151
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
152
|
Berg RW. Neuronal Population Activity in Spinal Motor Circuits: Greater Than the Sum of Its Parts. Front Neural Circuits 2017; 11:103. [PMID: 29311842 PMCID: PMC5742103 DOI: 10.3389/fncir.2017.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 11/27/2022] Open
Abstract
The core elements of stereotypical movements such as locomotion, scratching and breathing are generated by networks in the lower brainstem and the spinal cord. Ensemble activities in spinal motor networks had until recently been merely a black box, but with the emergence of ultra-thin Silicon multi-electrode technology it was possible to reveal the spiking activity of larger parts of the network. A series of experiments revealed unexpected features of spinal networks, such as multiple spiking regimes and lognormal firing rate distributions. The lognormality renders the widespread idea of a typical firing rate ± standard deviation an ill-suited description, and therefore these findings define a new arithmetic of motor networks. Focusing on the population activity behind motor pattern generation this review summarizes this advance and discusses its implications.
Collapse
Affiliation(s)
- Rune W. Berg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
153
|
Turrigiano GG. The dialectic of Hebb and homeostasis. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0258. [PMID: 28093556 DOI: 10.1098/rstb.2016.0258] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/07/2016] [Indexed: 01/12/2023] Open
Abstract
It has become widely accepted that homeostatic and Hebbian plasticity mechanisms work hand in glove to refine neural circuit function. Nonetheless, our understanding of how these fundamentally distinct forms of plasticity compliment (and under some circumstances interfere with) each other remains rudimentary. Here, I describe some of the recent progress of the field, as well as some of the deep puzzles that remain. These include unravelling the spatial and temporal scales of different homeostatic and Hebbian mechanisms, determining which aspects of network function are under homeostatic control, and understanding when and how homeostatic and Hebbian mechanisms must be segregated within neural circuits to prevent interference.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
|
154
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
155
|
Glebov OO, Jackson RE, Winterflood CM, Owen DM, Barker EA, Doherty P, Ewers H, Burrone J. Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function. Cell Rep 2017; 18:2715-2728. [PMID: 28297674 PMCID: PMC5368346 DOI: 10.1016/j.celrep.2017.02.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2015] [Revised: 12/10/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
The active zone (AZ) matrix of presynaptic terminals coordinates the recruitment of voltage-gated calcium channels (VGCCs) and synaptic vesicles to orchestrate neurotransmitter release. However, the spatial organization of the AZ and how it controls vesicle fusion remain poorly understood. Here, we employ super-resolution microscopy and ratiometric imaging to visualize the AZ structure on the nanoscale, revealing segregation between the AZ matrix, VGCCs, and putative release sites. Long-term blockade of neuronal activity leads to reversible AZ matrix unclustering and presynaptic actin depolymerization, allowing for enrichment of AZ machinery. Conversely, patterned optogenetic stimulation of postsynaptic neurons retrogradely enhanced AZ clustering. In individual synapses, AZ clustering was inversely correlated with local VGCC recruitment and vesicle cycling. Acute actin depolymerization led to rapid (5 min) nanoscale AZ matrix unclustering. We propose a model whereby neuronal activity modulates presynaptic function in a homeostatic manner by altering the clustering state of the AZ matrix.
Collapse
Affiliation(s)
- Oleg O Glebov
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre For Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Rachel E Jackson
- Centre For Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Christian M Winterflood
- Randall Division of Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK
| | - Dylan M Owen
- Randall Division of Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK; Department of Physics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| | - Ellen A Barker
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Helge Ewers
- Randall Division of Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Juan Burrone
- Centre For Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
156
|
Gilbride CJ. The hyperexcitability of dentate granule neurons in organotypic hippocampal slice cultures is due to reorganization of synaptic inputs in vitro. Physiol Rep 2017; 4:4/19/e12889. [PMID: 27707779 PMCID: PMC5064129 DOI: 10.14814/phy2.12889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2016] [Accepted: 07/15/2016] [Indexed: 11/24/2022] Open
Abstract
Organotypic hippocampal slice cultures (OHSCs) provide the experimental flexibility of cell culture while leaving much of the natural neuronal connectivity intact. Previously, it was shown that the functional and morphological features of CA1 pyramidal neurons in OHSCs resemble, to a surprising extent, those of CA1 neurons in the acute brain slice preparation. However, the extent to which the characteristics of other principle hippocampal neurons change or are preserved in cultured slices remains to be determined. In the present study, I initially sought to understand whether and how the synaptic inputs and morphology of cultured dentate granule neurons (GCs) differ from GCs that have developed in vivo. To this end, I compared GCs in OHSCs and GCs in acute slices at two equivalent developmental time points (P14 vs. DIV7 and P21 vs. DIV21). The findings suggest that there is considerable reorganization of synaptic input to the organotypic GCs, such that these cells are more susceptible to hyperexcitation than GCs in acute slices after 3 weeks. It appears that this hyperexcitability emerges through an increase in the proportion of mature synapses at proximal dendritic sites and is accompanied by an increase in inhibitory neuron activity. These alterations appear to arise in a coordinated manner such that the substantial increase in excitatory synaptic drive received by the DIV21 GCs in OHSCs remains local and is not translated into excessive output possibly leading to damage or major morphological alterations of downstream pyramidal neurons.
Collapse
Affiliation(s)
- Charlie J Gilbride
- Depatment of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
157
|
Widagdo J, Guntupalli S, Jang SE, Anggono V. Regulation of AMPA Receptor Trafficking by Protein Ubiquitination. Front Mol Neurosci 2017; 10:347. [PMID: 29123470 PMCID: PMC5662755 DOI: 10.3389/fnmol.2017.00347] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2017] [Accepted: 10/12/2017] [Indexed: 11/27/2022] Open
Abstract
The molecular mechanisms underlying plastic changes in the strength and connectivity of excitatory synapses have been studied extensively for the past few decades and remain the most attractive cellular models of learning and memory. One of the major mechanisms that regulate synaptic plasticity is the dynamic adjustment of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor content on the neuronal plasma membrane. The expression of surface AMPA receptors (AMPARs) is controlled by the delicate balance between the biosynthesis, dendritic transport, exocytosis, endocytosis, recycling and degradation of the receptors. These processes are dynamically regulated by AMPAR interacting proteins as well as by various post-translational modifications that occur on their cytoplasmic domains. In the last few years, protein ubiquitination has emerged as a major regulator of AMPAR intracellular trafficking. Dysregulation of AMPAR ubiquitination has also been implicated in the pathophysiology of Alzheimer’s disease. Here we review recent advances in the field and provide insights into the role of protein ubiquitination in regulating AMPAR membrane trafficking and function. We also discuss how aberrant ubiquitination of AMPARs contributes to the pathogenesis of various neurological disorders, including Alzheimer’s disease, chronic stress and epilepsy.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Se E Jang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
158
|
Tetteh H, Lee M, Lau CG, Yang S, Yang S. Tinnitus: Prospects for Pharmacological Interventions With a Seesaw Model. Neuroscientist 2017; 24:353-367. [PMID: 29283017 DOI: 10.1177/1073858417733415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
Chronic tinnitus, the perception of lifelong constant ringing in ear, is one capital cause of disability in modern society. It is often present with various comorbid factors that severely affect quality of life, including insomnia, deficits in attention, anxiety, and depression. Currently, there are limited therapeutic treatments for alleviation of tinnitus. Tinnitus can involve a shift in neuronal excitation/inhibition (E/I) balance, which is largely modulated by ion channels and receptors. Thus, ongoing research is geared toward pharmaceutical approaches that modulate the function of ion channels and receptors. Here, we propose a seesaw model that delineates how tinnitus-related ion channels and receptors are involved in homeostatic E/I balance of neurons. This review provides a thorough account of our current mechanistic understanding of tinnitus and insight into future direction of drug development.
