151
|
Tang S, Chen W, Liu W, Zhou Q, Zhang H, Wang S, Ding Y. Open-field warming regulates the morphological structure, protein synthesis of grain and affects the appearance quality of rice. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
152
|
Hatakeyama Y, Masumoto-Kubo C, Nonami H, Morita S, Hiraoka K, Onda Y, Nakashima T, Nakano H, Wada H. Evidence for preservation of vacuolar compartments during foehn-induced chalky ring formation of Oryza sativa L. PLANTA 2018; 248:1263-1275. [PMID: 30099651 PMCID: PMC6182326 DOI: 10.1007/s00425-018-2975-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/04/2018] [Indexed: 05/05/2023]
Abstract
Vacuolar compartments being sustained among the amyloplasts inadequately accumulated in rice endosperm cells are the main cause of chalky ring formation under dry wind conditions. Foehn-induced dry wind during the grain-filling stage induces shoot water deficit in rice (Oryza sativa L.) plants, which form a ring-shaped chalkiness in their endosperm that degrades milling quality and rice appearance. Air spaces formed in several inner cells cause significant transparency loss due to irregular light reflection. Although starch synthesis was suggested to be retarded by osmotic adjustment at foehn-induced moderately low water potential, the source of these air spaces remains unknown. We hypothesised that the preservation of vacuoles accompanied by a temporary reduction in starch biosynthesis in the inner cells leads to the chalky ring formation. Panicle water status measurement, light and transmission electron microscopic (TEM) observations, and an absolute qPCR analysis were conducted. Most starch synthesis-related genes exhibited temporarily reduced expression in the inner zone in accordance with the decrease in panicle water status. TEM observations provided evidence that vacuolar compartments remained among the loosely packed starch granules in the inner endosperm cells, where a chalky ring appeared after kernel dehydration. Taken together, we propose that vacuolar compartments sustained among the amyloplasts inadequately accumulated in rice endosperm cells and caused air space formation that leads to ring-shaped chalkiness under dry wind conditions.
Collapse
Affiliation(s)
- Yuto Hatakeyama
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, 833-0041, Japan
| | - Chisato Masumoto-Kubo
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, 833-0041, Japan
| | - Hiroshi Nonami
- Graduate School of Agriculture, Ehime University, Matsuyama, 790-8566, Japan
| | - Satoshi Morita
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, 833-0041, Japan
| | - Kenzo Hiraoka
- Clean Energy Research Center, The University of Yamanashi, Kofu, 400-8511, Japan
| | - Yayoi Onda
- Graduate School of Agriculture, Ehime University, Matsuyama, 790-8566, Japan
| | - Taiken Nakashima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hiroshi Nakano
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, 833-0041, Japan
| | - Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, 833-0041, Japan.
| |
Collapse
|
153
|
He Q, Yang L, Hu W, Zhang J, Xing Y. Overexpression of an auxin receptor OsAFB6 significantly enhanced grain yield by increasing cytokinin and decreasing auxin concentrations in rice panicle. Sci Rep 2018; 8:14051. [PMID: 30232356 PMCID: PMC6145926 DOI: 10.1038/s41598-018-32450-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/19/2018] [Indexed: 11/26/2022] Open
Abstract
Auxin plays critical roles in many developmental processes of plants. The auxin signaling pathway is a series of plant responses to auxin stimuli. However, the functions of many genes in this pathway are still obscure. As auxin receptors, TIR/AFB family genes encode F-Box proteins that directly bind auxin and then transduce the stimulus through the signaling pathway. In this paper, we generated an overexpression line of Auxin-signaling F-Box 6 (OsAFB6) in rice, which largely delayed heading, greatly increased spikelets per panicle and primary branch number and ultimately enhanced grain yield by 50%. OsAFB6 is preferentially expressed in young tissues with stronger meristem activities and suppresses flowering by upregulating OsRR1 and downregulating Ehd1 expression levels. Overexpression of OsAFB6 delayed heading, increased cytokinin (CK) by suppressing the expression level of Gn1a and simultaneously decreased the IAA concentration in the young panicle, which promoted inflorescence meristem development and resulted in large panicles with more spikelets per panicle, primary branches and increased grain yield. It would be a beneficial strategy to generate lines with varied expression levels of OsAFB6 to breed high-yielding cultivars for specific regions that can fully utilize the local sunlight and temperature resources.
Collapse
Affiliation(s)
- Qin He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Lin Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Wei Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jia Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
154
|
Zhu A, Zhang Y, Zhang Z, Wang B, Xue P, Cao Y, Chen Y, Li Z, Liu Q, Cheng S, Cao L. Genetic Dissection of qPCG1 for a Quantitative Trait Locus for Percentage of Chalky Grain in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1173. [PMID: 30147703 PMCID: PMC6095994 DOI: 10.3389/fpls.2018.01173] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 05/18/2023]
Abstract
Rice is a pivotal cereal crop that provides the staple food for more than half of the world's population. Along with improvements in the standard of living, people not only pay attention to the grain yield but also to the grain quality. Chalkiness is one of the most important index of grain quality. In this study, qPCG1, a QTL for percentage of chalky grain, was mapped in an interval with a physical distance about 139 kb on chromosome 1 by residual heterozygous line (RHL) method. qPCG1 was incomplete dominant and the additive effect plays a major role and explained 6.8-21.9% of phenotypic variance within the heterogeneous region on chromosome 1. The effect of allele from Zhonghui9308 was decreasing the percentage of chalky grains (PCG). Microscope observation results indicated that there are great differences in the shape, structure and arrangement of starch granule between the chalky part and transparent part. Analysis of starch physicochemical properties showed that the total starch content, amylose content and chain length distribution of amylopectin changed while the protein contents were not apparently affected with the changed chalkiness. qPCG1 had little influence on main agronomic traits and it might be useful in rice breeding for it did not bring negative effect on grain yield while reducing the chalkiness.
Collapse
Affiliation(s)
- Aike Zhu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenhua Zhang
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Beifang Wang
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Pao Xue
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Crop Genetic Breeding Department, Henan Agricultural University, Zhengzhou, China
| | - Yuyu Chen
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zihe Li
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
155
|
Wang H, Zhang Y, Sun L, Xu P, Tu R, Meng S, Wu W, Anis GB, Hussain K, Riaz A, Chen D, Cao L, Cheng S, Shen X. WB1, a Regulator of Endosperm Development in Rice, Is Identified by a Modified MutMap Method. Int J Mol Sci 2018; 19:ijms19082159. [PMID: 30042352 PMCID: PMC6121324 DOI: 10.3390/ijms19082159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 01/19/2023] Open
Abstract
Abnormally developed endosperm strongly affects rice (Oryza sativa) appearance quality and grain weight. Endosperm formation is a complex process, and although many enzymes and related regulators have been identified, many other related factors remain largely unknown. Here, we report the isolation and characterization of a recessive mutation of White Belly 1 (WB1), which regulates rice endosperm development, using a modified MutMap method in the rice mutant wb1. The wb1 mutant develops a white-belly endosperm and abnormal starch granules in the inner portion of white grains. Representative of the white-belly phenotype, grains of wb1 showed a higher grain chalkiness rate and degree and a lower 1000-grain weight (decreased by ~34%), in comparison with that of Wild Type (WT). The contents of amylose and amylopectin in wb1 significantly decreased, and its physical properties were also altered. We adopted the modified MutMap method to identify 2.52 Mb candidate regions with a high specificity, where we detected 275 SNPs in chromosome 4. Finally, we identified 19 SNPs at 12 candidate genes. Transcript levels analysis of all candidate genes showed that WB1 (Os04t0413500), encoding a cell-wall invertase, was the most probable cause of white-belly endosperm phenotype. Switching off WB1 with the CRISPR/cas9 system in Japonica cv. Nipponbare demonstrates that WB1 regulates endosperm development and that different mutations of WB1 disrupt its biological function. All of these results taken together suggest that the wb1 mutant is controlled by the mutation of WB1, and that the modified MutMap method is feasible to identify mutant genes, and could promote genetic improvement in rice.
