de la Salut, Universitat Autònoma de Barcelona, Edifici B, 08193 Bellaterra, Barcelona, Spain
| | | | - Nicholas Simon
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Anneliese Spiteri-Staines
- Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, Parkville 3052, Victoria, Australia
| | - Suttajit Sirijit
- Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanna Gilliam Toftdahl
- Mental Health Centre Copenhagen, Bispebjerg Bakke 23, Entrance 13A, 3rd floor, DK-2400, Copenhagen NV, Denmark
| | - Sunali Wadehra
- Wayne State University School of Medicine, 469 West Hancock, Detroit 48201, MI, United States
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Rebekah Wigton
- Cognition and Schizophrenia Imaging Laboratory, Institute of Psychiatry, King's College, 16 De Crespigny Park Rd, Denmark Hill, London SE5 8AF, UK
| | - Susan Wright
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Neuroimaging Research Program, P.O. Box 21247, Baltimore, MD 21228, United States
| | - Sergey Yagoda
- Department of Psychiatry, Psychotherapy and Medical Psychology of Stavropol State Medical University, 28b Aivazovsky str, Stavropol 355007, Russia
| | - Yuliya Zaytseva
- Moscow Research Institute of Psychiatry, Russian Federation/Prague Psychiatric Centre affiliated with 3rd Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Anne O'Shea
- Harvard Medical School, Brockton, MA 02301, United States. anne_o'
| | - Lynn E DeLisi
- Department of Psychiatry, Harvard Medical School, 940 Belmont Street, Brockton, MA 02301, United States; VA Boston Healthcare System, 940 Belmont Street, Brockton, MA 02301, United States.
| |
Collapse
|
172
|
Stuttering candidate genes DRD2 but not SLC6A3 is associated with developmental dyslexia in Chinese population. Behav Brain Funct 2014; 10:29. [PMID: 25178928 PMCID: PMC4236612 DOI: 10.1186/1744-9081-10-29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/26/2014] [Indexed: 12/31/2022] Open
Abstract
Background Dyslexia is a polygenic developmental disorder characterized by difficulties in reading and spelling despite normal intelligence, educational backgrounds and perception. Increasing evidences indicated that dyslexia may share similar genetic mechanisms with other speech and language disorders. We proposed that stuttering candidate genes, DRD2 and SLC6A3, might be associated with dyslexia. Methods and results The study was conducted in an unrelated Chinese cohort with 502 dyslexic cases and 522 healthy controls. In total, 23 Tag SNPs covering the two genes were selected for genotyping through Tagger program. Association analysis was performed on each SNP alone and in haplotypes. One SNP markers in DRD2 showed significant association with developmental dyslexia. Conclusion These findings indicate that polymorphism of DRD2 gene may be a risk factor of developmental dyslexia in the Chinese population.
Collapse
|
173
|
Edut S, Rubovitch V, Rehavi M, Schreiber S, Pick CG. A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice. J Mol Neurosci 2014; 54:684-97. [PMID: 25124230 DOI: 10.1007/s12031-014-0399-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
Driving under methylenedioxymethamphetamine (MDMA) influence increases the risk of being involved in a car accident, which in turn can lead to traumatic brain injury. The behavioral deficits after traumatic brain injury (TBI) are closely connected to dopamine pathway dysregulation. We have previously demonstrated in mice that low MDMA doses prior to mTBI can lead to better performances in cognitive tests. The purpose of this study was to assess in mice the changes in the dopamine system that occurs after both MDMA and minimal traumatic brain injury (mTBI). Experimental mTBI was induced using a concussive head trauma device. One hour before injury, animals were subjected to MDMA. Administration of MDMA before injury normalized the alterations in tyrosine hydroxylase (TH) levels that were observed in mTBI mice. This normalization was also able to lower the elevated dopamine receptor type 2 (D2) levels observed after mTBI. Brain-derived neurotrophic factor (BDNF) levels did not change following injury alone, but in mice subjected to MDMA and mTBI, significant elevations were observed. In the behavioral tests, haloperidol reversed the neuroprotection seen when MDMA was administered prior to injury. Altered catecholamine synthesis and high D2 receptor levels contribute to cognitive dysfunction, and strategies to normalize TH signaling and D2 levels may provide relief for the deficits observed after injury. Pretreatment with MDMA kept TH and D2 receptor at normal levels, allowing regular dopamine system activity. While the beneficial effect we observe was due to a dangerous recreational drug, understanding the alterations in dopamine and the mechanism of dysfunction at a cellular level can lead to legal therapies and potential candidates for clinical use.
Collapse
Affiliation(s)
- S Edut
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel,
| | | | | | | | | |
Collapse
|
174
|
Puig MV, Rose J, Schmidt R, Freund N. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds. Front Neural Circuits 2014; 8:93. [PMID: 25140130 PMCID: PMC4122189 DOI: 10.3389/fncir.2014.00093] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/18/2014] [Indexed: 02/02/2023] Open
Abstract
In this review, we provide a brief overview over the current knowledge about the role of dopamine transmission in the prefrontal cortex during learning and memory. We discuss work in humans, monkeys, rats, and birds in order to provide a basis for comparison across species that might help identify crucial features and constraints of the dopaminergic system in executive function. Computational models of dopamine function are introduced to provide a framework for such a comparison. We also provide a brief evolutionary perspective showing that the dopaminergic system is highly preserved across mammals. Even birds, following a largely independent evolution of higher cognitive abilities, have evolved a comparable dopaminergic system. Finally, we discuss the unique advantages and challenges of using different animal models for advancing our understanding of dopamine function in the healthy and diseased brain.