Collapse
Affiliation(s)
- Hannah Tetteh
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Minseok Lee
- 2 Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - C Geoffrey Lau
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Sunggu Yang
- 2 Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sungchil Yang
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
159
|
O'Donovan SM, Sullivan CR, McCullumsmith RE. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ SCHIZOPHRENIA 2017; 3:32. [PMID: 28935880 PMCID: PMC5608761 DOI: 10.1038/s41537-017-0037-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023]
Abstract
Altered glutamate transporter expression is a common feature of many neuropsychiatric conditions, including schizophrenia. Excitatory amino acid transporters (EAATs) are responsible for the reuptake of glutamate, preventing non-physiological spillover from the synapse. Postmortem studies have revealed significant dysregulation of EAAT expression in various brain regions at the cellular and subcellular level. Recent animal studies have also demonstrated a role for glutamate spillover as a mechanism of disease. In this review, we describe current evidence for the role of glutamate transporters in regulating synaptic plasticity and transmission. In neuropsychiatric conditions, EAAT splice variant expression is altered. There are changes in the localization of the transporters and disruption of the metabolic and structural protein network that supports EAAT activity. This results in aberrant neuroplasticity and excitatory signaling, contributing to the symptoms associated with neuropsychiatric disease. Understanding the complex functions of glutamate transporters will clarify the relevance of their role in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Courtney R Sullivan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | |
Collapse
|
160
|
Santin JM, Vallejo M, Hartzler LK. Synaptic up-scaling preserves motor circuit output after chronic, natural inactivity. eLife 2017; 6:30005. [PMID: 28914603 PMCID: PMC5636609 DOI: 10.7554/elife.30005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Neural systems use homeostatic plasticity to maintain normal brain functions and to prevent abnormal activity. Surprisingly, homeostatic mechanisms that regulate circuit output have mainly been demonstrated during artificial and/or pathological perturbations. Natural, physiological scenarios that activate these stabilizing mechanisms in neural networks of mature animals remain elusive. To establish the extent to which a naturally inactive circuit engages mechanisms of homeostatic plasticity, we utilized the respiratory motor circuit in bullfrogs that normally remains inactive for several months during the winter. We found that inactive respiratory motoneurons exhibit a classic form of homeostatic plasticity, up-scaling of AMPA-glutamate receptors. Up-scaling increased the synaptic strength of respiratory motoneurons and acted to boost motor amplitude from the respiratory network following months of inactivity. Our results show that synaptic scaling sustains strength of the respiratory motor output following months of inactivity, thereby supporting a major neuroscience hypothesis in a normal context for an adult animal. Neurons in the brain communicate using chemical signals that they send and receive across junctions called synapses. To maintain normal behavior over time, circuits of neurons must reliably process these signals. A variety of nervous system disorders may result if they are unable to do so, as may occur when neural activity changes as a result of disease or injury. The processes underlying the stability of a neuron’s synapses is referred to as “homeostatic” synaptic plasticity because the changes made by the neuron directly oppose the altered level of activity. In one form of homeostatic plasticity, known as synaptic scaling, neurons modify the strength of all of their synapses in response to changes in neural activity. There is substantial experimental evidence to show that in young animals, neurons that communicate using a chemical called glutamate undergo synaptic scaling in response to artificial changes in activity. It had not been directly shown that synaptic scaling protects the neural activity of adult animals in their natural environments, in part, because neural activity in most healthy animals generally only goes through small changes. However, the neurons in the brain that cause the breathing muscles of bullfrogs to contract are ideal for studying homeostatic plasticity because they are naturally inactive for several months when frogs hibernate in ponds during the winter. During this time, the bullfrogs do not need to use their lungs to breathe because enough oxygen passes through their skin to keep them alive. Santin et al. have now observed synaptic scaling of glutamate synapses in individual bullfrog neurons that had been inactive for two months. Further experiments that examined the activity of the breathing control circuit in the brainstem provided evidence that synaptic scaling leads to sufficient amounts of neural activity that would activate the breathing muscles when frogs emerge from hibernation. Therefore neural activity after prolonged, natural inactivity relies on synaptic scaling to preserve life-sustaining behavior in frogs. These results open up new questions: mainly, how do synaptic scaling and other forms of homeostatic plasticity operate in animals as they experience normal variations in neural activity? Determining how homeostatic plasticity works normally in an animal will help us to understand what happens when plasticity mechanisms go wrong, as is thought to occur in several human nervous system diseases including nervous system injury, Alzheimer’s disease, and epilepsy.
Collapse
Affiliation(s)
- Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States.,Department of Biological Sciences, Wright State University, Dayton, United States
| | - Mauricio Vallejo
- Department of Biological Sciences, Wright State University, Dayton, United States
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, Dayton, United States
| |
Collapse
|
161
|
Strub C, Schöner G, Wörgötter F, Sandamirskaya Y. Dynamic Neural Fields with Intrinsic Plasticity. Front Comput Neurosci 2017; 11:74. [PMID: 28912706 PMCID: PMC5583149 DOI: 10.3389/fncom.2017.00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
Dynamic neural fields (DNFs) are dynamical systems models that approximate the activity of large, homogeneous, and recurrently connected neural networks based on a mean field approach. Within dynamic field theory, the DNFs have been used as building blocks in architectures to model sensorimotor embedding of cognitive processes. Typically, the parameters of a DNF in an architecture are manually tuned in order to achieve a specific dynamic behavior (e.g., decision making, selection, or working memory) for a given input pattern. This manual parameters search requires expert knowledge and time to find and verify a suited set of parameters. The DNF parametrization may be particular challenging if the input distribution is not known in advance, e.g., when processing sensory information. In this paper, we propose the autonomous adaptation of the DNF resting level and gain by a learning mechanism of intrinsic plasticity (IP). To enable this adaptation, an input and output measure for the DNF are introduced, together with a hyper parameter to define the desired output distribution. The online adaptation by IP gives the possibility to pre-define the DNF output statistics without knowledge of the input distribution and thus, also to compensate for changes in it. The capabilities and limitations of this approach are evaluated in a number of experiments.
Collapse
Affiliation(s)
- Claudius Strub
- Autonomous Robotics Lab, Institut für Neuroinformatik, Ruhr-UniversitätBochum, Germany.,Department of Computational Neuroscience, III Physics Institute, Georg-August-UniversitätGöttingen, Germany
| | - Gregor Schöner
- Autonomous Robotics Lab, Institut für Neuroinformatik, Ruhr-UniversitätBochum, Germany
| | - Florentin Wörgötter
- Department of Computational Neuroscience, III Physics Institute, Georg-August-UniversitätGöttingen, Germany
| | - Yulia Sandamirskaya
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurich, Switzerland
| |
Collapse
|
162
|
Wang D, Liu X, Liu Y, Li S, Wang C. The Effects of Cardiotrophin-1 on Early Synaptic Mitochondrial Dysfunction and Synaptic Pathology in APPswe/PS1dE9 Mice. J Alzheimers Dis 2017; 59:1255-1267. [DOI: 10.3233/jad-170100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Xiaozhuan Liu
- Department of Immunology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Sanqiang Li
- Department of Biochemistry and Molecular Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Chenying Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| |
Collapse
|
163
|
Zhang B, Lu W. Src homology 2 domain-containing phosphotyrosine phosphatase 2 (Shp2) controls surface GluA1 protein in synaptic homeostasis. J Biol Chem 2017; 292:15481-15488. [PMID: 28768764 DOI: 10.1074/jbc.m117.775239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2017] [Revised: 07/22/2017] [Indexed: 11/06/2022] Open
Abstract
Src Homology 2 domain-containing phosphotyrosine phosphatase 2 (Shp2) functions in synaptic plasticity, learning, and memory. However, the precise mechanisms by which this multifunctional protein contributes to synaptic function remains largely unknown. Homeostatic plasticity may be viewed as a process of bidirectional synaptic scaling, up or down. Through this process, neuronal circuitry stability is maintained so that changes in synaptic strength may be preserved under changing conditions. A better understanding of these processes is needed. In this regard, we report that phosphorylation of Shp2 at tyrosine 542 and its translocation to the postsynaptic compartment are integral processes in synaptic scaling. Furthermore, we show, using both pharmacological and genetic approaches, that Shp2 phosphatase activity is critical to the regulation of Ser(P)845 GluA1 and surface expression of this AMPA receptor subunit during synaptic scaling. Thus, Shp2 may contribute meaningfully to synaptic homeostasis.
Collapse
Affiliation(s)
- Bin Zhang
- the Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Science, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Wen Lu
- From the Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan 571199, China and
| |
Collapse
|
164
|
Hussain S, Egbenya DL, Lai YC, Dosa ZJ, Sørensen JB, Anderson AE, Davanger S. The calcium sensor synaptotagmin 1 is expressed and regulated in hippocampal postsynaptic spines. Hippocampus 2017; 27:1168-1177. [PMID: 28686803 DOI: 10.1002/hipo.22761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2017] [Revised: 05/31/2017] [Accepted: 06/29/2017] [Indexed: 11/07/2022]
Abstract
Synaptotagmin 1 is a presynaptic calcium sensor, regulating SNARE-mediated vesicle exocytosis of transmitter. Increasing evidence indicate roles of SNARE proteins in postsynaptic glutamate receptor trafficking. However, a possible postsynaptic expression of synaptotagmin 1 has not been demonstrated previously. Here, we used postembedding immunogold electron microscopy to determine the subsynaptic localization of synaptotagmin 1 in rat hippocampal CA1 Schaffer collateral synapses. We report for the first time that synaptotagmin 1 is present in rat hippocampal postsynaptic spines, both on cytoplasmic vesicles and at the postsynaptic density. We further investigated whether postsynaptic synaptotagmin 1 is regulated during synaptic plasticity. In a rat model of chronic temporal lobe epilepsy, we found that presynaptic and postsynaptic concentrations of the protein are reduced compared to control animals. This downregulation may possibly be an adaptive measure to decrease both presynaptic and postsynaptic calcium sensitivity in excitotoxic conditions.
Collapse
Affiliation(s)
- Suleman Hussain
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Daniel Lawer Egbenya
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Yi-Chen Lai
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Zita J Dosa
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Denmark
| | - Jakob B Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Denmark
| | - Anne E Anderson
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Svend Davanger
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
165
|
Pingel J, Hultborn H, Näslund-Koch L, Jensen DB, Wienecke J, Nielsen JB. Muscle disuse caused by botulinum toxin injection leads to increased central gain of the stretch reflex in the rat. J Neurophysiol 2017; 118:1962-1969. [PMID: 28724781 DOI: 10.1152/jn.00276.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/26/2022] Open
Abstract
Botulinum toxin (Btx) is used in children with cerebral palsy and in other neurological patients to diminish spasticity and reduce the risk of development of contractures. We investigated changes in the central gain of the stretch reflex circuitry in response to Btx injection in the triceps surae muscle in rats. Experiments were performed in 21 rats. Eight rats were a control group, and 13 rats were injected with 6 IU of Btx in the left triceps surae muscle. Two weeks after Btx injection, larger monosynaptic reflexes (MSR) were recorded from the left (injected) than the right (noninjected) L4 + L5 ventral roots following stimulation of the corresponding dorsal roots. A similar increase on the left side was observed in response to stimulation of descending motor tracts, suggesting that increased excitability of spinal motor neurons may at least partly explain the increased reflexes. However, significant changes were also observed in postactivation depression of the MSR, suggesting that plastic changes in transmission from Ia afferent to the motor neurons also may be involved. The data demonstrate that muscle paralysis induced by Btx injection is accompanied by plastic adaptations in the central stretch reflex circuitry, which counteract the antispastic effect of Btx.NEW & NOTEWORTHY Injection of botulinum toxin into ankle muscles causes increased gain of stretch reflex. This is caused by adaptive changes in regulation of transmitter release from Ia afferents and increased excitability of spinal motor neurons.