Collapse
Affiliation(s)
- Hong Wang
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Peng Xu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Ranran Tu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Shuai Meng
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Galal Bakr Anis
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafr Elsheikh 33717, Egypt.
| | - Kashif Hussain
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Aamiar Riaz
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Xihong Shen
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| |
Collapse
|
156
|
Takehara K, Murata K, Yamaguchi T, Yamaguchi K, Chaya G, Kido S, Iwasaki Y, Ogiwara H, Ebitani T, Miura K. Thermo-responsive allele of sucrose synthase 3 ( Sus3) provides high-temperature tolerance during the ripening stage in rice ( Oryza sativa L.). BREEDING SCIENCE 2018; 68:336-342. [PMID: 30100800 PMCID: PMC6081304 DOI: 10.1270/jsbbs.18007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 05/03/2023]
Abstract
High-temperature stress during the ripening stage leads to quality deterioration due to an increase in chalky grains in brown rice (Oryza sativa L.). In a previous study, we identified a QTL for Appearance quality of brown rice 1 (Apq1) using chromosome segment substitution lines of the indica cultivar 'Habataki' in the japonica cultivar 'Koshihikari' background and narrowed down the locus to a 48-kb region on chromosome 7. To verify the function and mechanisms of this QTL in grain appearance, in this study, we fine-mapped the gene and conducted high-temperature tolerance tests. As a result of the genetic mapping, we narrowed down the candidate region of Apq1 to a 19.4-kb region including three predicted genes. Among these, the temporal expression pattern of sucrose synthase 3 (Sus3) corresponded well with the high temperature-sensitive period during ripening, and expression of the 'Habataki' allele of Sus3 was increased under high-temperature condition. In addition, we transformed the 'Habataki' Sus3 gene into 'Nipponbare', and the transformants obtained high-temperature tolerance. Therefore, we conclude that the causal gene underlying the QTL Apq1 is the thermo-responsive Sus3 allele, and the increase in Sus3 expression under high-temperature condition during ripening leads to high-temperature tolerance in rice.
Collapse
Affiliation(s)
- Kana Takehara
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University,
4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui 910-1195,
Japan
| | - Kazumasa Murata
- Toyama Prefectural Agricultural, Forestry and Fisheries Research Center,
1124-1 Yoshioka, Toyama, Toyama 939-8153,
Japan
| | - Takuya Yamaguchi
- Toyama Prefectural Agricultural, Forestry and Fisheries Research Center,
1124-1 Yoshioka, Toyama, Toyama 939-8153,
Japan
| | - Kohei Yamaguchi
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University,
4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui 910-1195,
Japan
| | - Genki Chaya
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University,
4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui 910-1195,
Japan
| | - Shintaro Kido
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University,
4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui 910-1195,
Japan
| | - Yukimoto Iwasaki
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University,
4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui 910-1195,
Japan
| | - Hitoshi Ogiwara
- Institute of Crop Science, National Agriculture and Food Research Organization,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Takeshi Ebitani
- Toyama Prefectural Agricultural, Forestry and Fisheries Research Center,
1124-1 Yoshioka, Toyama, Toyama 939-8153,
Japan
| | - Kotaro Miura
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University,
4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui 910-1195,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
157
|
Yang X, Xia X, Zeng Y, Nong B, Zhang Z, Wu Y, Xiong F, Zhang Y, Liang H, Deng G, Li D. Identification of candidate genes for gelatinization temperature, gel consistency and pericarp color by GWAS in rice based on SLAF-sequencing. PLoS One 2018; 13:e0196690. [PMID: 29746484 PMCID: PMC5944943 DOI: 10.1371/journal.pone.0196690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/17/2018] [Indexed: 11/18/2022] Open
Abstract
Rice is an important cereal in the world. The study of the genetic basis of important agronomic traits in rice landraces and identification of genes will facilitate the breed improvement. Gelatinization temperature (GT), gel consistency (GC) and pericarp color (PC) are important indices of rice cooking and eating quality evaluation and potential nutritional importance, which attract wide attentions in the application of genetic and breeding. To dissect the genetic basis of GT, GC and PC, a total of 419 rice landraces core germplasm collections consisting of 330 indica lines, 78 japonica lines and 11 uncertain varieties were planted, collected, then GT, GC, PC were measured for two years, and sequenced using specific-locus amplified fragment sequencing (SLAF-seq) technology. In this study, 261,385,070 clean reads and 56,768 polymorphic SLAF tags were obtained, which a total of 211,818 single nucleotide polymorphisms (SNPs) were discovered. With 208,993 SNPs meeting the criterion of minor allele frequency (MAF) > 0.05 and integrity> 0.5, the phylogenetic tree and population structure analysis were performed for all 419 rice landraces, and the whole panel mainly separated into six subpopulations based on population structure analysis. Genome-wide association study (GWAS) was carried out for the whole panel, indica subpanel and japonica subpanel with subset SNPs respectively. One quantitative trait locus (QTL) on chromosome 6 for GT was detected in the whole panel and indica subpanel, and one QTL associated with GC was located on chromosome 6 in the whole panel and indica subpanel. For the PC trait, 8 QTLs were detected in the whole panel on chromosome 1, 3, 4, 7, 8, 10 and 11, and 7 QTLs in the indica subpanel on chromosome 3, 4, 7, 8, 10 and 11. For the three traits, no QTL was detected in japonica subpanel, probably because of the polymorphism repartition between the subpanel, or small population size of japonica subpanel. This paper provides new gene resources and insights into the molecular mechanisms of important agricultural trait of rice phenotypic variation and genetic improvement of rice quality variety breeding.
Collapse
Affiliation(s)
- Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xiuzhong Xia
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yu Zeng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Baoxuan Nong
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Zongqiong Zhang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yanyan Wu
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yuexiong Zhang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Danting Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|
158
|
Chen P, Shen Z, Ming L, Li Y, Dan W, Lou G, Peng B, Wu B, Li Y, Zhao D, Gao G, Zhang Q, Xiao J, Li X, Wang G, He Y. Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin) Content Revealed by Genome-Wide Association Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:612. [PMID: 29868069 PMCID: PMC5954490 DOI: 10.3389/fpls.2018.00612] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/18/2018] [Indexed: 05/18/2023]
Abstract
Rice seed storage protein (SSP) is an important source of nutrition and energy. Understanding the genetic basis of SSP content and mining favorable alleles that control it will be helpful for breeding new improved cultivars. An association analysis for SSP content was performed to identify underlying genes using 527 diverse Oryza sativa accessions grown in two environments. We identified more than 107 associations for five different traits, including the contents of albumin (Alb), globulin (Glo), prolamin (Pro), glutelin (Glu), and total SSP (Total). A total of 28 associations were located at previously reported QTLs or intervals. A lead SNP sf0709447538, associated for Glu content in the indica subpopulation in 2015, was further validated in near isogenic lines NIL(Zhenshan97) and NIL(Delong208), and the Glu phenotype had significantly difference between two NILs. The association region could be target for map-based cloning of the candidate genes. There were 13 associations in regions close to grain-quality-related genes; five lead single nucleotide polymorphisms (SNPs) were located less than 20 kb upstream from grain-quality-related genes (PG5a, Wx, AGPS2a, RP6, and, RM1). Several starch-metabolism-related genes (AGPS2a, OsACS6, PUL, GBSSII, and ISA2) were also associated with SSP content. We identified favorable alleles of functional candidate genes, such as RP6, RM1, Wx, and other four candidate genes by haplotype analysis and expression pattern. Genotypes of RP6 and RM1 with higher Pro were not identified in japonica and exhibited much higher expression levels in indica group. The lead SNP sf0601764762, repeatedly detected for Alb content in 2 years in the whole association population, was located in the Wx locus that controls the synthesis of amylose. And Alb content was significantly and negatively correlated with amylose content and the level of 2.3 kb Wx pre-mRNA examined in this study. The associations or candidate genes identified would provide new insights into the genetic basis of SSP content that will help in developing rice cultivars with improved grain nutritional quality through marker-assisted breeding.