Collapse
Affiliation(s)
- M. Victoria Puig
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Jonas Rose
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
- Animal Physiology, Institute of Neurobiology, University of TübingenTübingen, Germany
| | - Robert Schmidt
- BrainLinks-BrainTools, Department of Biology, Bernstein Center Freiburg, University of FreiburgFreiburg, Germany
| | - Nadja Freund
- Department of Psychiatry and Psychotherapy, University of TübingenTübingen, Germany
| |
Collapse
|
175
|
Chen KC, Lee IH, Yang YK, Landau S, Chang WH, Chen PS, Lu RB, David AS, Bramon E. P300 waveform and dopamine transporter availability: a controlled EEG and SPECT study in medication-naive patients with schizophrenia and a meta-analysis. Psychol Med 2014; 44:2151-2162. [PMID: 24238542 DOI: 10.1017/s0033291713002808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Reduced P300 event-related potential (ERP) amplitude and latency prolongation have been reported in patients with schizophrenia compared to healthy controls. However, the influence of antipsychotics (and dopamine) on ERP measures are poorly understood and medication confounding remains a possibility. METHOD We explored ERP differences between 36 drug-naive patients with schizophrenia and 138 healthy controls and examined whether P300 performance was related to dopamine transporter (DAT) availability, both without the confounding effects of medication. We also conducted a random effects meta-analysis of the available literature, synthesizing the results of three comparable published articles and our local study. RESULTS No overall significant difference was found in mean P300 ERP between patients and controls in latency or in amplitude. There was a significant gender effect, with females showing greater P300 amplitude than males. A difference between patients and controls in P300 latency was evident with ageing, with latency increasing faster in patients. No effect of DAT availability on P300 latency or amplitude was detected. The meta-analysis computed the latency pooled standardized effect size (PSES; Cohen's d) of -0.13 and the amplitude PSES (Cohen's d) of 0.48, with patients showing a significant reduction in amplitude. CONCLUSIONS Our findings suggest the P300 ERP is not altered in the early stages of schizophrenia before medication is introduced, and the DAT availability does not influence the P300 ERP amplitude or latency. P300 ERP amplitude reduction could be an indicator of the progression of illness and chronicity.
Collapse
Affiliation(s)
- K C Chen
- Department of Psychiatry,National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,Tainan,Taiwan
| | - I H Lee
- Department of Psychiatry,National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,Tainan,Taiwan
| | - Y K Yang
- Department of Psychiatry,National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,Tainan,Taiwan
| | - S Landau
- Department of Biostatistics, Institute of Psychiatry,King's College London,UK
| | - W H Chang
- Department of Psychiatry,National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,Tainan,Taiwan
| | - P S Chen
- Department of Psychiatry,National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,Tainan,Taiwan
| | - R B Lu
- Department of Psychiatry,National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,Tainan,Taiwan
| | - A S David
- Department of Psychosis Studies, Institute of Psychiatry,King's College London,UK
| | - E Bramon
- Department of Psychosis Studies, Institute of Psychiatry,King's College London,UK
| |
Collapse
|
176
|
Nakai T, Nagai T, Wang R, Yamada S, Kuroda K, Kaibuchi K, Yamada K. Alterations of GABAergic and dopaminergic systems in mutant mice with disruption of exons 2 and 3 of the Disc1 gene. Neurochem Int 2014; 74:74-83. [PMID: 24973713 DOI: 10.1016/j.neuint.2014.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/28/2014] [Accepted: 06/16/2014] [Indexed: 01/20/2023]
Abstract
Disrupted-in-schizophrenia-1 (DISC1) has been widely associated with several psychiatric disorders, including schizophrenia, mood disorders and autism. We previously reported that a deficiency of DISC1 may induce low anxiety and/or high impulsivity in mice with disruption of exons 2 and 3 of the Disc1 gene (Disc1(Δ2-3/Δ2-3)). It remains unclear, however, if deficiency of DISC1 leads to specific alterations in distinct neuronal systems. In the present study, to understand the role of DISC1 in γ-aminobutyric acid (GABA) interneurons and mesocorticolimbic dopaminergic (DAergic) neurons, we investigated the number of parvalbumin (PV)-positive interneurons, methamphetamine (METH)-induced DA release and the expression levels of GABAA, DA transporter (DAT) and DA receptors in wild-type (Disc1(+/+)) and Disc1(Δ2-3/Δ2-3) mice. Female Disc1(Δ2-3/Δ2-3) mice showed a significant reduction of PV-positive interneurons in the hippocampus, while no apparent changes were observed in mRNA expression levels of GABAA receptor subunits. METH-induced DA release was significantly potentiated in the nucleus accumbens (NAc) of female Disc1(Δ2-3/Δ2-3) mice, although there were no significant differences in the expression levels of DAT. Furthermore, the expression levels of DA receptor mRNA were upregulated in the NAc of female Disc1(Δ2-3/Δ2-3) mice. Male Disc1(Δ2-3/Δ2-3) mice showed no apparent differences in all experiments. DISC1 may play a critical role in gender-specific developmental alteration in GABAergic inhibitory interneurons and DAergic neurons.