Collapse
Affiliation(s)
- Jessica Pingel
- Neural Control of Movement Research Group, Center for Neuroscience, University of Copenhagen, Denmark
| | - Hans Hultborn
- Neural Control of Movement Research Group, Center for Neuroscience, University of Copenhagen, Denmark
| | - Lui Näslund-Koch
- Neural Control of Movement Research Group, Center for Neuroscience, University of Copenhagen, Denmark
| | - Dennis B Jensen
- Neural Control of Movement Research Group, Center for Neuroscience, University of Copenhagen, Denmark
| | - Jacob Wienecke
- Neural Control of Movement Research Group, Center for Neuroscience, University of Copenhagen, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Jens Bo Nielsen
- Neural Control of Movement Research Group, Center for Neuroscience, University of Copenhagen, Denmark; .,Elsass Institute, Charlottenlund, Denmark; and
| |
Collapse
|
166
|
Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics. PLoS Comput Biol 2017; 13:e1005668. [PMID: 28704399 PMCID: PMC5546711 DOI: 10.1371/journal.pcbi.1005668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2017] [Revised: 08/07/2017] [Accepted: 06/30/2017] [Indexed: 11/28/2022] Open
Abstract
Synapses are dynamic molecular assemblies whose sizes fluctuate significantly over time-scales of hours and days. In the current study, we examined the possibility that the spontaneous microscopic dynamics exhibited by synaptic molecules can explain the macroscopic size fluctuations of individual synapses and the statistical properties of synaptic populations. We present a mesoscopic model, which ties the two levels. Its basic premise is that synaptic size fluctuations reflect cooperative assimilation and removal of molecules at a patch of postsynaptic membrane. The introduction of cooperativity to both assimilation and removal in a stochastic biophysical model of these processes, gives rise to features qualitatively similar to those measured experimentally: nanoclusters of synaptic scaffolds, fluctuations in synaptic sizes, skewed, stable size distributions and their scaling in response to perturbations. Our model thus points to the potentially fundamental role of cooperativity in dictating synaptic remodeling dynamics and offers a conceptual understanding of these dynamics in terms of central microscopic features and processes. Neurons communicate through specialized sites of cell–cell contact known as synapses. This vast set of connections is believed to be crucial for sensory processing, motor function, learning and memory. Experimental data from recent years suggest that synapses are not static structures, but rather dynamic assemblies of molecules that move in, out and between nearby synapses, with these dynamics driving changes in synaptic properties over time. Thus, in addition to changes directed by activity or other physiological signals, synapses also exhibit spontaneous changes that have particular dynamical and statistical signatures. Given the immense complexity of synapses at the molecular scale, how can one hope to understand the principles that govern these spontaneous changes and statistical signatures? Here we offer a mesoscopic modelling approach—situated between detailed microscopic and abstract macroscopic approaches—to advance this understanding. Our model, based on simplified biophysical assumptions, shows that spontaneous cooperative binding and unbinding of proteins at synaptic sites can give rise to dynamic and statistical signatures similar to those measured in experiments. Importantly, we find cooperativity to be indispensable in this regard. Our model thus offers a conceptual understanding of synaptic dynamics and statistical features in terms of a fundamental biological principle, namely cooperativity.
Collapse
|
167
|
Rodríguez-Durán LF, Martínez-Moreno A, Escobar ML. Bidirectional modulation of taste aversion extinction by insular cortex LTP and LTD. Neurobiol Learn Mem 2017; 142:85-90. [DOI: 10.1016/j.nlm.2016.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 01/21/2023]
|
168
|
Behavioral, Neurophysiological, and Synaptic Impairment in a Transgenic Neuregulin1 (NRG1-IV) Murine Schizophrenia Model. J Neurosci 2017; 36:4859-75. [PMID: 27122041 DOI: 10.1523/jneurosci.4632-15.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2015] [Accepted: 03/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Schizophrenia is a chronic, disabling neuropsychiatric disorder with complex genetic origins. The development of strategies for genome manipulation in rodents provides a platform for understanding the pathogenic role of genes and for testing novel therapeutic agents. Neuregulin 1 (NRG1), a critical developmental neurotrophin, is associated with schizophrenia. The NRG1 gene undergoes extensive alternative splicing and, to date, little is known about the neurobiology of a novel NRG1 isoform, NRG1-IV, which is increased in the brains of individuals with schizophrenia and associated with genetic risk variation. Here, we developed a transgenic mouse model (NRG1-IV/NSE-tTA) in which human NRG1-IV is selectively overexpressed in a neuronal specific manner. Using a combination of molecular, biochemical, electrophysiological, and behavioral analyses, we demonstrate that NRG1-IV/NSE-tTA mice exhibit abnormal behaviors relevant to schizophrenia, including impaired sensorimotor gating, discrimination memory, and social behaviors. These neurobehavioral phenotypes are accompanied by increases in cortical expression of the NRG1 receptor, ErbB4 and the downstream signaling target, PIK3-p110δ, along with disrupted dendritic development, synaptic pathology, and altered prefrontal cortical excitatory-inhibitory balance. Pharmacological inhibition of p110δ reversed sensorimotor gating and cognitive deficits. These data demonstrate a novel role for NRG1-IV in learning, memory, and neural circuit formation and a potential neurobiological mechanism for schizophrenia risk; show that deficits are pharmacologically reversible in adulthood; and further highlight p110δ as a target for antipsychotic drug development. SIGNIFICANCE STATEMENT Schizophrenia is a disabling psychiatric disorder with neurodevelopmental origins. Genes that increase risk for schizophrenia have been identified. Understanding how these genes affect brain development and function is necessary. This work is the first report of a newly generated humanized transgenic mouse model engineered to express human NRG1-IV, an isoform of the NRG1 (Neuregulin 1) gene that is increased in the brains of patients with schizophrenia in association with genetic risk. Using behavioral neuroscience, molecular biology, electrophysiology, and pharmacology, we identify a role for NRG1-IV in learning, memory, and cognition and determine that this relates to brain excitatory-inhibitory balance and changes in ErbB4/PI3K/AKT signaling. Moreover, the study further highlights the potential of targeting the PI3K pathway for the treatment of schizophrenia.
Collapse
|
169
|
Einarsson H, Gauy MM, Lengler J, Steger A. A Model of Fast Hebbian Spike Latency Normalization. Front Comput Neurosci 2017; 11:33. [PMID: 28555102 PMCID: PMC5430963 DOI: 10.3389/fncom.2017.00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2016] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
Hebbian changes of excitatory synapses are driven by and enhance correlations between pre- and postsynaptic neuronal activations, forming a positive feedback loop that can lead to instability in simulated neural networks. Because Hebbian learning may occur on time scales of seconds to minutes, it is conjectured that some form of fast stabilization of neural firing is necessary to avoid runaway of excitation, but both the theoretical underpinning and the biological implementation for such homeostatic mechanism are to be fully investigated. Supported by analytical and computational arguments, we show that a Hebbian spike-timing-dependent metaplasticity rule, accounts for inherently-stable, quick tuning of the total input weight of a single neuron in the general scenario of asynchronous neural firing characterized by UP and DOWN states of activity.
Collapse
Affiliation(s)
- Hafsteinn Einarsson
- Department of Computer Science, Institute of Theoretical Computer Science, ETH ZurichZurich, Switzerland
| | - Marcelo M. Gauy
- Department of Computer Science, Institute of Theoretical Computer Science, ETH ZurichZurich, Switzerland
| | - Johannes Lengler
- Department of Computer Science, Institute of Theoretical Computer Science, ETH ZurichZurich, Switzerland
| | - Angelika Steger
- Department of Computer Science, Institute of Theoretical Computer Science, ETH ZurichZurich, Switzerland
- Collegium HelveticumZurich, Switzerland
| |
Collapse
|
170
|
Tien NW, Soto F, Kerschensteiner D. Homeostatic Plasticity Shapes Cell-Type-Specific Wiring in the Retina. Neuron 2017; 94:656-665.e4. [PMID: 28457596 DOI: 10.1016/j.neuron.2017.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2016] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning. Here, using optogenetic activation and pharmacogenetic silencing, we found that type 6 bipolar (B6) cells dominate excitatory input to ONα-RGCs. We generated mice in which B6 cells were selectively removed from developing circuits (B6-DTA). In B6-DTA mice, ONα-RGCs adjusted connectivity with other bipolar cells in a cell-type-specific manner. They recruited new partners, increased synapses with some existing partners, and maintained constant input from others. Patch-clamp recordings revealed that anatomical rewiring precisely preserved contrast and temporal frequency response functions of ONα-RGCs, indicating that homeostatic plasticity shapes cell-type-specific wiring in the developing retina to stabilize visual information sent to the brain.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
171
|
Levin SG, Godukhin OV. Modulating Effect of Cytokines on Mechanisms of Synaptic Plasticity in the Brain. BIOCHEMISTRY (MOSCOW) 2017; 82:264-274. [PMID: 28320267 DOI: 10.1134/s000629791703004x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
After accumulation of data showing that resident brain cells (neurons, astrocytes, and microglia) produce mediators of the immune system, such as cytokines and their receptors under normal physiological conditions, a critical need emerged for investigating the role of these mediators in cognitive processes. The major problem for understanding the functional role of cytokines in the mechanisms of synaptic plasticity, de novo neurogenesis, and learning and memory is the small number of investigated cytokines. Existing concepts are based on data from just three proinflammatory cytokines: interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha. The amount of information in the literature on the functional role of antiinflammatory cytokines in the mechanisms of synaptic plasticity and cognitive functions of mature mammalian brain is dismally low. However, they are of principle importance for understanding the mechanisms of local information processing in the brain, since they modulate the activity of individual cells and local neural networks, being able to reconstruct the processes of synaptic plasticity and intercellular communication, in general, depending on the local ratio of the levels of different cytokines in certain areas of the brain. Understanding the functional role of cytokines in cellular mechanisms of information processing and storage in the brain would allow developing preventive and therapeutic means for the treatment of neuropathologies related to impairment of these mechanisms.