Collapse
Affiliation(s)
- Pingli Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Zhikang Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Luchang Ming
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Wenhan Dan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Bo Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yanhua Li
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan, China
| | - Da Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
159
|
Nevame AYM, Emon RM, Malek MA, Hasan MM, Alam MA, Muharam FM, Aslani F, Rafii MY, Ismail MR. Relationship between High Temperature and Formation of Chalkiness and Their Effects on Quality of Rice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1653721. [PMID: 30065932 PMCID: PMC6051336 DOI: 10.1155/2018/1653721] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
Occurrence of chalkiness in rice is attributed to genetic and environmental factors, especially high temperature (HT). The HT induces heat stress, which in turn compromises many grain qualities, especially transparency. Chalkiness in rice is commonly studied together with other quality traits such as amylose content, gel consistency, and protein storage. In addition to the fundamental QTLs, some other QTLs have been identified which accelerate chalkiness occurrence under HT condition. In this review, some of the relatively stable chalkiness, amylose content, and gel consistency related QTLs have been presented well. Genetically, HT effect on chalkiness is explained by the location of certain chalkiness gene in the vicinity of high-temperature-responsive genes. With regard to stable QTL distribution and availability of potential material resources, there is still feasibility to find out novel stable QTLs related to chalkiness under HT condition. A better understanding of those achievements is essential to develop new rice varieties with a reduced chalky grain percentage. Therefore, we propose the pyramiding of relatively stable and nonallelic QTLs controlling low chalkiness endosperm into adaptable rice varieties as pragmatic approach to mitigate HT effect.
Collapse
Affiliation(s)
- A. Y. M. Nevame
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - R. M. Emon
- Bangladesh Institute of Nuclear Agriculture, BAU Campus, Mymensingh 2202, Bangladesh
| | - M. A. Malek
- Bangladesh Institute of Nuclear Agriculture, BAU Campus, Mymensingh 2202, Bangladesh
| | - M. M. Hasan
- Bangladesh Institute of Nuclear Agriculture, BAU Campus, Mymensingh 2202, Bangladesh
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Md. Amirul Alam
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
| | - Farrah Melissa Muharam
- Laboratory of Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Farzad Aslani
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - M. Y. Rafii
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - M. R. Ismail
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
160
|
Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q, Wu C. Rice Functional Genomics Research: Past Decade and Future. MOLECULAR PLANT 2018; 11:359-380. [PMID: 29409893 DOI: 10.1016/j.molp.2018.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 05/22/2023]
Abstract
Rice (Oryza sativa) is a major staple food crop for more than 3.5 billion people worldwide. Understanding the regulatory mechanisms of complex agronomic traits in rice is critical for global food security. Rice is also a model plant for genomics research of monocotyledons. Thanks to the rapid development of functional genomic technologies, over 2000 genes controlling important agronomic traits have been cloned, and their molecular biological mechanisms have also been partially characterized. Here, we briefly review the advances in rice functional genomics research during the past 10 years, including a summary of functional genomics platforms, genes and molecular regulatory networks that regulate important agronomic traits, and newly developed tools for gene identification. These achievements made in functional genomics research will greatly facilitate the development of green super rice. We also discuss future challenges and prospects of rice functional genomics research.
Collapse
Affiliation(s)
- Yan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xuehui Huang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhukuan Cheng
- National Center for Plant Gene Research, State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Han
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
161
|
Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun 2018; 9:852. [PMID: 29487282 PMCID: PMC5829230 DOI: 10.1038/s41467-018-03047-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 01/12/2018] [Indexed: 01/16/2023] Open
Abstract
The simultaneous improvement of grain quality and yield of cereal crops is a major challenge for modern agriculture. Here we show that a rice grain yield quantitative trait locus qLGY3 encodes a MADS-domain transcription factor OsMADS1, which acts as a key downstream effector of G-protein βγ dimers. The presence of an alternatively spliced protein OsMADS1lgy3 is shown to be associated with formation of long and slender grains, resulting in increases in both grain quality and yield potential of rice. The Gγ subunits GS3 and DEP1 interact directly with the conserved keratin-like domain of MADS transcription factors, function as cofactors to enhance OsMADS1 transcriptional activity and promote the co-operative transactivation of common target genes, thereby regulating grain size and shape. We also demonstrate that combining OsMADS1 lgy3 allele with high-yield-associated dep1-1 and gs3 alleles represents an effective strategy for simultaneously improving both the productivity and end-use quality of rice.
Collapse
Affiliation(s)
- Qian Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruixi Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.,Development Center for Science and Technology, Ministry of Agriculture, 100122, Beijing, China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| | - Jianqing Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yafeng Ye
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuansuo Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianfeng Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yajun Pan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qi Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaopeng Xu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,Root Biology Center, South China Agricultural University, 510642, Guangzhou, China
| | - Jiawu Zhou
- Food Crops Research, Institute Yunnan Academy of Agricultural Sciences, 650200, Kunming, China
| | - Dayun Tao
- Food Crops Research, Institute Yunnan Academy of Agricultural Sciences, 650200, Kunming, China
| | - Yuejin Wu
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
162
|
Zhao L, Pan T, Guo D, Wei C. A simple and rapid method for preparing the whole section of starchy seed to investigate the morphology and distribution of starch in different regions of seed. PLANT METHODS 2018; 14:16. [PMID: 29483936 PMCID: PMC5820789 DOI: 10.1186/s13007-018-0283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/14/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Storage starch in starchy seed influences the seed weight and texture, and determines its applications in food and nonfood industries. Starch granules from different plant sources have significantly different shapes and sizes, and even more the difference exists in the different regions of the same tissue. Therefore, it is very important to in situ investigate the morphology and distribution of starch in the whole seed. However, a simple and rapid method is deficient to prepare the whole section of starchy seed for investigating the morphology and distribution of starch in the whole seeds for a large number of samples. RESULTS A simple and rapid method was established to prepare the whole section of starchy seed, especially for floury seed, in this study. The whole seeds of translucent and chalky rice, vitreous and floury maize, and normal barley and wheat were sectioned successfully using the newly established method. The iodine-stained section clearly exhibited the shapes and size of starch granules in different regions of seed. The starch granules with different morphologies and iodine-staining colors existed regionally in the seeds of high-amylose rice and maize. The sections of lotus and kidney bean seeds also showed the feasibility of this method for starchy non-cereal seeds. CONCLUSION The simple and rapid method was proven effective for preparing the whole sections of starchy seeds. The whole section of seed could be used to investigate the morphology and distribution of starch granules in different regions of the whole seed. The method was especially suitable for large sample numbers to investigate the starch morphology in short time.