Collapse
Affiliation(s)
- Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Rui Wang
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Shinnosuke Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan.
| |
Collapse
|
177
|
Carli M, Invernizzi RW. Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task. Front Neural Circuits 2014; 8:58. [PMID: 24966814 PMCID: PMC4052821 DOI: 10.3389/fncir.2014.00058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 01/13/2023] Open
Abstract
Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neurotransmission along these circuits and in turn to optimize circuit performance for specific aspects of executive control over behavior. In this review, we focus on the 5-choice serial reaction time task which is able to provide various measures of attention and executive control over performance in rodents and the ability of prefrontocortical and striatal serotonin 5-HT1A, 5-HT2A, and 5-HT2C as well as dopamine D1- and D2-like receptors to modulate different aspects of executive and attention disturbances induced by NMDA receptor hypofunction in the prefrontal cortex. These behavioral studies are integrated with findings from microdialysis studies. These studies illustrate the control of attention selectivity by serotonin 5-HT1A, 5-HT2A, 5-HT2C, and dopamine D1- but not D2-like receptors and a distinct contribution of these cortical and striatal serotonin and dopamine receptors to the control of different aspects of executive control over performance such as impulsivity and compulsivity. An association between NMDA antagonist-induced increase in glutamate release in the prefrontal cortex and attention is suggested. Collectively, this review highlights the functional interaction of serotonin and dopamine with NMDA dependent glutamate neurotransmission in the cortico-striatal circuitry for specific cognitive demands and may shed some light on how dysregulation of neuronal processing in these circuits may be implicated in specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mirjana Carli
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milano, Italy
| | - Roberto W Invernizzi
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milano, Italy
| |
Collapse
|
178
|
Cho KKA, Sohal VS. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders. Hum Mol Genet 2014; 23:R64-8. [DOI: 10.1093/hmg/ddu225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
179
|
Okada K, Nishizawa K, Fukabori R, Kai N, Shiota A, Ueda M, Tsutsui Y, Sakata S, Matsushita N, Kobayashi K. Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons. Nat Commun 2014; 5:3778. [DOI: 10.1038/ncomms4778] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/01/2014] [Indexed: 01/15/2023] Open
|
180
|
Genetically modified mice related to schizophrenia and other psychoses: seeking phenotypic insights into the pathobiology and treatment of negative symptoms. Eur Neuropsychopharmacol 2014; 24:800-21. [PMID: 24290531 DOI: 10.1016/j.euroneuro.2013.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/11/2013] [Accepted: 08/31/2013] [Indexed: 01/05/2023]
Abstract
Modelling negative symptoms in any animal model, particularly in mice mutant for genes related to schizophrenia, is complicated by the absence of the following key elements that might assist in developing validation criteria: clinical clarity surrounding this symptom constellation; any clear association between negative symptoms and pathological signature(s) in the brain; and therapeutic strategies with material clinical efficacy against these symptoms. In this review, the application of mutant mouse models to the study of negative symptoms is subjected to critical evaluation, focussing on the following challenges: (a) conceptual issues relating to negative symptoms and their evaluation in mutant models; (b) measurement of negative symptoms in mice, in terms of social behaviour, motivational deficits/avolition and anhedonia; (c) studies in mutants with disruption of genes either regulating aspects of neurotransmission implicated in schizophrenia or associated with risk for psychotic illness; (d) the disaggregation of behavioural phenotypes into underlying pathobiological processes, as a key to the development of new therapeutic strategies for negative symptoms. Advances in genetic and molecular technologies are facilitating these processes, such that more accurate models of putative schizophrenia-linked genetic abnormalities are becoming feasible. This progress in terms of mimicking the genetic contribution to distinct domains of psychopathology associated with psychotic illness must be matched by advances in conceptual/clinical relevance and sensitivity/specificity of phenotypic assessments at the level of behaviour.
Collapse
|
181
|
Barnes SA, Der-Avakian A, Markou A. Anhedonia, avolition, and anticipatory deficits: assessments in animals with relevance to the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 2014; 24:744-58. [PMID: 24183826 PMCID: PMC3986268 DOI: 10.1016/j.euroneuro.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/30/2013] [Accepted: 10/05/2013] [Indexed: 12/11/2022]
Abstract
Schizophrenia represents a complex, heterogeneous disorder characterized by several symptomatic domains that include positive and negative symptoms and cognitive deficits. Negative symptoms reflect a cluster of symptoms that remains therapeutically unresponsive to currently available medications. Therefore, the development of animal models that may contribute to the discovery of novel and efficacious treatment strategies is essential. An animal model consists of both an inducing condition or manipulation (i.e., independent variable) and an observable measure(s) (i.e., dependent variables) that are used to assess the construct(s) under investigation. The objective of this review is to describe currently available experimental procedures that can be used to characterize constructs relevant to the negative symptoms of schizophrenia in experimental animals. While negative symptoms can encompass aspects of social withdrawal and emotional blunting, this review focuses on the assessment of reward deficits that result in anhedonia, avolition, and abnormal reward anticipation. The development and utilization of animal procedures that accurately assess reward-based constructs related to negative symptomatology in schizophrenia will provide an improved understanding of the neural substrates involved in these processes.
Collapse
Affiliation(s)
- Samuel A Barnes
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Andre Der-Avakian
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA.
| |
Collapse
|
182
|
Maitra S, Sarkar K, Ghosh P, Karmakar A, Bhattacharjee A, Sinha S, Mukhopadhyay K. Potential contribution of dopaminergic gene variants in ADHD core traits and co-morbidity: a study on eastern Indian probands. Cell Mol Neurobiol 2014; 34:549-64. [PMID: 24585059 DOI: 10.1007/s10571-014-0038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Association of dopaminergic genes, mainly receptors and transporters, with Attention Deficit Hyperactivity Disorder (ADHD) has been investigated throughout the world due to the importance of dopamine (DA) in various physiological functions including attention, cognition and motor activity, traits. However, till date, etiology of ADHD remains unknown. We explored association of functional variants in the DA receptor 2 (rs1799732 and rs6278), receptor 4 (exon 3 VNTR and rs914655), and transporter (rs28363170 and rs3836790) with hyperactivity, cognitive deficit, and co-morbid disorders in eastern Indian probands. Diagnostic and Statistical Manual for Mental Disorders-IV was followed for recruitment of nuclear families with ADHD probands (N = 160) and ethnically matched controls (N = 160). Cognitive deficit and hyperactive traits were measured using Conner's parents/teachers rating scale. Peripheral blood was collected after obtaining informed written consent and used for genomic DNA isolation. Genetic polymorphisms were analyzed by PCR-based methods followed by population- as well as family-based statistical analyses. Association between genotypes and cognitive/hyperactivity traits and co-morbidities was analyzed by the Multifactor dimensionality reduction (MDR) software. Case-control analysis showed statistically significant difference for rs6278 and rs28363170 (P = 0.004 and 1.332e-007 respectively) while family-based analysis exhibited preferential paternal transmission of rs28363170 '9R' allele (P = 0.04). MDR analyses revealed independent effects of rs1799732, rs6278, rs914655, and rs3836790 in ADHD. Significant independent effects of different sites on cognitive/hyperactivity traits and co-morbid disorders were also noticed. It can be summarized from the present investigation that these gene variants may influence cognitive/hyperactive traits, thereby affecting the disease etiology and associated co-morbid features.