Collapse
Affiliation(s)
- S G Levin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
172
|
Jamil A, Batsikadze G, Kuo H, Labruna L, Hasan A, Paulus W, Nitsche MA. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol 2017; 595:1273-1288. [PMID: 27723104 PMCID: PMC5309387 DOI: 10.1113/jp272738] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2016] [Accepted: 10/04/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Applications of transcranial direct current stimulation to modulate human neuroplasticity have increased in research and clinical settings. However, the need for longer-lasting effects, combined with marked inter-individual variability, necessitates a deeper understanding of the relationship between stimulation parameters and physiological effects. We systematically investigated the full DC intensity range (0.5-2.0 mA) for both anodal and cathodal tDCS in a sham-controlled repeated measures design, monitoring changes in motor-cortical excitability via transcranial magnetic stimulation up to 2 h after stimulation. For both tDCS polarities, the excitability after-effects did not linearly correlate with increasing DC intensity; effects of lower intensities (0.5, 1.0 mA) showed equal, if not greater effects in motor-cortical excitability. Further, while intra-individual responses showed good reliability, inter-individual sensitivity to TMS accounted for a modest percentage of the variance in the early after-effects of 1.0 mA anodal tDCS, which may be of practical relevance for future optimizations. ABSTRACT Contemporary non-invasive neuromodulatory techniques, such as transcranial direct current stimulation (tDCS), have shown promising potential in both restituting impairments in cortical physiology in clinical settings, as well as modulating cognitive abilities in the healthy population. However, neuroplastic after-effects of tDCS are highly dependent on stimulation parameters, relatively short lasting, and not expectedly uniform between individuals. The present study systematically investigates the full range of current intensity between 0.5 and 2.0 mA on left primary motor cortex (M1) plasticity, as well as the impact of individual-level covariates on explaining inter-individual variability. Thirty-eight healthy subjects were divided into groups of anodal and cathodal tDCS. Five DC intensities (sham, 0.5, 1.0, 1.5 and 2.0 mA) were investigated in separate sessions. Using transcranial magnetic stimulation (TMS), 25 motor-evoked potentials (MEPs) were recorded before, and 10 time points up to 2 h following 15 min of tDCS. Repeated-measures ANOVAs indicated a main effect of intensity for both anodal and cathodal tDCS. With anodal tDCS, all active intensities resulted in equivalent facilitatory effects relative to sham while for cathodal tDCS, only 1.0 mA resulted in sustained excitability diminution. An additional experiment conducted to assess intra-individual variability revealed generally good reliability of 1.0 mA anodal tDCS (ICC(2,1) = 0.74 over the first 30 min). A post hoc analysis to discern sources of inter-individual variability confirmed a previous finding in which individual TMS SI1mV (stimulus intensity for 1 mV MEP amplitude) sensitivity correlated negatively with 1.0 mA anodal tDCS effects on excitability. Our study thus provides further insights on the extent of non-linear intensity-dependent neuroplastic after-effects of anodal and cathodal tDCS.
Collapse
Affiliation(s)
- Asif Jamil
- Department of Clinical NeurophysiologyUniversity Medical Center, University of Göttingen37075GöttingenGermany
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Giorgi Batsikadze
- Department of Clinical NeurophysiologyUniversity Medical Center, University of Göttingen37075GöttingenGermany
| | - Hsiao‐I. Kuo
- Department of Clinical NeurophysiologyUniversity Medical Center, University of Göttingen37075GöttingenGermany
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Ludovica Labruna
- Department of PsychologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Alkomiet Hasan
- Department of Psychiatry and PsychotherapyKlinikum der Universität München80336MünchenGermany
| | - Walter Paulus
- Department of Clinical NeurophysiologyUniversity Medical Center, University of Göttingen37075GöttingenGermany
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
- University Medical Hospital Bergmannsheil44789BochumGermany
| |
Collapse
|
173
|
Frank MG. Sleep and plasticity in the visual cortex: more than meets the eye. Curr Opin Neurobiol 2017; 44:8-12. [PMID: 28126451 DOI: 10.1016/j.conb.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2016] [Accepted: 01/04/2017] [Indexed: 12/26/2022]
Abstract
The visual cortex has provided key insights into how experience shapes cortical circuitry. Scientists have identified how different manipulations of visual experience trigger distinct forms of plasticity as well as many of the underlying cellular and molecular mechanisms. Intriguingly, experience is not the only factor driving plasticity in the visual system. Sleep is also required for the full expression of plasticity in the developing visual cortex. In this review, I discuss what we have learned about the role of sleep in visual cortical plasticity and what it tells us about sleep function.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane,Pharmaceutical and Biomedical Science Building 213, 412 E. Spokane Falls Blvd., Spokane, WA 99202, USA.
| |
Collapse
|
174
|
Abstract
Integrins are a large family of extracellular matrix (ECM) receptors. In the developing and adult brain, many integrins are present at high levels at synapses. The tetrapartite structure of synapses - which comprises presynaptic and postsynaptic neurons, the ECM and glial processes - places synaptic integrins in an excellent position to sense dynamic changes in the synaptic environment and use this information to coordinate further changes in synapse structure and function that will shape neural circuit properties. Recent developments in our understanding of the cellular and physiological roles of integrins, which range from control of neural process outgrowth and synapse formation to regulation of synaptic plasticity and memory, enable us to attempt a synthesis of synaptic integrin function.
Collapse
|
175
|
Dvorkin R, Ziv NE. Relative Contributions of Specific Activity Histories and Spontaneous Processes to Size Remodeling of Glutamatergic Synapses. PLoS Biol 2016; 14:e1002572. [PMID: 27776122 PMCID: PMC5077109 DOI: 10.1371/journal.pbio.1002572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022] Open
Abstract
The idea that synaptic properties are defined by specific pre- and postsynaptic activity histories is one of the oldest and most influential tenets of contemporary neuroscience. Recent studies also indicate, however, that synaptic properties often change spontaneously, even in the absence of specific activity patterns or any activity whatsoever. What, then, are the relative contributions of activity history-dependent and activity history-independent processes to changes synapses undergo? To compare the relative contributions of these processes, we imaged, in spontaneously active networks of cortical neurons, glutamatergic synapses formed between the same axons and neurons or dendrites under the assumption that their similar activity histories should result in similar size changes over timescales of days. The size covariance of such commonly innervated (CI) synapses was then compared to that of synapses formed by different axons (non-CI synapses) that differed in their activity histories. We found that the size covariance of CI synapses was greater than that of non-CI synapses; yet overall size covariance of CI synapses was rather modest. Moreover, momentary and time-averaged sizes of CI synapses correlated rather poorly, in perfect agreement with published electron microscopy-based measurements of mouse cortex synapses. A conservative estimate suggested that ~40% of the observed size remodeling was attributable to specific activity histories, whereas ~10% and ~50% were attributable to cell-wide and spontaneous, synapse-autonomous processes, respectively. These findings demonstrate that histories of naturally occurring activity patterns can direct glutamatergic synapse remodeling but also suggest that the contributions of spontaneous, possibly stochastic, processes are at least as great.
Collapse
Affiliation(s)
- Roman Dvorkin
- Technion Faculty of Medicine, Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel.,Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| |
Collapse
|
176
|
Gillary G, Niebur E. The Edge of Stability: Response Times and Delta Oscillations in Balanced Networks. PLoS Comput Biol 2016; 12:e1005121. [PMID: 27689361 PMCID: PMC5045166 DOI: 10.1371/journal.pcbi.1005121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2016] [Accepted: 08/26/2016] [Indexed: 11/27/2022] Open
Abstract
The standard architecture of neocortex is a network with excitation and inhibition in closely maintained balance. These networks respond fast and with high precision to their inputs and they allow selective amplification of patterned signals. The stability of such networks is known to depend on balancing the strengths of positive and negative feedback. We here show that a second condition is required for stability which depends on the relative strengths and time courses of fast (AMPA) and slow (NMDA) currents in the excitatory projections. This condition also determines the response time of the network. We show that networks which respond quickly to an input are necessarily close to an oscillatory instability which resonates in the delta range. This instability explains the existence of neocortical delta oscillations and the emergence of absence epilepsy. Although cortical delta oscillations are a network-level phenomenon, we show that in non-pathological networks, individual neurons receive sufficient information to keep the network in the fast-response regime without sliding into the instability. Many networks in the brain are finely balanced, with equal contributions from excitation and inhibition. Deviations from this balance, if for instance the total amount of excitation exceeds that of inhibition, lead to potentially devastating instabilities. Unlike previous work we consider the interaction between fast and slow excitatory connections. We show that not only the amount of excitation needs to be controlled to achieve network stability but also the ratio of slow to fast excitation. Furthermore, optimally fast network performance requires that networks approach instability. However, networks very close to this instability develop oscillations in the delta range (1–4Hz) which potentially cause absence epilepsy. We show that a normal (non-pathological) network can auto-regulate its activity to avoid the instability.