Collapse
Affiliation(s)
- Lingxiao Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
| | - Ting Pan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
| | - Dongwei Guo
- Maize Biology and Genetic Laboratory in Northwest Arid Area in China, Ministry of Agriculture, Northwest A & F University, Yangling, 712100 China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
163
|
Gutiérrez-Luna FM, Hernández-Domínguez EE, Valencia-Turcotte LG, Rodríguez-Sotres R. Review: "Pyrophosphate and pyrophosphatases in plants, their involvement in stress responses and their possible relationship to secondary metabolism". PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:11-19. [PMID: 29362089 DOI: 10.1016/j.plantsci.2017.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 05/14/2023]
Abstract
Pyrophosphate (PPi) is produced as byproduct of biosynthesis in the cytoplasm, nucleus, mitochondria and chloroplast, or in the tonoplast and Golgi by membrane-bound H+-pumping pyrophosphatases (PPv). Inorganic pyrophosphatases (E.C. 3.6.1.1; GO:0004427) impulse various biosynthetic reactions by recycling PPi and are essential to living cells. Soluble and membrane-bound enzymes of high specificity have evolved in different protein families and multiple pyrophosphatases are encoded in all plant genomes known to date. The soluble proteins are present in cytoplasm, extracellular space, inside chloroplasts, and perhaps inside mitochondria, nucleus or vacuoles. The cytoplasmic isoforms may compete for PPi with the PPv enzymes and how PPv and soluble activities are controlled is currently unknown, yet the cytoplasmic PPi concentration is high and fairly constant. Manipulation of the PPi metabolism impacts primary metabolism and vice versa, indicating a tight link between PPi levels and carbohydrate metabolism. These enzymes appear to play a role in germination, development and stress adaptive responses. In addition, the transgenic overexpression of PPv has been used to enhance plant tolerance to abiotic stress, but the reasons behind this tolerance are not completely understood. Finally, the relationship of PPi to stress suggest a currently unexplored link between PPi and secondary metabolism.
Collapse
Affiliation(s)
- Francisca Morayna Gutiérrez-Luna
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| | | | - Lilián Gabriela Valencia-Turcotte
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| | - Rogelio Rodríguez-Sotres
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| |
Collapse
|
164
|
Balindong JL, Ward RM, Rose TJ, Liu L, Raymond CA, Snell PJ, Ovenden BW, Waters DL. Rice grain protein composition influences head rice yield. Cereal Chem 2018. [DOI: 10.1002/cche.10031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Rachelle M. Ward
- NSW Department of Primary Industries; Yanco Agricultural Institute; Yanco NSW Australia
| | - Terry J. Rose
- Southern Cross Plant Science; Southern Cross University; Lismore NSW Australia
| | - Lei Liu
- Southern Cross Plant Science; Southern Cross University; Lismore NSW Australia
| | - Carolyn A. Raymond
- Southern Cross Plant Science; Southern Cross University; Lismore NSW Australia
| | - Peter J. Snell
- NSW Department of Primary Industries; Yanco Agricultural Institute; Yanco NSW Australia
| | - Ben W. Ovenden
- NSW Department of Primary Industries; Yanco Agricultural Institute; Yanco NSW Australia
| | - Daniel L.E. Waters
- Southern Cross Plant Science; Southern Cross University; Lismore NSW Australia
- ARC ITTC for Functional Grains; Charles Sturt University; Wagga NSW Australia
| |
Collapse
|
165
|
Yang B, Xu S, Xu L, You H, Xiang X. Effects of Wx and Its Interaction With SSIII-2 on Rice Eating and Cooking Qualities. FRONTIERS IN PLANT SCIENCE 2018; 9:456. [PMID: 29692791 PMCID: PMC5902675 DOI: 10.3389/fpls.2018.00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/22/2018] [Indexed: 05/13/2023]
Abstract
The Wx gene encodes a granule-bound starch synthase (GBSS) and plays a key role in determining rice eating and cooking qualities (ECQs). SSIII-2 (SSIIIa), a member of the soluble starch synthases, is responsible for the synthesis of long chains of amylopectin. To investigate the effects of Wx and its interaction with SSIII-2 on grain ECQs, a population from a hybrid combination was established as a research material. The genotypes of SSIII-2 and the single nucleotide polymorphisms (SNPs) on intron1, exon6, and exon10 of Wx, and the physicochemical indicators and rapid visco analyzer (RVA) profile characteristics were analyzed. The results revealed various effects of SSIII-2 on rice quality under different backgrounds of Wx alleles. There was no obvious difference between different SSIII-2 alleles under the same background of Wxa , whereas there was a significant diversity under the same background of Wxb . Wxa had a dominant epistasis to SSIII-2 because the effect of SSIII-2 was masked by the massive synthesis of GBSS under Wxa . The apparent amylose content (AAC) was mainly controlled by the In1G/T SNP, and rice gel consistency (GC) was regulated by the Ex10C/T SNP. The combined effects of three SNPs had a significant influence on all ECQs and RVA profile parameters, except for gelatinization temperature. In1T-Ex6A-Ex10C and In1T-Ex6A-Ex10T were classified as being low AAC type. TT-AA-CC and TT-AA-TT had a low AAC and a soft GC. The combined effects of different SNPs of Wx are very important for rice quality breeding.
Collapse
Affiliation(s)
- Bowen Yang
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
| | - Shunju Xu
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
| | - Liang Xu
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
| | - Hui You
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
| | - Xunchao Xiang
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang, China
- *Correspondence: Xunchao Xiang
| |
Collapse
|
166
|
Characterization of a major QTL for manganese accumulation in rice grain. Sci Rep 2017; 7:17704. [PMID: 29255144 PMCID: PMC5735179 DOI: 10.1038/s41598-017-18090-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Some diets lack sufficient manganese (Mn), an essential mineral. Increasing Mn in grain by biofortification could prevent Mn deficiency, but may increase levels of the toxic element cadmium (Cd). Here, we investigated Mn in rice (Oryza sativa) grains in recombinant inbred lines (RILs) from the cross of 93–11 (low grain Mn) with PA64s (high grain Mn). Quantitative trait locus (QTL) analysis to identify loci controlling grain Mn identified a major QTL, qGMN7.1, on the short arm of chromosome 7; qGMN7.1 explained 15.6% and 22.8% of the phenotypic variation in the RIL populations grown in two distinct environments. We validated the QTL with a chromosome segment substitution line (CSSL), CSSL-qGMN7.1, in the 93–11 background harboring qGMN7.1 from PA64s. Compared to 93–11, CSSL-qGMN7.1 grain had increased Mn and decreased Cd concentrations; CSSL-qGMN7.1 roots also showed enhanced Mn uptake. Fine mapping delimited qGMN7.1 to a 49.3-kb region containing OsNRAMP5, a gene responsible for Mn and Cd uptake. Sequence variations in the OsNRAMP5 promoter caused changes in its transcript level, and in grain Mn levels. Our study thus cloned a major QTL for grain Mn concentration in rice, and identified materials for breeding rice for high Mn and low Cd concentrations in the grain.