Collapse
Affiliation(s)
- Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot I-24, Sec.-J, E.M. Bypass, Kolkata, 700107, India
| | | | | | | | | | | | | |
Collapse
|
183
|
Modeling deficits in attention, inhibition, and flexibility in HAND. J Neuroimmune Pharmacol 2014; 9:508-21. [PMID: 24764039 DOI: 10.1007/s11481-014-9539-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/10/2014] [Indexed: 01/18/2023]
Abstract
Nearly half of all HIV-1-positive individuals on combination antiretroviral therapy (cART) are afflicted with HIV-1-associated neurocognitive disorders (HAND). The most prevalent cognitive deficits observed in the cART era are those of attention and executive function. Presently, we sought to model deficits in attention and core components of executive function (inhibition, flexibility, and set-shifting) observed in HAND using the HIV-1 transgenic (Tg) rat, which expresses 7 of the 9 HIV-1 genes. Ovariectomized female Fischer HIV-1 Tg and non-transgenic control rats (ns = 39-43) were tested in a series of operant tasks: signal detection, discrimination learning, reversal learning, and extradimensional set-shifting. The HIV-1 Tg animals attained the criterion of three sessions at 70% accuracy at a significantly slower rate than the control animals on all tasks with the exception of the extradimensional set-shifting task. Of the animals that met the criteria, there was no significant difference in percent accuracy in any task. However, the HIV-1 Tg rats showed a lower overall response rate in signal detection and discrimination learning. A discriminant function analysis classified the animals by genotype with 90.4% accuracy based on select measures of their performance. The functional consequences of chronic low-level expression of the HIV-1 proteins on attention, as well as inhibition and flexibility as core components of executive function, are apparent under conditions which resemble the brain proinflammatory immune responses and suppression of infection in HIV-1+ individuals under cART. Deficits in attention and core components of executive function may reflect an underlying impairment in temporal processing in HAND.
Collapse
|
184
|
Tanaka K. [Development of transgenic animals in optogenetics]. Nihon Yakurigaku Zasshi 2014; 143:193-7. [PMID: 24717608 DOI: 10.1254/fpj.143.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
185
|
Yildiz A, Wolf OT, Beste C. Stress intensifies demands on response selection during action cascading processes. Psychoneuroendocrinology 2014; 42:178-87. [PMID: 24636514 DOI: 10.1016/j.psyneuen.2014.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/24/2022]
Abstract
Stress has been shown to modulate a number of cognitive processes including action control. These functions are important in daily life and are mediated by various cognitive subprocesses. However, it is unknown if stress affects the whole processing cascade, or exerts specific effects on a restricted subset of processes involved in the chaining of actions. We examine the effects of stress on action selection processes in a stop-change paradigm and apply event-related potentials (ERPs) combined with source localization analysis to examine potentially restricted effects of stress on subprocesses mediating action cascading. The results show that attentional selection processes, as well as processes related to allocation of processing resources were not affected by stress. Stress only seems to affect response selection functions during action cascading and leads to slowing of responses when two actions are executed in succession. These changes are related to the anterior cingulate cortex (ACC). Changes in response selection were predictable on the basis of individual salivary cortisol levels. The results show that stress does not affect the whole processing cascade involved in the cascading of different actions, but seems to exert circumscribed effects on response selection processes which have previously been shown to depend on dopaminergic neural transmission.
Collapse
Affiliation(s)
- Ali Yildiz
- Institute for Cognitive Neuroscience, Biopsychology, Ruhr Universität Bochum, Germany; Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Germany
| | - Oliver T Wolf
- Institute for Cognitive Neuroscience, Cognitive Psychology, Ruhr Universität Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Germany.
| |
Collapse
|
186
|
Romano E, De Angelis F, Ulbrich L, De Jaco A, Fuso A, Laviola G. Nicotine exposure during adolescence: cognitive performance and brain gene expression in adult heterozygous reeler mice. Psychopharmacology (Berl) 2014; 231:1775-87. [PMID: 24337025 DOI: 10.1007/s00213-013-3388-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/30/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE We have recently reported nicotine-induced stimulation of reelin and glutamic acid decarboxylase 67 (GAD67) mRNA expression levels in the brain of heterozygous reeler mice (HRM), a putative animal model for the study of symptoms relevant to major behavioral disorders. OBJECTIVES We aimed to evaluate long-term behavioral effects and brain molecular changes as a result of adaptations to nicotine exposure in the developing HRM males. METHODS Adolescent mice (pnd 37-42) were exposed to oral nicotine (10 mg/l) in a 6-day free-choice drinking schedule. As expected, no differences in total nicotine intake between WT (wild-type) mice and HRM were found. RESULTS Long-term behavioral effects and brain molecular changes, as a consequence of nicotine exposure during adolescence, were only evidenced in HRM. Indeed, HRM perseverative exploratory behavior and poor cognitive performance were modulated to WT levels by subchronic exposure to nicotine during development. Furthermore, the expected reduction in the expression of mRNA of reelin and GAD67 in behaviorally relevant brain areas of HRM appeared persistently restored by nicotine. For brain-derived neurotrophic factor (BDNF) mRNA expression, no genotype-dependent changes appeared. However, expression levels were increased by previous nicotine in brains from both genotypes. The mRNA encoding for nicotine receptor subunits (α7, β2 and α4) did not differ between genotypes and as a result of previous nicotine exposure. CONCLUSION These findings support the hypothesis of pre-existing vulnerability (based on haploinsufficiency of reelin) to brain and behavioral disorders and regulative short- and long-term effects associated with nicotine modulation.