Collapse
Affiliation(s)
- Grant Gillary
- Zanvyl Krieger Mind/Brain Institute, Baltimore, Maryland, United States of America
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ernst Niebur
- Zanvyl Krieger Mind/Brain Institute, Baltimore, Maryland, United States of America
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
177
|
Circadian dynamics in measures of cortical excitation and inhibition balance. Sci Rep 2016; 6:33661. [PMID: 27651114 PMCID: PMC5030482 DOI: 10.1038/srep33661] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2016] [Accepted: 08/31/2016] [Indexed: 11/24/2022] Open
Abstract
Several neuropsychiatric and neurological disorders have recently been characterized as dysfunctions arising from a ‘final common pathway’ of imbalanced excitation to inhibition within cortical networks. How the regulation of a cortical E/I ratio is affected by sleep and the circadian rhythm however, remains to be established. Here we addressed this issue through the analyses of TMS-evoked responses recorded over a 29 h sleep deprivation protocol conducted in young and healthy volunteers. Spectral analyses of TMS-evoked responses in frontal cortex revealed non-linear changes in gamma band evoked oscillations, compatible with an influence of circadian timing on inhibitory interneuron activity. In silico inferences of cell-to-cell excitatory and inhibitory connectivity and GABA/Glutamate receptor time constant based on neural mass modeling within the Dynamic causal modeling framework, further suggested excitation/inhibition balance was under a strong circadian influence. These results indicate that circadian changes in EEG spectral properties, in measure of excitatory/inhibitory connectivity and in GABA/glutamate receptor function could support the maintenance of cognitive performance during a normal waking day, but also during overnight wakefulness. More generally, these findings demonstrate a slow daily regulation of cortical excitation/inhibition balance, which depends on circadian-timing and prior sleep-wake history.
Collapse
|
178
|
Banerjee B, Medda BK, Zhang J, Tuchscherer V, Babygirija R, Kannampalli P, Sengupta JN, Shaker R. Prolonged esophageal acid exposures induce synaptic downscaling of cortical membrane AMPA receptor subunits in rats. Neurogastroenterol Motil 2016; 28:1356-69. [PMID: 27271201 PMCID: PMC5063079 DOI: 10.1111/nmo.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/05/2016] [Accepted: 03/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND We recently reported the involvement of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit upregulation and phosphorylation in the rostral cingulate cortex (rCC) as the underlying mechanism of acute esophageal acid-induced cortical sensitization. Based on these findings, we proposed to investigate whether prolonged esophageal acid exposures in rats exhibit homeostatic synaptic scaling through downregulation of AMPA receptor expression in rCC neurons. We intended to study further whether this compensatory mechanism is impaired when rats are pre-exposed to repeated esophageal acid exposures neonatally during neuronal development. METHODS Two different esophageal acid exposure protocols in rats were used. Since AMPA receptor trafficking and channel conductance depend on CaMKIIα-mediated phosphorylation of AMPA receptor subunits, we examined the effect of esophageal acid on CaMKIIα activation and AMPA receptor expression in synaptoneurosomes and membrane preparations from rCCs. KEY RESULTS In cortical membrane preparations, GluA1 and pGluA1Ser(831) expression were significantly downregulated following prolonged acid exposures in adult rats; this was accompanied by the significant downregulation of cortical membrane pCaMKIIα expression. No change in GluA1 and pGluA1Ser(831) expression was observed in rCC membrane preparations in rats pre-exposed to acid neonatally followed by adult rechallenge. CONCLUSIONS & INFERENCES This study along with our previous findings suggests that synaptic AMPA receptor subunits expression and phosphorylation may be involved bidirectionally in both esophageal acid-induced neuronal sensitization and acid-dependent homeostatic plasticity in cortical neurons. The impairment of homeostatic compensatory mechanism as observed following early-in-life acid exposure could be the underlying mechanism of heightening cortical sensitization and esophageal hypersensitivity in patients with gastroesophageal reflux disease.
Collapse
Affiliation(s)
- Banani Banerjee
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bidyut K Medda
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jian Zhang
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Reji Babygirija
- Gastroenterology & Hepatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pradeep Kannampalli
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jyoti N. Sengupta
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Reza Shaker
- Gastroenterology & Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
179
|
Steinmetz CC, Tatavarty V, Sugino K, Shima Y, Joseph A, Lin H, Rutlin M, Lambo M, Hempel CM, Okaty BW, Paradis S, Nelson SB, Turrigiano GG. Upregulation of μ3A Drives Homeostatic Plasticity by Rerouting AMPAR into the Recycling Endosomal Pathway. Cell Rep 2016; 16:2711-2722. [PMID: 27568566 DOI: 10.1016/j.celrep.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2014] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 01/06/2023] Open
Abstract
Synaptic scaling is a form of homeostatic plasticity driven by transcription-dependent changes in AMPA-type glutamate receptor (AMPAR) trafficking. To uncover the pathways involved, we performed a cell-type-specific screen for transcripts persistently altered during scaling, which identified the μ subunit (μ3A) of the adaptor protein complex AP-3A. Synaptic scaling increased μ3A (but not other AP-3 subunits) in pyramidal neurons and redistributed dendritic μ3A and AMPAR to recycling endosomes (REs). Knockdown of μ3A prevented synaptic scaling and this redistribution, while overexpression (OE) of full-length μ3A or a truncated μ3A that cannot interact with the AP-3A complex was sufficient to drive AMPAR to REs. Finally, OE of μ3A acted synergistically with GRIP1 to recruit AMPAR to the dendritic membrane. These data suggest that excess μ3A acts independently of the AP-3A complex to reroute AMPAR to RE, generating a reservoir of receptors essential for the regulated recruitment to the synaptic membrane during scaling up.
Collapse
Affiliation(s)
- Celine C Steinmetz
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Vedakumar Tatavarty
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Ken Sugino
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Yasuyuki Shima
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Anne Joseph
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Heather Lin
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Michael Rutlin
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Mary Lambo
- Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA
| | - Chris M Hempel
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Benjamin W Okaty
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Sacha B Nelson
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| | - Gina G Turrigiano
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
180
|
Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex. Nat Commun 2016; 7:12455. [PMID: 27551934 PMCID: PMC4996971 DOI: 10.1038/ncomms12455] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2015] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Abstract
Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep–wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans. Sleep deprivation is believed to lead to homeostatic increases in synaptic strength and reduced inducibility of associative LTP, based mainly on findings from animal studies. Here, Kuhn et al. demonstrate similar sleep-dependent synaptic plasticity changes in humans along with altered plasma BDNF levels.
Collapse
|
181
|
Thibault K, Rivière S, Lenkei Z, Férézou I, Pezet S. Orofacial Neuropathic Pain Leads to a Hyporesponsive Barrel Cortex with Enhanced Structural Synaptic Plasticity. PLoS One 2016; 11:e0160786. [PMID: 27548330 PMCID: PMC4993517 DOI: 10.1371/journal.pone.0160786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2015] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Chronic pain is a long-lasting debilitating condition that is particularly difficult to treat due to the lack of identified underlying mechanisms. Although several key contributing processes have been described at the level of the spinal cord, very few studies have investigated the supraspinal mechanisms underlying chronic pain. Using a combination of approaches (cortical intrinsic imaging, immunohistochemical and behavioural analysis), our study aimed to decipher the nature of functional and structural changes in a mouse model of orofacial neuropathic pain, focusing on cortical areas involved in various pain components. Our results show that chronic neuropathic orofacial pain is associated with decreased haemodynamic responsiveness to whisker stimulation in the barrel field cortex. This reduced functional activation is likely due to the increased basal neuronal activity (measured indirectly using cFos and phospho-ERK immunoreactivity) observed in several cortical areas, including the contralateral barrel field, motor and cingulate cortices. In the same animals, immunohistochemical analysis of markers for active pre- or postsynaptic elements (Piccolo and phospho-Cofilin, respectively) revealed an increased immunofluorescence in deep cortical layers of the contralateral barrel field, motor and cingulate cortices. These results suggest that long-lasting orofacial neuropathic pain is associated with exacerbated neuronal activity and synaptic plasticity at the cortical level.
Collapse
Affiliation(s)
- Karine Thibault
- Brain Plasticity Unit, ESPCI, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, 75005, Paris, France
| | - Sébastien Rivière
- Brain Plasticity Unit, ESPCI, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, 75005, Paris, France
| | - Zsolt Lenkei
- Brain Plasticity Unit, ESPCI, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, 75005, Paris, France
| | - Isabelle Férézou
- Brain Plasticity Unit, ESPCI, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, 75005, Paris, France
| | - Sophie Pezet
- Brain Plasticity Unit, ESPCI, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, 75005, Paris, France
- * E-mail:
| |
Collapse
|
182
|
Abstract
In this review, Huang and Bonni discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis; glial differentiation and migration; neuronal survival, metabolism, and morphogenesis; synapse formation and plasticity; and learning and memory. Control of protein abundance by the ubiquitin–proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identified additional novel roles for the anaphase-promoting complex in diverse aspects of neuronal connectivity and plasticity in the developing and mature nervous system. In this review, we discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis, glial differentiation and migration, neuronal survival and metabolism, neuronal morphogenesis, synapse formation and plasticity, and learning and memory. We also provide a perspective on future investigations of the anaphase-promoting complex in neurobiology.