Collapse
|
167
|
Meng X, Xing S, Perez LM, Peng X, Zhao Q, Redoña ED, Wang C, Peng Z. Proteome-wide Analysis of Lysine 2-hydroxyisobutyrylation in Developing Rice (Oryza sativa) Seeds. Sci Rep 2017; 7:17486. [PMID: 29235492 PMCID: PMC5727541 DOI: 10.1038/s41598-017-17756-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/28/2017] [Indexed: 11/26/2022] Open
Abstract
Lysine 2-hydroxyisobutyrylation is a recently identified protein post-translational modification that is known to affect the association between histone and DNA. However, non-histone protein lysine 2-hydroxyisobutyrylation remains largely unexplored. Utilizing antibody-based affinity enrichment and nano-HPLC/MS/MS analyses of 2-hydroxyisobutyrylation peptides, we efficaciously identified 9,916 2-hydroxyisobutyryl lysine sites on 2,512 proteins in developing rice seeds, representing the first lysine 2-hydroxyisobutyrylome dataset in plants. Functional annotation analyses indicated that a wide variety of vital biological processes were preferably targeted by lysine 2-hydroxyisobutyrylation, including glycolysis/gluconeogenesis, TCA cycle, starch biosynthesis, lipid metabolism, protein biosynthesis and processing. Our finding showed that 2-hydroxyisobutyrylated histone sites were conserved across plants, human, and mouse. A number of 2-hydroxyisobutyryl sites were shared with other lysine acylations in both histone and non-histone proteins. Comprehensive analysis of the lysine 2-hydroxyisobutyrylation sites illustrated that the modification sites were highly sequence specific with distinct motifs, and they had less surface accessibility than other lysine residues in the protein. Overall, our study provides the first systematic analysis of lysine 2-hydroxyisobutyrylation proteome in plants, and it serves as an important resource for future investigations of the regulatory mechanisms and functions of lysine 2-hydroxyisobutyrylation.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Shihai Xing
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230000, China
| | - Loida M Perez
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, 310018, China
| | - Qingyong Zhao
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Edilberto D Redoña
- Delta Research and Extension Center, Stoneville, P.O. Box 197, Mississippi, 38776, USA
| | - Cailin Wang
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA.
| |
Collapse
|
168
|
Okada S, Suehiro M, Ebana K, Hori K, Onogi A, Iwata H, Yamasaki M. Genetic dissection of grain traits in Yamadanishiki, an excellent sake-brewing rice cultivar. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2567-2585. [PMID: 28887658 DOI: 10.1007/s00122-017-2977-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 09/01/2017] [Indexed: 05/20/2023]
Abstract
The grain traits of Yamadanishiki, an excellent sake-brewing rice cultivar in Japan, are governed by multiple QTLs, namely, a total of 42 QTLs including six major QTLs. Japanese rice wine (sake) is produced using brewing rice (Oryza sativa L.) that carries traits desirable for sake-brewing, such as a larger grain size and higher white-core expression rate (WCE) compared to cooking rice cultivars. However, the genetic basis for these traits in brewing rice cultivars is still unclear. We performed analyses of quantitative trait locus (QTL) of grain and days to heading over 3 years on populations derived from crosses between Koshihikari, a cooking rice, and Yamadanishiki, an excellent sake-brewing rice. A total of 42 QTLs were detected for the grain traits, and the Yamadanishiki alleles at 16 QTLs contributed to larger grain size. Two major QTLs essential for regulating both 100-grain weight (GWt) and grain width (GWh) were harbored in the same regions on chromosomes 5 and 10. An interaction was noted between the environment and the QTL associated with WCE on chromosome 6, which was detected in two of 3 years. In addition, two QTLs for WCE on chromosomes 3 and 10 overlapped with the QTLs for GWt and GWh, suggesting that QTLs associated with grain size also play an important role in the formation of white-core. Despite differences in the rate of grain growth in both Koshihikari and Yamadanishiki across 2 years, the WCE in Yamadanishiki remained consistent, thus demonstrating that the formation of white-core does not depend on grain filling speed. These data can be informative for programs involved in breeding better cooking and brewing rice cultivars.
Collapse
Affiliation(s)
- Satoshi Okada
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, 1348 Uzurano, Kasai, Hyogo, 675-2103, Japan
| | - Miki Suehiro
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, 1348 Uzurano, Kasai, Hyogo, 675-2103, Japan
| | - Kaworu Ebana
- Genetic Resources Center, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Kiyosumi Hori
- Institute of Crop Science, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Akio Onogi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroyoshi Iwata
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Masanori Yamasaki
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, 1348 Uzurano, Kasai, Hyogo, 675-2103, Japan.
| |
Collapse
|
169
|
Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L, Sun C. NOG1 increases grain production in rice. Nat Commun 2017; 8:1497. [PMID: 29133783 PMCID: PMC5684330 DOI: 10.1038/s41467-017-01501-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/22/2017] [Indexed: 11/09/2022] Open
Abstract
During rice domestication and improvement, increasing grain yield to meet human needs was the primary objective. Rice grain yield is a quantitative trait determined by multiple genes, but the molecular basis for increased grain yield is still unclear. Here, we show that NUMBER OF GRAINS 1 (NOG1), which encodes an enoyl-CoA hydratase/isomerase, increases the grain yield of rice by enhancing grain number per panicle without a negative effect on the number of panicles per plant or grain weight. NOG1 can significantly increase the grain yield of commercial high-yield varieties: introduction of NOG1 increases the grain yield by 25.8% in the NOG1-deficient rice cultivar Zhonghua 17, and overexpression of NOG1 can further increase the grain yield by 19.5% in the NOG1-containing variety Teqing. Interestingly, NOG1 plays a prominent role in increasing grain number, but does not change heading date or seed-setting rate. Our findings suggest that NOG1 could be used to increase rice production.
Collapse
Affiliation(s)
- Xing Huo
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Shuang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Zuofeng Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Yongcai Fu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Hongwei Cai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Xianyou Sun
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Ping Gu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lubin Tan
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China.
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
170
|
Bai X, Huang Y, Hu Y, Liu H, Zhang B, Smaczniak C, Hu G, Han Z, Xing Y. Duplication of an upstream silencer of FZP increases grain yield in rice. NATURE PLANTS 2017; 3:885-893. [PMID: 29085070 DOI: 10.1038/s41477-017-0042-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/30/2017] [Indexed: 05/07/2023]
Abstract
Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.
Collapse
Affiliation(s)
- Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434100, China
| | - Yong Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyang Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Cezary Smaczniak
- Plant Cell and Molecular Biology Institute for Biology Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Gang Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongmin Han
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
171
|
Gong J, Miao J, Zhao Y, Zhao Q, Feng Q, Zhan Q, Cheng B, Xia J, Huang X, Yang S, Han B. Dissecting the Genetic Basis of Grain Shape and Chalkiness Traits in Hybrid Rice Using Multiple Collaborative Populations. MOLECULAR PLANT 2017; 10:1353-1356. [PMID: 28803900 DOI: 10.1016/j.molp.2017.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/14/2017] [Accepted: 07/27/2017] [Indexed: 05/28/2023]
Affiliation(s)
- Junyi Gong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Jiashun Miao
- National Center for Gene Research, CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yan Zhao
- National Center for Gene Research, CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qiang Zhao
- National Center for Gene Research, CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qi Feng
- National Center for Gene Research, CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qilin Zhan
- National Center for Gene Research, CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Benyi Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Junhui Xia
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Xuehui Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shihua Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China.
| |
Collapse
|
172
|
Huang X, Peng X, Sun MX. OsGCD1 is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development. THE NEW PHYTOLOGIST 2017; 215:1039-1058. [PMID: 28585692 DOI: 10.1111/nph.14625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/25/2017] [Indexed: 05/20/2023]
Abstract
Rice fertility is critical for rice reproduction and is thus a focus of interest. Most studies have addressed male sterility and its relation to rice production. The mechanisms of regulation of embryogenesis and endosperm development are essential for rice reproduction, but remain largely unknown. Here, we report a functional analysis of the rice gene OsGCD1, which encodes a highly conserved homolog of Arabidopsis GCD1 (GAMETE CELLS DEFECTIVE1). OsGCD1 mutants were generated using the CRISPR/Cas9 system and subjected to functional analysis. The homozygote mutants cannot be obtained, whereas heterozygotes showed altered phenotypes. In the majority of aborted seeds, the endosperm nucleus divided a limited number of times. The free nuclei were distributed only at the micropylar end of embryo sacs, and their oriented positioning was blocked. In addition, aleurone differentiation was interrupted. The embryo developed slowly, and pattern formation, particularly the dorsal-ventral pattern and symmetry establishment, of embryos was disturbed. Thus, the embryos showed various morphological and structural dysplasias. Our findings reveal that OsGCD1 is essential for rice fertility and is required for dorsal-ventral pattern formation and endosperm free nucleus positioning, suggesting a critical role in sexual reproduction of both monocotyledon and dicotyledon plants.