Collapse
Affiliation(s)
- Emilia Romano
- Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | | | |
Collapse
|
187
|
Shi S, Leites C, He D, Schwartz D, Moy W, Shi J, Duan J. MicroRNA-9 and microRNA-326 regulate human dopamine D2 receptor expression, and the microRNA-mediated expression regulation is altered by a genetic variant. J Biol Chem 2014; 289:13434-44. [PMID: 24675081 DOI: 10.1074/jbc.m113.535203] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human dopamine receptor D2 (DRD2) has been implicated in the pathophysiology of schizophrenia and other neuropsychiatric disorders. Most antipsychotic drugs influence dopaminergic transmission through blocking dopamine receptors, primarily DRD2. We report here the post-transcriptional regulation of DRD2 expression by two brain-expressed microRNAs (miRs), miR-326 and miR-9, in an ex vivo mode, and show the relevance of miR-mediated DRD2 expression regulation in human dopaminergic neurons and in developing human brains. Both miRs targeted the 3'-UTR (untranslated region) of DRD2 in NT2 (neuron-committed teratocarcinoma, which endogenously expresses DRD2) and CHO (Chinese hamster ovary) cell lines, decreasing luciferase activity measured by a luciferase reporter gene assay. miR-326 overexpression reduced DRD2 mRNA and DRD2 receptor synthesis. Both antisense miR-326 and antisense miR-9 increased DRD2 protein abundance, suggesting an endogenous repression of DRD2 expression by both miRs. Furthermore, a genetic variant (rs1130354) within the DRD2 3'-UTR miR-targeting site interferes with miR-326-mediated repression of DRD2 expression. Finally, co-expression analysis identified an inverse correlation of DRD2 expression with both miR-326 and miR-9 in differentiating dopaminergic neurons derived from human induced pluripotent stem cells (iPSCs) and in developing human brain regions implicated in schizophrenia. Our study provides empirical evidence suggesting that miR-326 and miR-9 may regulate dopaminergic signaling, and miR-326 and miR-9 may be considered as potential drug targets for the treatment of disorders involving abnormal DRD2 function, such as schizophrenia.
Collapse
Affiliation(s)
- Sandra Shi
- From the Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, Illinois 60201
| | | | | | | | | | | | | |
Collapse
|
188
|
Turner KM, Burne THJ. Comprehensive behavioural analysis of Long Evans and Sprague-Dawley rats reveals differential effects of housing conditions on tests relevant to neuropsychiatric disorders. PLoS One 2014; 9:e93411. [PMID: 24671152 PMCID: PMC3966872 DOI: 10.1371/journal.pone.0093411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/05/2014] [Indexed: 01/07/2023] Open
Abstract
Genetic (G) and environmental (E) manipulations are known to alter behavioural outcomes in rodents, however many animal models of neuropsychiatric disorders only use a restricted selection of strain and housing conditions. The aim of this study was to examine GxE interactions comparing two outbred rat strains, which were housed in either standard or enriched cages. The strains selected were the albino Sprague-Dawley rat, commonly used for animal models, and the other was the pigmented Long Evans rat, which is frequently used in cognitive studies. Rats were assessed using a comprehensive behavioural test battery and included well-established tests frequently employed to examine animal models of neuropsychiatric diseases, measuring aspects of anxiety, exploration, sensorimotor gating and cognition. Selective strain and housing effects were observed on a number of tests. These included increased locomotion and reduced pre-pulse inhibition in Long Evans rats compared to Sprague Dawley rats; and rats housed in enriched cages had reduced anxiety-like behaviour compared to standard housed rats. Long Evans rats required fewer sessions than Sprague Dawley rats to learn operant tasks, including a signal detection task and reversal learning. Furthermore, Long Evans rats housed in enriched cages acquired simple operant tasks faster than standard housed Long Evans rats. Cognitive phenotypes in animal models of neuropsychiatric disorders would benefit from using strain and housing conditions where there is greater potential for both enhancement and deficits in performance.