Collapse
Affiliation(s)
- Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
183
|
Braegelmann KM, Streeter KA, Fields DP, Baker TL. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control? Exp Neurol 2016; 287:225-234. [PMID: 27456270 DOI: 10.1016/j.expneurol.2016.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2016] [Revised: 06/16/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022]
Abstract
For most individuals, the respiratory control system produces a remarkably stable and coordinated motor output-recognizable as a breath-from birth until death. Very little is understood regarding the processes by which the respiratory control system maintains network stability in the presence of changing physiological demands and network properties that occur throughout life. An emerging principle of neuroscience is that neural activity is sensed and adjusted locally to assure that neurons continue to operate in an optimal range, yet to date, it is unknown whether such homeostatic plasticity is a feature of the neurons controlling breathing. Here, we review the evidence that local mechanisms sense and respond to perturbations in respiratory neural activity, with a focus on plasticity in respiratory motor neurons. We discuss whether these forms of plasticity represent homeostatic plasticity in respiratory control. We present new analyses demonstrating that reductions in synaptic inputs to phrenic motor neurons elicit a compensatory enhancement of phrenic inspiratory motor output, a form of plasticity termed inactivity-induced phrenic motor facilitation (iPMF), that is proportional to the magnitude of activity deprivation. Although the physiological role of iPMF is not understood, we hypothesize that it has an important role in protecting the drive to breathe during conditions of prolonged or intermittent reductions in respiratory neural activity, such as following spinal cord injury or during central sleep apnea.
Collapse
Affiliation(s)
- K M Braegelmann
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - K A Streeter
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - D P Fields
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - T L Baker
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
184
|
Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 2016; 139:973-996. [PMID: 27241695 DOI: 10.1111/jnc.13687] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Brain development, sensory information processing, and learning and memory processes depend on Hebbian forms of synaptic plasticity, and on the remodeling and pruning of synaptic connections. Neurons in networks implicated in these processes carry out their functions while facing constant perturbation; homeostatic responses are therefore required to maintain neuronal activity within functional ranges for proper brain function. Here, we will review in vitro and in vivo studies demonstrating that several mechanisms underlie homeostatic plasticity of excitatory synapses, and identifying participant molecular players. Emerging evidence suggests a link between disrupted homeostatic synaptic plasticity and neuropsychiatric and neurologic disorders. Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP), induce long-lasting changes in synaptic strength, which can be destabilizing and drive activity to saturation. Conversely, homeostatic plasticity operates to compensate for prolonged activity changes, stabilizing neuronal firing within a dynamic physiological range. We review mechanisms underlying homeostatic plasticity, and address how neurons integrate distinct forms of plasticity for proper brain function. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Dominique Fernandes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PDBEB-Doctoral Program in Experimental Biology and Biomedicine, Interdisciplinary Research Institute (III-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
185
|
Benevento M, Iacono G, Selten M, Ba W, Oudakker A, Frega M, Keller J, Mancini R, Lewerissa E, Kleefstra T, Stunnenberg HG, Zhou H, van Bokhoven H, Nadif Kasri N. Histone Methylation by the Kleefstra Syndrome Protein EHMT1 Mediates Homeostatic Synaptic Scaling. Neuron 2016; 91:341-55. [PMID: 27373831 DOI: 10.1016/j.neuron.2016.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2015] [Revised: 02/01/2016] [Accepted: 05/25/2016] [Indexed: 02/01/2023]
Abstract
Homeostatic plasticity, a form of synaptic plasticity, maintains the fine balance between overall excitation and inhibition in developing and mature neuronal networks. Although the synaptic mechanisms of homeostatic plasticity are well characterized, the associated transcriptional program remains poorly understood. We show that the Kleefstra-syndrome-associated protein EHMT1 plays a critical and cell-autonomous role in synaptic scaling by responding to attenuated neuronal firing or sensory drive. Chronic activity deprivation increased the amount of neuronal dimethylated H3 at lysine 9 (H3K9me2), the catalytic product of EHMT1 and an epigenetic marker for gene repression. Genetic knockdown and pharmacological blockade of EHMT1 or EHMT2 prevented the increase of H3K9me2 and synaptic scaling up. Furthermore, BDNF repression was preceded by EHMT1/2-mediated H3K9me2 deposition at the Bdnf promoter during synaptic scaling up, both in vitro and in vivo. Our findings suggest that H3K9me2-mediated changes in chromatin structure govern a repressive program that controls synaptic scaling.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Giovanni Iacono
- Department of Molecular Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Martijn Selten
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Wei Ba
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Astrid Oudakker
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Monica Frega
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Jason Keller
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Roberta Mancini
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Elly Lewerissa
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Henk G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
186
|
Karabanov A, Ziemann U, Hamada M, George MS, Quartarone A, Classen J, Massimini M, Rothwell J, Siebner HR. Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation. Brain Stimul 2016; 8:993-1006. [PMID: 26598772 DOI: 10.1016/j.brs.2015.06.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
Homeostatic plasticity is thought to stabilize neural activity around a set point within a physiologically reasonable dynamic range. Over the last ten years, a wide range of non-invasive transcranial brain stimulation (NTBS) techniques have been used to probe homeostatic control of cortical plasticity in the intact human brain. Here, we review different NTBS approaches to study homeostatic plasticity on a systems level and relate the findings to both, physiological evidence from in vitro studies and to a theoretical framework of homeostatic function. We highlight differences between homeostatic and other non-homeostatic forms of plasticity and we examine the contribution of sleep in restoring synaptic homeostasis. Finally, we discuss the growing number of studies showing that abnormal homeostatic plasticity may be associated to a range of neuropsychiatric diseases.
Collapse
|
187
|
Sanchez TG, Moraes F, Casseb J, Cota J, Freire K, Roberts LE. Tinnitus is associated with reduced sound level tolerance in adolescents with normal audiograms and otoacoustic emissions. Sci Rep 2016; 6:27109. [PMID: 27265722 PMCID: PMC4893619 DOI: 10.1038/srep27109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
Recent neuroscience research suggests that tinnitus may reflect synaptic loss in the cochlea that does not express in the audiogram but leads to neural changes in auditory pathways that reduce sound level tolerance (SLT). Adolescents (N = 170) completed a questionnaire addressing their prior experience with tinnitus, potentially risky listening habits, and sensitivity to ordinary sounds, followed by psychoacoustic measurements in a sound booth. Among all adolescents 54.7% reported by questionnaire that they had previously experienced tinnitus, while 28.8% heard tinnitus in the booth. Psychoacoustic properties of tinnitus measured in the sound booth corresponded with those of chronic adult tinnitus sufferers. Neither hearing thresholds (≤15 dB HL to 16 kHz) nor otoacoustic emissions discriminated between adolescents reporting or not reporting tinnitus in the sound booth, but loudness discomfort levels (a psychoacoustic measure of SLT) did so, averaging 11.3 dB lower in adolescents experiencing tinnitus in the acoustic chamber. Although risky listening habits were near universal, the teenagers experiencing tinnitus and reduced SLT tended to be more protective of their hearing. Tinnitus and reduced SLT could be early indications of a vulnerability to hidden synaptic injury that is prevalent among adolescents and expressed following exposure to high level environmental sounds.
Collapse
Affiliation(s)
- Tanit Ganz Sanchez
- University of São Paulo School of Medicine, São Paulo, Brazil.,Instituto Ganz Sanchez, São Paulo, Brazil.,Association of Interdisciplinary Research and Divulgation of Tinnitus, São Paulo, Brazil
| | | | | | - Jaci Cota
- Instituto Ganz Sanchez, São Paulo, Brazil
| | - Katya Freire
- Association of Interdisciplinary Research and Divulgation of Tinnitus, São Paulo, Brazil
| | - Larry E Roberts
- Department of Psychology Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
188
|
Mader EC, Mader ACL. Sleep as spatiotemporal integration of biological processes that evolved to periodically reinforce neurodynamic and metabolic homeostasis: The 2m3d paradigm of sleep. J Neurol Sci 2016; 367:63-80. [PMID: 27423566 DOI: 10.1016/j.jns.2016.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/19/2022]
Abstract
Sleep continues to perplex scientists and researchers. Despite decades of sleep research, we still lack a clear understanding of the biological functions and evolution of sleep. In this review, we will examine sleep from a functional and phylogenetic perspective and describe some important conceptual gaps in understanding sleep. Classical theories of the biology and evolution of sleep emphasize sensory activation, energy balance, and metabolic homeostasis. Advances in electrophysiology, functional neuroimaging, and neuroplasticity allow us to view sleep within the framework of neural dynamics. With this paradigm shift, we have come to realize the importance of neurodynamic homeostasis in shaping the biology of sleep. Evidently, animals sleep to achieve neurodynamic and metabolic homeostasis. We are not aware of any framework for understanding sleep where neurodynamic, metabolic, homeostatic, chronophasic, and afferent variables are all taken into account. This motivated us to propose the two-mode three-drive (2m3d) paradigm of sleep. In the 2m3d paradigm, local neurodynamic/metabolic (N/M) processes switch between two modes-m0 and m1-in response to three drives-afferent, chronophasic, and homeostatic. The spatiotemporal integration of local m0/m1 operations gives rise to the global states of sleep and wakefulness. As a framework of evolution, the 2m3d paradigm allows us to view sleep as a robust adaptive strategy that evolved so animals can periodically reinforce neurodynamic and metabolic homeostasis while remaining sensitive to their internal and external environment.