Collapse
Affiliation(s)
- Xiaorong Huang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
173
|
Zhou W, Wang X, Zhou D, Ouyang Y, Yao J. Overexpression of the 16-kDa α-amylase/trypsin inhibitor RAG2 improves grain yield and quality of rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:568-580. [PMID: 27775871 PMCID: PMC5399008 DOI: 10.1111/pbi.12654] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/02/2016] [Accepted: 10/20/2016] [Indexed: 05/02/2023]
Abstract
Increasing grain yield and improving grain quality are two important goals for rice breeding. A better understanding of the factors that contribute to the overall grain quantity and nutritional quality of rice will lay the foundation for developing new breeding strategies. RAG2 is a member of 14-to-16-kDa α-amylase/trypsin inhibitors in rice, which belong to the albumin of seed storage proteins. We found that RAG2 was specifically expressed in ripening seed and its transcription peak was between 14 and 21 days after flowering. Grain size and 1000-grain weight were obviously increased in RAG2-overexpressed lines compared with wild type, and grain size was reduced in RAG2-suppressed lines. In addition, the major storage substances of the seeds differed significantly in RAG2-overexpressed and RAG2-suppressed lines compared to wild type. The protein content and amount of total lipids were increased and decreased, respectively, in the seeds of RAG2-overexpressed and RAG2-suppressed lines. Overexpression of RAG2 significantly increased grain size and improved grain quality and yield simultaneously. These results imply that RAG2 might play an important role in regulating grain weight and seed quality of rice. The functional characterization of rice RAG2 facilitates a further understanding of the mechanisms involved in grain size and seed quality and may be helpful in improving grain yield and quantity in cereal crops.
Collapse
Affiliation(s)
- Wei Zhou
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xin Wang
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Dan Zhou
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Jialing Yao
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
174
|
Qiu X, Chen K, Lv W, Ou X, Zhu Y, Xing D, Yang L, Fan F, Yang J, Xu J, Zheng T, Li Z. Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:951-967. [PMID: 28299373 PMCID: PMC5395602 DOI: 10.1007/s00122-017-2862-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/17/2017] [Indexed: 05/04/2023]
Abstract
A novel QTL cluster for appearance quality on Chr07 was identified using reciprocal introgression populations in different locations in China. Two secondary F 2 populations validated QTL with significant effect on appearance quality. Appearance quality (AQ) is the main determinants of market value of rice. Identification of QTL affecting AQ is the prerequisite for efficient improvement of AQ through marker-assisted selection (MAS). Two sets of reciprocal introgression lines derived from indica Minghui 63 and japonica 02428 were used to dissect the stability of QTL affecting five AQ traits, including grain length, grain width, length to width ratio, percentage of grains with chalkiness, and degree of endosperm chalkiness using 4568 bin genotype produced from 58,000 SNPs across five different environments. A total of 41 and 30 main-effect QTL were identified in MH63 and 02428 backgrounds, respectively. Among them, 9 background-independent QTL (BI-QTL) were found. There were also 13 and 10 stable-expressed QTL (SE-QTL) across at least two environments in MH63 and 02428 backgrounds, respectively. Two important BI- and SE-QTL regions (BISERs) including BISER-I harboring qPGWC5, qDEC5, qGW5.1, and qLWR5 on chromosome 5 and BISER-II harboring qGL7, qLWR7, qPGWC7, and qDEC7 on chromosome 7 were identified. The BISER-II was newly reported and validated by two secondary F2 populations in the reciprocal backgrounds. Among 59 epistatic QTL (E-QTL) detected in this study, there were only four SE- but no BI-E-QTL detected in different environments, indicating that genetic background has stronger effect on AQ traits than the environmental factors, especially for percentage of grains with chalkiness (PGWC) and degree of endosperm chalkiness (DEC) with lower heritability. BISER-I and BISER-II harboring many BI- and SE-QTL with favorable alleles from slender grain rice are much important for improvement of rice AQ by MAS.
Collapse
Affiliation(s)
- Xianjin Qiu
- Hubei Collaborative Innovation Center for Grain Industry / College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Kai Chen
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wenkai Lv
- Hubei Collaborative Innovation Center for Grain Industry / College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Xiaoxue Ou
- Hubei Collaborative Innovation Center for Grain Industry / College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yajun Zhu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shenzhen Institute of Breeding for Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Danying Xing
- Hubei Collaborative Innovation Center for Grain Industry / College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Longwei Yang
- Hubei Collaborative Innovation Center for Grain Industry / College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Fangjun Fan
- Institute of Food Crops, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jie Yang
- Institute of Food Crops, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jianlong Xu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Shenzhen Institute of Breeding for Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Tianqing Zheng
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhikang Li
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shenzhen Institute of Breeding for Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
175
|
Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao G, Zhang Q, Pan Y, Wang X, Rashid MAR, Li J, Gao Y, Li Z, Yang W, Fu X, Li Z. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol 2017; 15:28. [PMID: 28385155 PMCID: PMC5383996 DOI: 10.1186/s12915-017-0365-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Most agronomic traits in rice are complex and polygenic. The identification of quantitative trait loci (QTL) for grain length is an important objective of rice genetic research and breeding programs. RESULTS Herein, we identified 99 QTL for grain length by GWAS based on approximately 10 million single nucleotide polymorphisms from 504 cultivated rice accessions (Oryza sativa L.), 13 of which were validated by four linkage populations and 92 were new loci for grain length. We scanned the Ho (observed heterozygosity per locus) index of coupled-parents of crosses mapping the same QTL, based on linkage and association mapping, and identified two new genes for grain length. We named this approach as Ho-LAMap. A simulation study of six known genes showed that Ho-LAMap could mine genes rapidly across a wide range of experimental variables using deep-sequencing data. We used Ho-LAMap to clone a new gene, OsLG3, as a positive regulator of grain length, which could improve rice yield without influencing grain quality. Sequencing of the promoter region in 283 rice accessions from a wide geographic range identified four haplotypes that seem to be associated with grain length. Further analysis showed that OsLG3 alleles in the indica and japonica evolved independently from distinct ancestors and low nucleotide diversity of OsLG3 in indica indicated artificial selection. Phylogenetic analysis showed that OsLG3 might have much potential value for improvement of grain length in japonica breeding. CONCLUSIONS The results demonstrated that Ho-LAMap is a potential approach for gene discovery and OsLG3 is a promising gene to be utilized in genomic assisted breeding for rice cultivar improvement.