Collapse
Affiliation(s)
- Karly M. Turner
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
- * E-mail:
| |
Collapse
|
189
|
Sannino S, Gozzi A, Cerasa A, Piras F, Scheggia D, Managò F, Damiano M, Galbusera A, Erickson LC, De Pietri Tonelli D, Bifone A, Tsaftaris SA, Caltagirone C, Weinberger DR, Spalletta G, Papaleo F. COMT Genetic Reduction Produces Sexually Divergent Effects on Cortical Anatomy and Working Memory in Mice and Humans. Cereb Cortex 2014; 25:2529-41. [PMID: 24658585 DOI: 10.1093/cercor/bhu053] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic variations in catechol-O-methyltransferase (COMT) that modulate cortical dopamine have been associated with pleiotropic behavioral effects in humans and mice. Recent data suggest that some of these effects may vary among sexes. However, the specific brain substrates underlying COMT sexual dimorphisms remain unknown. Here, we report that genetically driven reduction in COMT enzyme activity increased cortical thickness in the prefrontal cortex (PFC) and postero-parieto-temporal cortex of male, but not female adult mice and humans. Dichotomous changes in PFC cytoarchitecture were also observed: reduced COMT increased a measure of neuronal density in males, while reducing it in female mice. Consistent with the neuroanatomical findings, COMT-dependent sex-specific morphological brain changes were paralleled by divergent effects on PFC-dependent working memory in both mice and humans. These findings emphasize a specific sex-gene interaction that can modulate brain morphological substrates with influence on behavioral outcomes in healthy subjects and, potentially, in neuropsychiatric populations.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Alessandro Gozzi
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Science @UNITN, 38068, Rovereto, Italy
| | - Antonio Cerasa
- IBFM Institute of Bioimaging and Molecular Physiology, National Research Council (CNR), 88100, Germaneto (CZ), Italy
| | | | - Diego Scheggia
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Francesca Managò
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Mario Damiano
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Science @UNITN, 38068, Rovereto, Italy
| | - Alberto Galbusera
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Science @UNITN, 38068, Rovereto, Italy
| | | | - Davide De Pietri Tonelli
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Angelo Bifone
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Science @UNITN, 38068, Rovereto, Italy
| | | | | | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, 21205, Baltimore, MD, USA
| | | | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy Dipartimento di Scienze del Farmaco, Università Degli Studi di Padova, 35131 Padova, Italy
| |
Collapse
|
190
|
Simpson EH, Morud J, Winiger V, Biezonski D, Zhu JP, Bach ME, Malleret G, Polan HJ, Ng-Evans S, Phillips PEM, Kellendonk C, Kandel ER. Genetic variation in COMT activity impacts learning and dopamine release capacity in the striatum. Learn Mem 2014; 21:205-14. [PMID: 24639487 PMCID: PMC3966542 DOI: 10.1101/lm.032094.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A common genetic polymorphism that results in increased activity of the dopamine regulating enzyme COMT (the COMT Val158 allele) has been found to associate with poorer cognitive performance and increased susceptibility to develop psychiatric disorders. It is generally assumed that this increase in COMT activity influences cognitive function and psychiatric disease risk by increasing dopamine turnover in cortical synapses, though this cannot be directly measured in humans. Here we explore a novel transgenic mouse model of increased COMT activity, equivalent to the relative increase in activity observed with the human COMT Val158 allele. By performing an extensive battery of behavioral tests, we found that COMT overexpressing mice (COMT-OE mice) exhibit cognitive deficits selectively in the domains that are affected by the COMT Val158 allele, stimulus–response learning and working memory, functionally validating our model of increased COMT activity. Although we detected no changes in the level of markers for dopamine synthesis and dopamine transport, we found that COMT-OE mice display an increase in dopamine release capacity in the striatum. This result suggests that increased COMT activity may not only affect dopamine signaling by enhancing synaptic clearance in the cortex, but may also cause changes in presynaptic dopamine function in the striatum. These changes may underlie the behavioral deficits observed in the mice and might also play a role in the cognitive deficits and increased psychiatric disease risk associated with genetic variation in COMT activity in humans.
Collapse
Affiliation(s)
- Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Cazorla M, de Carvalho FD, Chohan MO, Shegda M, Chuhma N, Rayport S, Ahmari SE, Moore H, Kellendonk C. Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 2014; 81:153-64. [PMID: 24411738 DOI: 10.1016/j.neuron.2013.10.041] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2013] [Indexed: 01/26/2023]
Abstract
Structural plasticity in the adult brain is essential for adaptive behavior. We have found a remarkable anatomical plasticity in the basal ganglia of adult mice that is regulated by dopamine D2 receptors (D2Rs). By modulating neuronal excitability, striatal D2Rs bidirectionally control the density of direct pathway collaterals in the globus pallidus that bridge the direct pathway with the functionally opposing indirect pathway. An increase in bridging collaterals is associated with enhanced inhibition of pallidal neurons in vivo and disrupted locomotor activation after optogenetic stimulation of the direct pathway. Chronic blockade with haloperidol, an antipsychotic medication used to treat schizophrenia, decreases the extent of bridging collaterals and rescues the locomotor imbalance. These findings identify a role for bridging collaterals in regulating the concerted balance of striatal output and may have important implications for understanding schizophrenia, a disease involving excessive activation of striatal D2Rs that is treated with D2R blockers.
Collapse
Affiliation(s)
- Maxime Cazorla
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Fernanda Delmondes de Carvalho
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Muhammad O Chohan
- Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Mariya Shegda
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Nao Chuhma
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Susanne E Ahmari
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Holly Moore
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
192
|
Papaleo F, Burdick MC, Callicott JH, Weinberger DR. Epistatic interaction between COMT and DTNBP1 modulates prefrontal function in mice and in humans. Mol Psychiatry 2014; 19:311-6. [PMID: 24145376 PMCID: PMC4845721 DOI: 10.1038/mp.2013.133] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/09/2023]
Abstract
Cognitive functions are highly heritable and the impact of complex genetic interactions, though undoubtedly important, has received little investigation. Here we show in an animal model and in a human neuroimaging experiment a consistent non-linear interaction between two genes--catechol-O-methyl transferase (COMT) and dysbindin (dys; dystrobrevin-binding protein 1 (DTNBP1))--implicated through different mechanisms in cortical dopamine signaling and prefrontal cognitive function. In mice, we found that a single genetic mutation reducing expression of either COMT or DTNBP1 alone produced working memory advantages, while, in dramatic contrast, genetic reduction of both in the same mouse produced working memory deficits. We found evidence of the same non-linear genetic interaction in prefrontal cortical function in humans. In healthy volunteers (N=176) studied with functional magnetic resonance imaging during a working memory paradigm, individuals homozygous for the COMT rs4680 Met allele that reduces COMT enzyme activity showed a relatively more efficient prefrontal engagement. In contrast, we found that the same genotype was less efficient on the background of a dys haplotype associated with decreased DTNBP1 expression. These results illustrate that epistasis can be functionally multi-directional and non-linear and that a putatively beneficial allele in one epistastic context is a relatively deleterious one in another. These data also have important implications for single-locus association analyses of complex traits.