Collapse
Affiliation(s)
- Edward Claro Mader
- Louisiana State University Health Sciences Center, Department of Neurology, New Orleans, LA 70112, USA.
| | | |
Collapse
|
189
|
Raab-Graham KF, Workman ER, Namjoshi S, Niere F. Pushing the threshold: How NMDAR antagonists induce homeostasis through protein synthesis to remedy depression. Brain Res 2016; 1647:94-104. [PMID: 27125595 DOI: 10.1016/j.brainres.2016.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022]
Abstract
Healthy neurons have an optimal operating range, coded globally by the frequency of action potentials or locally by calcium. The maintenance of this range is governed by homeostatic plasticity. Here, we discuss how new approaches to treat depression alter synaptic activity. These approaches induce the neuron to recruit homeostatic mechanisms to relieve depression. Homeostasis generally implies that the direction of activity necessary to restore the neuron's critical operating range is opposite in direction to its current activity pattern. Unconventional antidepressant therapies-deep brain stimulation and NMDAR antagonists-alter the neuron's "depressed" state by pushing the neuron's current activity in the same direction but to the extreme edge. These therapies rally the intrinsic drive of neurons in the opposite direction, thereby allowing the cell to return to baseline activity, form new synapses, and restore proper communication. In this review, we discuss seminal studies on protein synthesis dependent homeostatic plasticity and their contribution to our understanding of molecular mechanisms underlying the effectiveness of NMDAR antagonists as rapid antidepressants. Rapid antidepressant efficacy is likely to require a cascade of mRNA translational regulation. Emerging evidence suggests that changes in synaptic strength or intrinsic excitability converge on the same protein synthesis pathways, relieving depressive symptoms. Thus, we address the question: Are there multiple homeostatic mechanisms that induce the neuron and neuronal circuits to self-correct to regulate mood in vivo? Targeting alternative ways to induce homeostatic protein synthesis may provide, faster, safer, and longer lasting antidepressants. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Kimberly F Raab-Graham
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States.
| | - Emily R Workman
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| | - Sanjeev Namjoshi
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Farr Niere
- Center for Learning and Memory, Department of Neuroscience, Institute of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
190
|
Schmitz SK, King C, Kortleven C, Huson V, Kroon T, Kevenaar JT, Schut D, Saarloos I, Hoetjes JP, de Wit H, Stiedl O, Spijker S, Li KW, Mansvelder HD, Smit AB, Cornelisse LN, Verhage M, Toonen RF. Presynaptic inhibition upon CB1 or mGlu2/3 receptor activation requires ERK/MAPK phosphorylation of Munc18-1. EMBO J 2016; 35:1236-50. [PMID: 27056679 DOI: 10.15252/embj.201592244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2015] [Accepted: 03/02/2016] [Indexed: 01/22/2023] Open
Abstract
Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.
Collapse
Affiliation(s)
- Sabine K Schmitz
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Cillian King
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Christian Kortleven
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Vincent Huson
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Tim Kroon
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Josta T Kevenaar
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Desiree Schut
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Ingrid Saarloos
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Joost P Hoetjes
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Heidi de Wit
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Sabine Spijker
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Lennart Niels Cornelisse
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
191
|
Gjorgjieva J, Evers JF, Eglen SJ. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity. J Neurosci 2016; 36:3722-34. [PMID: 27030758 PMCID: PMC4812132 DOI: 10.1523/jneurosci.2511-15.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2015] [Revised: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 11/21/2022] Open
Abstract
Developing neuronal networks display spontaneous bursts of action potentials that are necessary for circuit organization and tuning. While spontaneous activity has been shown to instruct map formation in sensory circuits, it is unknown whether it plays a role in the organization of motor networks that produce rhythmic output. Using computational modeling, we investigate how recurrent networks of excitatory and inhibitory neuronal populations assemble to produce robust patterns of unidirectional and precisely timed propagating activity during organism locomotion. One example is provided by the motor network inDrosophilalarvae, which generates propagating peristaltic waves of muscle contractions during crawling. We examine two activity-dependent models, which tune weak network connectivity based on spontaneous activity patterns: a Hebbian model, where coincident activity in neighboring populations strengthens connections between them; and a homeostatic model, where connections are homeostatically regulated to maintain a constant level of excitatory activity based on spontaneous input. The homeostatic model successfully tunes network connectivity to generate robust activity patterns with appropriate timing relationships between neighboring populations. These timing relationships can be modulated by the properties of spontaneous activity, suggesting its instructive role for generating functional variability in network output. In contrast, the Hebbian model fails to produce the tight timing relationships between neighboring populations required for unidirectional activity propagation, even when additional assumptions are imposed to constrain synaptic growth. These results argue that homeostatic mechanisms are more likely than Hebbian mechanisms to tune weak connectivity based on spontaneous input in a recurrent network for rhythm generation and robust activity propagation. SIGNIFICANCE STATEMENT How are neural circuits organized and tuned to maintain stable function and produce robust output? This task is especially difficult during development, when circuit properties change in response to variable environments and internal states. Many developing circuits exhibit spontaneous activity, but its role in the synaptic organization of motor networks that produce rhythmic output is unknown. We studied a model motor network, that when appropriately tuned, generates propagating activity as during crawling inDrosophilalarvae. Based on experimental evidence of activity-dependent tuning of connectivity, we examined plausible mechanisms by which appropriate connectivity emerges. Our results suggest that activity-dependent homeostatic mechanisms are better suited than Hebbian mechanisms for organizing motor network connectivity, and highlight an important difference from sensory areas.
Collapse
Affiliation(s)
- Julijana Gjorgjieva
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom,
| | - Jan Felix Evers
- Heidelberg University, Centre for Organismal Studies, Heidelberg D-69120, Germany, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, and
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom, Cambridge Computational Biology Institute, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
192
|
Huupponen J, Atanasova T, Taira T, Lauri SE. GluA4 subunit of AMPA receptors mediates the early synaptic response to altered network activity in the developing hippocampus. J Neurophysiol 2016; 115:2989-96. [PMID: 26961102 DOI: 10.1152/jn.00435.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2015] [Accepted: 03/03/2016] [Indexed: 11/22/2022] Open
Abstract
Development of the neuronal circuitry involves both Hebbian and homeostatic plasticity mechanisms that orchestrate activity-dependent refinement of the synaptic connectivity. AMPA receptor subunit GluA4 is expressed in hippocampal pyramidal neurons during early postnatal period and is critical for neonatal long-term potentiation; however, its role in homeostatic plasticity is unknown. Here we show that GluA4-dependent plasticity mechanisms allow immature synapses to promptly respond to alterations in network activity. In the neonatal CA3, the threshold for homeostatic plasticity is low, and a 15-h activity blockage with tetrodotoxin triggers homeostatic upregulation of glutamatergic transmission. On the other hand, attenuation of the correlated high-frequency bursting in the CA3-CA1 circuitry leads to weakening of AMPA transmission in CA1, thus reflecting a critical role for Hebbian synapse induction in the developing CA3-CA1. Both of these developmentally restricted forms of plasticity were absent in GluA4(-/-) mice. These data suggest that GluA4 enables efficient homeostatic upscaling and responsiveness to temporal activity patterns during the critical period of activity-dependent refinement of the circuitry.
Collapse
Affiliation(s)
- J Huupponen
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Department of Biosciences, University of Helsinki, Helsinki, Finland; and
| | - T Atanasova
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Department of Biosciences, University of Helsinki, Helsinki, Finland; and
| | - T Taira
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - S E Lauri
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Department of Biosciences, University of Helsinki, Helsinki, Finland; and
| |
Collapse
|
193
|
Glebov OO, Cox S, Humphreys L, Burrone J. Neuronal activity controls transsynaptic geometry. Sci Rep 2016; 6:22703. [PMID: 26951792 PMCID: PMC4782104 DOI: 10.1038/srep22703] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2015] [Accepted: 02/09/2016] [Indexed: 11/13/2022] Open
Abstract
The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity.
Collapse
Affiliation(s)
- Oleg O. Glebov
- Wolfson Centre for Age-Related Diseases, King’s College London, London SE1 1UL, UK
- Department of Developmental Neurobiology, King’s College London, London SE1 1UL, UK
| | - Susan Cox
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Lawrence Humphreys
- Department of Developmental Neurobiology, King’s College London, London SE1 1UL, UK
| | - Juan Burrone
- Department of Developmental Neurobiology, King’s College London, London SE1 1UL, UK
| |
Collapse
|
194
|
Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity. Neural Plast 2016; 2016:7969272. [PMID: 27019755 PMCID: PMC4785275 DOI: 10.1155/2016/7969272] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2015] [Accepted: 01/31/2016] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.
Collapse
|
195
|
Herms J, Dorostkar MM. Dendritic Spine Pathology in Neurodegenerative Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:221-50. [PMID: 26907528 DOI: 10.1146/annurev-pathol-012615-044216] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
Abstract
Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models.