Collapse
Affiliation(s)
- Jianping Yu
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Haiyan Xiong
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Zhu
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinli Miao
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zuoshun Tang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhanying Zhang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoxin Yao
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yinghua Pan
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xin Wang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - M A R Rashid
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yongming Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weicai Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
176
|
Yang C, Zhang L, Jia A, Rong T. Identification of QTL for maize grain yield and kernel-related traits. J Genet 2017; 95:239-47. [PMID: 27350665 DOI: 10.1007/s12041-016-0628-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Grain yield (GY) is one of the most important and complex quantitative traits in maize (Zea mays L.) breeding practice. Quantitative trait loci (QTLs) for GY and three kernel-related traits were detected in a set of recombinant inbred lines (RILs). One hundred and seven simple sequence repeats (SSRs) and 168 insertion/deletion polymorphism markers (Indels) were used to genotype RILs. Eight QTLs were found to be associated with four yield-related traits: GY, 100-kernel weight (HKW), 10-kernel length (KL), and 10-kernel length width (KW). Each QTL explained between 5.96 (qKL2-1) and 13.05 (qKL1-1) per cent of the phenotypic variance. Notably, one common QTL, located at the marker interval between bnlg1893 and chr2- 236477 (chromosomal bin 2.09) simultaneously controlled GY and HKW; another common QTL, at bin 2.03 was simultaneously responsible for HKW and KW. Of the QTLs identified, only one pair of significant epistatic interaction involved in chromosomal region at bin 2.03 was detected for HKW; no significant QTL × environment interactions were observed. These results provide the common QTLs and for marker-assisted breeding.
Collapse
Affiliation(s)
- Cong Yang
- Maize Research, Sichuan Agricultural University, Wenjiang 611130, Sichuan, People's Republic of
| | | | | | | |
Collapse
|
177
|
Lin Z, Wang Z, Zhang X, Liu Z, Li G, Wang S, Ding Y. Complementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation. PLANT & CELL PHYSIOLOGY 2017; 58:560-573. [PMID: 28158863 PMCID: PMC5444571 DOI: 10.1093/pcp/pcx001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/02/2017] [Indexed: 05/03/2023]
Abstract
Rice grain chalkiness is a highly complex trait involved in multiple metabolic pathways and controlled by polygenes and growth conditions. To uncover novel aspects of chalkiness formation, we performed an integrated profiling of gene activity in the developing grains of a notched-belly rice mutant. Using exhaustive tandem mass spectrometry-based shotgun proteomics and whole-genome RNA sequencing to generate a nearly complete catalog of expressed mRNAs and proteins, we reliably identified 38,476 transcripts and 3,840 proteins. Comparison between the translucent part and chalky part of the notched-belly grains resulted in only a few differently express genes (240) and differently express proteins (363), thus making it possible to focus on 'core' genes or common pathways. Several novel key pathways were identified as of relevance to chalkiness formation, in particular the shift of C and N metabolism, the down-regulation of ribosomal proteins and the resulting low abundance of storage proteins especially the 13 kDa prolamin subunit, and the suppressed photosynthetic capacity in the pericarp of the chalky part. Further, genes and proteins as transporters for carbohydrates, amino acid/peptides, proteins, lipids and inorganic ions showed an increasing expression pattern in the chalky part of the notched-belly grains. Similarly, transcripts and proteins of receptors for auxin, ABA, ethylene and brassinosteroid were also up-regulated. In summary, this joint analysis of transcript and protein profiles provides a comprehensive reference map of gene activity regarding the physiological state in the chalky endosperm.
Collapse
Affiliation(s)
- Zhaomiao Lin
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zunxin Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xincheng Zhang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
- Corresponding author: E-mail, ; Fax, +86-25-84395313
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
| |
Collapse
|
178
|
Lin Z, Zhang X, Wang Z, Jiang Y, Liu Z, Alexander D, Li G, Wang S, Ding Y. Metabolomic analysis of pathways related to rice grain chalkiness by a notched-belly mutant with high occurrence of white-belly grains. BMC PLANT BIOLOGY 2017; 17:39. [PMID: 28166731 PMCID: PMC5294873 DOI: 10.1186/s12870-017-0985-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/25/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Grain chalkiness is a highly undesirable trait deleterious to rice appearance and milling quality. The physiological and molecular foundation of chalkiness formation is still partially understood, because of the complex interactions between multiple genes and growing environments. RESULTS We report the untargeted metabolomic analysis of grains from a notched-belly mutant (DY1102) with high percentage of white-belly, which predominantly occurs in the bottom part proximal to the embryo. Metabolites in developing grains were profiled on the composite platforms of UPLC/MS/MS and GC/MS. Sampling times were 5, 10, 15, and 20 days after anthesis, the critical time points for chalkiness formation. A total of 214 metabolites were identified, covering most of the central metabolic pathways and partial secondary pathways including amino acids, carbohydrates, lipids, cofactors, peptides, nucleotides, phytohormones, and secondary metabolites. A comparison of the bottom chalky part and the upper translucent part of developing grains of DY1102 resulted in 180 metabolites related to chalkiness formation. CONCLUSIONS Generally, in comparison to the translucent upper part, the chalky endosperm had lower levels of metabolites regarding carbon and nitrogen metabolism for synthesis of storage starch and protein, which was accompanied by perturbation of pathways participating in scavenging of reactive oxygen species, osmorugulation, cell wall synthesis, and mineral ion homeostasis. Based on these results, metabolic mechanism of chalkiness formation is discussed, with the role of embryo highlighted.
Collapse
Affiliation(s)
- Zhaomiao Lin
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 People’s Republic of China
| | - Xincheng Zhang
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
| | - Zunxin Wang
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
| | - Yutong Jiang
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 People’s Republic of China
| | | | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
179
|
Li S, Wei X, Ren Y, Qiu J, Jiao G, Guo X, Tang S, Wan J, Hu P. OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm. Sci Rep 2017; 7:40124. [PMID: 28054650 PMCID: PMC5215005 DOI: 10.1038/srep40124] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/02/2016] [Indexed: 01/18/2023] Open
Abstract
Starch is the main storage carbohydrate in higher plants. Although several enzymes and regulators for starch biosynthesis have been characterized, a complete regulatory network for starch synthesis in cereal seeds remains elusive. Here, we report the identification and characterization of the rice Brittle1 (OsBT1) gene, which is expressed specifically in the developing endosperm. The osbt1 mutant showed a white-core endosperm and a significantly lower grain weight than the wild-type. The formation and development of compound starch granules in osbt1 was obviously defective: the amyloplast was disintegrated at early developmental stages and the starch granules were disperse and not compound in the endosperm cells in the centre region of osbt1 seeds. The total starch content and amylose content was decreased and the physicochemical properties of starch were altered. Moreover, the degree of polymerization (DP) of amylopectin in osbt1 was remarkably different from that of wild-type. Map-based cloning of OsBT1 indicated that it encodes a putatively ADP-glucose transporter. OsBT1 coded protein localizes in the amyloplast envelope membrane. Furthermore, the expression of starch synthesis related genes was also altered in the osbt1 mutant. These findings indicate that OsBT1 plays an important role in starch synthesis and the formation of compound starch granules.