Collapse
Affiliation(s)
- F Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy,Department of Scienze del Farmaco, Universita’ degli Studi di Padova, Padova, Italy,Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - MC Burdick
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - JH Callicott
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - DR Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA,Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA,Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
193
|
Darvas M, Henschen CW, Palmiter RD. Contributions of signaling by dopamine neurons in dorsal striatum to cognitive behaviors corresponding to those observed in Parkinson's disease. Neurobiol Dis 2014; 65:112-23. [PMID: 24491966 DOI: 10.1016/j.nbd.2014.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 02/07/2023] Open
Abstract
Although the cardinal features of Parkinson's disease (PD) are motor symptoms, PD also causes cognitive deficits including cognitive flexibility and working memory, which are strongly associated with prefrontal cortex (PFC) functions. Yet, early stage PD is not characterized by pathology in the PFC but by a loss of dopaminergic (DA) projections from the substantia nigra to the dorsal striatum. Moreover, the degree to which PD symptoms can be ascribed to the loss of DA alone or to the loss of DA neurons is unknown. We addressed these issues by comparing mouse models of either chronic DA depletion or loss of DA projections to the dorsal striatum. We achieved equal levels of striatal DA reduction in both models which ranged from mild (~25%) to moderate (~60%). Both models displayed DA concentration-dependent reductions of motor function as well as mild deficits of cognitive flexibility and working memory. Interestingly, whereas both motor function and cognitive flexibility were more severely impaired after mild ablation of DA neurons as compared to mild loss of DA alone, both models had equal deficits after moderate loss of DA. Our results confirm contributions of nigro-striatal dopamine signaling to cognitive behaviors that are affected in early stage PD. Furthermore, our findings suggest that the phenotype after ablation of DA neurons accrues from factors beyond the mere loss of DA.
Collapse
Affiliation(s)
- Martin Darvas
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Charles W Henschen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
194
|
Teixeira CM, Masachs N, Muhaisen A, Bosch C, Pérez-Martínez J, Howell B, Soriano E. Transient downregulation of Dab1 protein levels during development leads to behavioral and structural deficits: relevance for psychiatric disorders. Neuropsychopharmacology 2014; 39:556-68. [PMID: 24030361 PMCID: PMC3895234 DOI: 10.1038/npp.2013.226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/09/2013] [Accepted: 08/11/2013] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders have been hypothesized to originate during development, with genetic and environmental factors interacting in the etiology of disease. Therefore, developmentally regulated genes have received attention as risk modulators in psychiatric diseases. Reelin is an extracellular protein essential for neuronal migration and maturation during development, and its expression levels are reduced in psychiatric disorders. Interestingly, several perinatal insults that increase the risk of behavioral deficits alter Reelin signaling. However, it is not known whether a dysfunction in Reelin signaling during perinatal stages increases the risk of psychiatric disorders. Here we used a floxed dab1 allele to study whether a transient decrease in Dab1, a key component of the Reelin pathway, is sufficient to induce behavioral deficits related to psychiatric disorders. We found that transient Dab1 downregulation during perinatal stages leads to permanent abnormalities of structural layering in the neocortex and hippocampus. In contrast, conditional inactivation of the dab1 gene in the adult brain does not result in additional layering abnormalities. Furthermore, perinatal Dab1 downregulation causes behavior impairments in adult mice, such as deficits in memory, maternal care, pre-pulse inhibition, and response to cocaine. Some of these deficits were also found to be present in adolescence. We also show that D-cycloserine rescues the cognitive deficits observed in floxed dab1 mice with layering alterations in the hippocampus and neocortex. Our results indicate a causal relation between the downregulation of Dab1 protein levels during development and the structural and behavioral deficits associated with psychiatric diseases in the adult.
Collapse
Affiliation(s)
- Catia M Teixeira
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain,Department of Cell Biology, University of Barcelona, Baldiri Reixac 10, Barcelona E-08028, Spain, Tel: +34 93 4037117, Fax: +34 93 4037116, E-mail: or
| | - Nuria Masachs
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Carles Bosch
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Brian Howell
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Eduardo Soriano
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain,Fundación CIEN, Vallecas, Spain,Department of Cell Biology, University of Barcelona, Baldiri Reixac 10, Barcelona E-08028, Spain, Tel: +34 93 4037117, Fax: +34 93 4037116, E-mail: or
| |
Collapse
|
195
|
Montojo C, Ibrahim A, Karlsgodt K, Chow C, Hilton A, Jonas R, Vesagas T, Bearden C. Disrupted working memory circuitry and psychotic symptoms in 22q11.2 deletion syndrome. Neuroimage Clin 2014; 4:392-402. [PMID: 24567911 PMCID: PMC3930118 DOI: 10.1016/j.nicl.2014.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 11/30/2022]
Abstract
22q11.2 deletion syndrome (22q11DS) is a recurrent genetic mutation that is highly penetrant for psychosis. Behavioral research suggests that 22q11DS patients exhibit a characteristic neurocognitive phenotype that includes differential impairment in spatial working memory (WM). Notably, spatial WM has also been proposed as an endophenotype for idiopathic psychotic disorder, yet little is known about the neurobiological substrates of WM in 22q11DS. In order to investigate the neural systems engaged during spatial WM in 22q11DS patients, we collected functional magnetic resonance imaging (fMRI) data while 41 participants (16 22q11DS patients, 25 demographically matched controls) performed a spatial capacity WM task that included manipulations of delay length and load level. Relative to controls, 22q11DS patients showed reduced neural activation during task performance in the intraparietal sulcus (IPS) and superior frontal sulcus (SFS). In addition, the typical increases in neural activity within spatial WM-relevant regions with greater memory load were not observed in 22q11DS. We further investigated whether neural dysfunction during WM was associated with behavioral WM performance, assessed via the University of Maryland letter-number sequencing (LNS) task, and positive psychotic symptoms, assessed via the Structured Interview for Prodromal Syndromes (SIPS), in 22q11DS patients. WM load activity within IPS and SFS was positively correlated with LNS task performance; moreover, WM load activity within IPS was inversely correlated with the severity of unusual thought content and delusional ideas, indicating that decreased recruitment of working memory-associated neural circuitry is associated with more severe positive symptoms. These results suggest that 22q11DS patients show reduced neural recruitment of brain regions critical for spatial WM function, which may be related to characteristic behavioral manifestations of the disorder.