Collapse
Affiliation(s)
- Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany; .,Munich Cluster for Systems Neurology, Ludwig Maximilian University, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases, 81377 Munich, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany;
| |
Collapse
|
196
|
Spring AM, Brusich DJ, Frank CA. C-terminal Src Kinase Gates Homeostatic Synaptic Plasticity and Regulates Fasciclin II Expression at the Drosophila Neuromuscular Junction. PLoS Genet 2016; 12:e1005886. [PMID: 26901416 PMCID: PMC4764653 DOI: 10.1371/journal.pgen.1005886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2015] [Accepted: 01/29/2016] [Indexed: 12/02/2022] Open
Abstract
Forms of homeostatic plasticity stabilize neuronal outputs and promote physiologically favorable synapse function. A well-studied homeostatic system operates at the Drosophila melanogaster larval neuromuscular junction (NMJ). At the NMJ, impairment of postsynaptic glutamate receptor activity is offset by a compensatory increase in presynaptic neurotransmitter release. We aim to elucidate how this process operates on a molecular level and is preserved throughout development. In this study, we identified a tyrosine kinase-driven signaling system that sustains homeostatic control of NMJ function. We identified C-terminal Src Kinase (Csk) as a potential regulator of synaptic homeostasis through an RNAi- and electrophysiology-based genetic screen. We found that Csk loss-of-function mutations impaired the sustained expression of homeostatic plasticity at the NMJ, without drastically altering synapse growth or baseline neurotransmission. Muscle-specific overexpression of Src Family Kinase (SFK) substrates that are negatively regulated by Csk also impaired NMJ homeostasis. Surprisingly, we found that transgenic Csk-YFP can support homeostatic plasticity at the NMJ when expressed either in the muscle or in the nerve. However, only muscle-expressed Csk-YFP was able to localize to NMJ structures. By immunostaining, we found that Csk mutant NMJs had dysregulated expression of the Neural Cell Adhesion Molecule homolog Fasciclin II (FasII). By immunoblotting, we found that levels of a specific isoform of FasII were decreased in homeostatically challenged GluRIIA mutant animals–but markedly increased in Csk mutant animals. Additionally, we found that postsynaptic overexpression of FasII from its endogenous locus was sufficient to impair synaptic homeostasis, and genetically reducing FasII levels in Csk mutants fully restored synaptic homeostasis. Based on these data, we propose that Csk and its SFK substrates impinge upon homeostatic control of NMJ function by regulating downstream expression or localization of FasII. Homeostasis is a fundamental topic in biology. Individual cells and systems of cells constantly monitor their environments and adjust their outputs in order to maintain physiological properties within ranges that can support life. The nervous system is no exception. Synapses and circuits are endowed with a capacity to respond to environmental challenges in a homeostatic fashion. As a result, synaptic output stays within an appropriate physiological range. We know that homeostasis is a fundamental form of regulation in animal nervous systems, but we have very little information about how it works. In this study, we examine the fruit fly Drosophila melanogaster and its ability to maintain normal levels of synaptic output over long periods of developmental time. We identify new roles in this process for classical signaling molecules called C-terminal Src kinase, Src family kinases, as well as a neuronal cell adhesion molecule called Fasciclin II, which was previously shown to stabilize synaptic contacts between neurons and muscles. Our work contributes to a broader understanding of how neurons work to maintain stable outputs. Ultimately, this type of knowledge could have important implications for neurological disorders in which stability is lost, such as forms of epilepsy or ataxia.
Collapse
Affiliation(s)
- Ashlyn M. Spring
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Douglas J. Brusich
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Interdisciplinary Programs in Genetics, Neuroscience, and MCB, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
197
|
Transferrin Receptor Controls AMPA Receptor Trafficking Efficiency and Synaptic Plasticity. Sci Rep 2016; 6:21019. [PMID: 26880306 PMCID: PMC4754636 DOI: 10.1038/srep21019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2015] [Accepted: 01/14/2016] [Indexed: 02/05/2023] Open
Abstract
Transferrin receptor (TFR) is an important iron transporter regulating iron homeostasis and has long been used as a marker for clathrin mediated endocytosis. However, little is known about its additional function other than iron transport in the development of central nervous system (CNS). Here we demonstrate that TFR functions as a regulator to control AMPA receptor trafficking efficiency and synaptic plasticity. The conditional knockout (KO) of TFR in neural progenitor cells causes mice to develop progressive epileptic seizure, and dramatically reduces basal synaptic transmission and long-term potentiation (LTP). We further demonstrate that TFR KO remarkably reduces the binding efficiency of GluR2 to AP2 and subsequently decreases AMPA receptor endocytosis and recycling. Thus, our study reveals that TFR functions as a novel regulator to control AMPA trafficking efficiency and synaptic plasticity.
Collapse
|
198
|
Hussain S, Ringsevjen H, Egbenya DL, Skjervold TL, Davanger S. SNARE Protein Syntaxin-1 Colocalizes Closely with NMDA Receptor Subunit NR2B in Postsynaptic Spines in the Hippocampus. Front Mol Neurosci 2016; 9:10. [PMID: 26903802 PMCID: PMC4742905 DOI: 10.3389/fnmol.2016.00010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Syntaxins are a family of membrane-integrated proteins that are instrumental in exocytosis of vesicles. Syntaxin-1 is an essential component of the presynaptic exocytotic fusion machinery in the brain and interacts with several other proteins. Syntaxin-1 forms a four-helical bundle complex with proteins SNAP-25 and VAMP2 that drives fusion of vesicles with the plasma membrane in the active zone (AZ). Little is known, however, about the ultrastructural localization of syntaxin-1 at the synapse. We have analyzed the intrasynaptic expression of syntaxin-1 in glutamatergic hippocampal synapses in detail by using quantitative postembedding immunogold labeling. Syntaxin-1 was present in highest concentrations at the presynaptic AZ, supporting its role in transmitter release. Presynaptic plasma membrane lateral to the AZ, as well as presynaptic cytoplasmic (PreCy) vesicles were also labeled. However, syntaxin-1 was also significantly expressed in postsynaptic spines, where it was localized at the postsynaptic density (PSD), at postsynaptic lateral membranes and in postsynaptic cytoplasm. Postsynaptically, syntaxin-1 colocalized in the nanometer range with the N-methyl-D-aspartate (NMDA) receptor subunit NR2B, but only weakly with the AMPA receptor subunits GluA2/3. This observation points to the possibility that syntaxin-1 may be involved with NR2B vesicular trafficking from cytoplasmic stores to the postsynaptic plasma membrane, thus facilitating synaptic plasticity. Confocal immunofluorescence double labeling with PSD-95 and ultrastructural fractionation of synaptosomes also confirm localization of syntaxin-1 at the PSD.
Collapse
Affiliation(s)
- Suleman Hussain
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo Oslo, Norway
| | - Håvard Ringsevjen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo Oslo, Norway
| | - Daniel L Egbenya
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo Oslo, Norway
| | - Torstein L Skjervold
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo Oslo, Norway
| | - Svend Davanger
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo Oslo, Norway
| |
Collapse
|
199
|
Abstract
UNLABELLED The hippocampus (HPC) is known to play an important role in learning, a process dependent on synaptic plasticity; however, the molecular mechanisms underlying this are poorly understood. ΔFosB is a transcription factor that is induced throughout the brain by chronic exposure to drugs, stress, and variety of other stimuli and regulates synaptic plasticity and behavior in other brain regions, including the nucleus accumbens. We show here that ΔFosB is also induced in HPC CA1 and DG subfields by spatial learning and novel environmental exposure. The goal of the current study was to examine the role of ΔFosB in hippocampal-dependent learning and memory and the structural plasticity of HPC synapses. Using viral-mediated gene transfer to silence ΔFosB transcriptional activity by expressing ΔJunD (a negative modulator of ΔFosB transcriptional function) or to overexpress ΔFosB, we demonstrate that HPC ΔFosB regulates learning and memory. Specifically, ΔJunD expression in HPC impaired learning and memory on a battery of hippocampal-dependent tasks in mice. Similarly, general ΔFosB overexpression also impaired learning. ΔJunD expression in HPC did not affect anxiety or natural reward, but ΔFosB overexpression induced anxiogenic behaviors, suggesting that ΔFosB may mediate attentional gating in addition to learning. Finally, we found that overexpression of ΔFosB increases immature dendritic spines on CA1 pyramidal cells, whereas ΔJunD reduced the number of immature and mature spine types, indicating that ΔFosB may exert its behavioral effects through modulation of HPC synaptic function. Together, these results suggest collectively that ΔFosB plays a significant role in HPC cellular morphology and HPC-dependent learning and memory. SIGNIFICANCE STATEMENT Consolidation of our explicit memories occurs within the hippocampus, and it is in this brain region that the molecular and cellular processes of learning have been most closely studied. We know that connections between hippocampal neurons are formed, eliminated, enhanced, and weakened during learning, and we know that some stages of this process involve alterations in the transcription of specific genes. However, the specific transcription factors involved in this process are not fully understood. Here, we demonstrate that the transcription factor ΔFosB is induced in the hippocampus by learning, regulates the shape of hippocampal synapses, and is required for memory formation, opening up a host of new possibilities for hippocampal transcriptional regulation.
Collapse
|
200
|
Lewis DA, Glausier JR. Alterations in Prefrontal Cortical Circuitry and Cognitive Dysfunction in Schizophrenia. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2016; 63:31-75. [PMID: 27627824 DOI: 10.1007/978-3-319-30596-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
|