Collapse
Affiliation(s)
- C.A. Montojo
- Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychology, 1285 Franz Hall, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - A. Ibrahim
- Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - K.H. Karlsgodt
- Feinstein Institute for Medical Research, Zucker Hillside Hospital, North Shore-LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA
| | - C. Chow
- Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - A.E. Hilton
- Department of Psychology, 1285 Franz Hall, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - R.K. Jonas
- Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - T.K. Vesagas
- Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - C.E. Bearden
- Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychology, 1285 Franz Hall, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, 695 Charles E Young Drive S, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
196
|
Baloyianni N, Tsangaris GT. The audacity of proteomics: a chance to overcome current challenges in schizophrenia research. Expert Rev Proteomics 2014; 6:661-74. [DOI: 10.1586/epr.09.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
197
|
Seeman MV, Seeman P. Is schizophrenia a dopamine supersensitivity psychotic reaction? Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:155-60. [PMID: 24128684 PMCID: PMC3858317 DOI: 10.1016/j.pnpbp.2013.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
Adolf Meyer (1866-1950) did not see schizophrenia as a discrete disorder with a specific etiology but, rather, as a reaction to a wide variety of biopsychosocial factors. He may have been right. Today, we have evidence that gene mutations, brain injury, drug use (cocaine, amphetamine, marijuana, phencyclidine, and steroids), prenatal infection and malnutrition, social isolation and marginalization, can all result in the signs and symptoms of schizophrenia. This clinical picture is generally associated with supersensitivity to dopamine, and activates dopamine neurotransmission that is usually alleviated or blocked by drugs that block dopamine D2 receptors. While the dopamine neural pathway may be a final common route to many of the clinical symptoms, the components of this pathway, such as dopamine release and number of D2 receptors, are approximately normal in schizophrenia patients who are in remission. Postmortem findings, however, reveal more dimers of D1D2 and D2D2 receptors in both human schizophrenia brains and in animal models of schizophrenia. Another finding in animal models is an elevation of high-affinity state D2High receptors, but no radioactive ligand is yet available to selectively label D2High receptors in humans. It is suggested that synaptic dopamine supersensitivity in schizophrenia is an attempt at compensation for the original damage by heightening dopamine neurotransmission pathways (preparing the organism for fight or flight). The dopamine overactivity is experienced subjectively as overstimulation, which accounts for some of the clinical symptoms, with attempts at dampening down the stimulation leading to still other symptoms. Reaction and counter-reaction may explain the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Mary V. Seeman
- Departments of Psychiatry, University of Toronto, 260 Heath St. West, Suite 605, Toronto, Ontario M5P 3L6, Canada
| | - Philip Seeman
- Departments of Pharmacology, University of Toronto, 260 Heath St. West, Suite 605, Toronto, Ontario M5P 3L6, Canada,Corresponding author. Tel.: +1 416 486 3456. (P. Seeman)
| |
Collapse
|
198
|
Moran PM, O'Tuathaigh CM, Papaleo F, Waddington JL. Dopaminergic function in relation to genes associated with risk for schizophrenia. PROGRESS IN BRAIN RESEARCH 2014; 211:79-112. [DOI: 10.1016/b978-0-444-63425-2.00004-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
199
|
Money KM, Stanwood GD. Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci 2013; 7:260. [PMID: 24391541 PMCID: PMC3867667 DOI: 10.3389/fncel.2013.00260] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 01/11/2023] Open
Abstract
Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University Nashville, TN, USA ; Vanderbilt Medical Scientist Training Program, Vanderbilt University Nashville, TN, USA
| | - Gregg D Stanwood
- Department of Pharmacology, Vanderbilt University Nashville, TN, USA ; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
200
|
Urs NM, Nicholls PJ, Caron MG. Integrated approaches to understanding antipsychotic drug action at GPCRs. Curr Opin Cell Biol 2013; 27:56-62. [PMID: 24680431 DOI: 10.1016/j.ceb.2013.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/05/2013] [Indexed: 12/28/2022]
Abstract
The G-protein coupled receptor (GPCR) family of genes represents one of the largest druggable families of genes in the human genome. This is evident by the fact that approximately 30% of currently marketed drugs target GPCRs. However, many of these drugs are limited in their clinical potential as they are associated with debilitating side effects-a consequence of our incomplete understanding of their pharmacology and the signaling pathways regulated by GPCRs. Because of the limited range of tools available to resolve these issues, integrated approaches are required to fully understand the pharmacological action of drugs and the biochemical repertoire regulated by GPCRs. In this review we will focus on the action of antipsychotic drugs on certain monoamine GPCRs in the central nervous system (CNS) and the approaches being developed to elucidate their distinct pharmacology.
Collapse
Affiliation(s)
- Nikhil M Urs
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States
| | - Peter J Nicholls
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States; Department of Medicine, Neurobiology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|