Collapse
Affiliation(s)
- Sanfeng Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jianmin Wan
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
180
|
Wang X, Pang Y, Wang C, Chen K, Zhu Y, Shen C, Ali J, Xu J, Li Z. New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-Wide and Gene-Based Association Analyses. FRONTIERS IN PLANT SCIENCE 2017; 7:1998. [PMID: 28101096 PMCID: PMC5209347 DOI: 10.3389/fpls.2016.01998] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/16/2016] [Indexed: 05/19/2023]
Abstract
Appearance and milling quality are two crucial properties of rice grains affecting its market acceptability. Understanding the genetic base of rice grain quality could considerably improve the high quality breeding. Here, we carried out an association analysis to identify QTL affecting nine rice grain appearance and milling quality traits using a diverse panel of 258 accessions selected from 3K Rice Genome Project and evaluated in two environments Sanya and Shenzhen. Genome-wide association analyses using 22,488 high quality SNPs identified 72 QTL affecting the nine traits. Combined gene-based association and haplotype analyses plus functional annotation allowed us to shortlist 19 candidate genes for seven important QTL regions affecting the grain quality traits, including two cloned genes (GS3 and TUD), two fine mapped QTL (qGRL7.1 and qPGWC7) and three newly identified QTL (qGL3.4, qGW1.1, and qGW10.2). The most likely candidate gene(s) for each important QTL were also discussed. This research demonstrated the superior power to shortlist candidate genes affecting complex phenotypes by the strategy of combined GWAS, gene-based association and haplotype analyses. The identified candidate genes provided valuable sources for future functional characterization and genetic improvement of rice appearance and milling quality.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yunlong Pang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijing, China
| | - Chunchao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijing, China
| | - Kai Chen
- Agricultural Genomics Institute, Chinese Academy of Agricultural SciencesShenzhen, China
| | - Yajun Zhu
- Agricultural Genomics Institute, Chinese Academy of Agricultural SciencesShenzhen, China
| | - Congcong Shen
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jauhar Ali
- International Rice Research InstituteMetro Manila, Philippines
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijing, China
- Agricultural Genomics Institute, Chinese Academy of Agricultural SciencesShenzhen, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural SciencesShenzhen, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural SciencesShenzhen, China
| |
Collapse
|
181
|
Yang Y, Shen Y, Li S, Ge X, Li Z. High Density Linkage Map Construction and QTL Detection for Three Silique-Related Traits in Orychophragmus violaceus Derived Brassica napus Population. FRONTIERS IN PLANT SCIENCE 2017; 8:1512. [PMID: 28932230 PMCID: PMC5592274 DOI: 10.3389/fpls.2017.01512] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/16/2017] [Indexed: 05/08/2023]
Abstract
Seeds per silique (SS), seed weight (SW), and silique length (SL) are important determinant traits of seed yield potential in rapeseed (Brassica napus L.), and are controlled by naturally occurring quantitative trait loci (QTLs). Mapping QTLs to narrow chromosomal regions provides an effective means of characterizing the genetic basis of these complex traits. Orychophragmus violaceus is a crucifer with long siliques, many SS, and heavy seeds. A novel B. napus introgression line with many SS was previously selected from multiple crosses (B. rapa ssp. chinesis × O. violaceus) × B. napus. In present study, a doubled haploid (DH) population with 167 lines was established from a cross between the introgression line and a line with far fewer SS, in order to detect QTLs for silique-related traits. By screening with a Brassica 60K single nucleotide polymorphism (SNP) array, a high-density linkage map consisting of 1,153 bins and spanning a cumulative length of 2,209.1 cM was constructed, using 12,602 high-quality polymorphic SNPs in the DH population. The average recombination bin densities of the A and C subgenomes were 1.7 and 2.4 cM, respectively. 45 QTLs were identified for the three traits in all, which explained 4.0-34.4% of the total phenotypic variation; 20 of them were integrated into three unique QTLs by meta-analysis. These unique QTLs revealed a significant positive correlation between SS and SL and a significant negative correlation between SW and SS, and were mapped onto the linkage groups A05, C08, and C09. A trait-by-trait meta-analysis revealed eight, four, and seven consensus QTLs for SS, SW, and SL, respectively, and five major QTLs (cqSS.A09b, cqSS.C09, cqSW.A05, cqSW.C09, and cqSL.C09) were identified. Five, three, and four QTLs for SS, SW, and SL, respectively, might be novel QTLs because of the existence of alien genetic loci for these traits in the alien introgression. Thirty-eight candidate genes underlying nine QTLs for silique-related traits were identified.
Collapse
|
182
|
Gao Y, Liu C, Li Y, Zhang A, Dong G, Xie L, Zhang B, Ruan B, Hong K, Xue D, Zeng D, Guo L, Qian Q, Gao Z. QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9. RICE (NEW YORK, N.Y.) 2016; 9:41. [PMID: 27549111 PMCID: PMC4993740 DOI: 10.1186/s12284-016-0114-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/12/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND An ideal appearance is of commercial value for rice varieties. Chalkiness is one of the most important appearance quality indicators. Therefore, clarification of the heredity of chalkiness and its molecular mechanisms will contribute to reduction of rice chalkiness. Although a number of QTLs related to chalkiness were mapped, few of them have been cloned so far. RESULTS In this study, using recombinant inbred lines (RILs) of PA64s and 9311, we identified 19 QTLs associated with chalkiness on chromosomes 1, 4, 6, 7, 9 and 12, which accounted for 5.1 to 30.6 % of phenotypic variations. A novel major QTL qACE9 for the area of chalky endosperm (ACE) was detected in Hainan and Hangzhou, both mapped in the overlapping region on chromosome 9. It was further fine mapped to an interval of 22 kb between two insertion-deletion (InDel) markers IND9-4 and IND9-5 using a BC4F2 population. Gene prediction analysis identified five putative genes, among which only one gene (OsAPS1), whose product involved in starch synthesis, was detected two nucleotide substitutions causing amino acid change between the parents. Significant difference was found in apparent amylose content (AAC) between NILqACE9 and 9311. And starch granules were round and loosely packed in NILqACE9 compared with 9311 by scanning electron microscopy (SEM) analysis. CONCLUSIONS OsAPS1 was selected as a novel candidate gene for fine-mapped qACE9. The candidate gene not only plays a critical role during starch synthesis in endosperm, but also determines the area of chalky endosperm in rice. Further cloning of the QTL will facilitate the improvement of quality in hybrid rice.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuanyuan Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Anpeng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Bin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Kai Hong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
183
|
Ren D, Rao Y, Huang L, Leng Y, Hu J, Lu M, Zhang G, Zhu L, Gao Z, Dong G, Guo L, Qian Q, Zeng D. Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). RICE (NEW YORK, N.Y.) 2016; 9:4. [PMID: 26847792 PMCID: PMC4742455 DOI: 10.1186/s12284-016-0076-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/25/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND High yield and quality determine the commercial potential of rice variety. Brown rice rate (BRR) is a key factor ensuring grain yield and quality in rice. So far, there were few reports about the genes that directly controlled the BRR in rice. Therefore, dissecting the genetic mechanism of the BRR genes can facilitate improving effective rice supply or edible grain yield. RESULTS A double haploid population derived from the cross between Taichung Native 1 (TN1) (an indica variety) and Chunjiang 06 (CJ06) (a japonica variety) was used to investigate the genetic basis of grain milling and appearance traits affecting the BRR. By using a constructed molecular linkage map, four quantitative trait loci (QTLs) for the BRR were detected on chromosomes 1, 8, 9, and 10, respectively. In addition, three QTLs for appearance traits, including grain weight and grain length/width ratio, were detected on chromosomes 6, 9 and 10, respectively. Chromosome segment substitution lines (CSSLs) were established at the qBRR-10 locus. Finally, the qBRR-10 was narrowed to a 39.5 kb region on chromosome 10. In this region, two candidate genes, LOC_Os10g32124 and LOC_Os10g32190, showed significantly differential expression in TN1 and CSSL1-2 compared with CJ06. Histocytological analysis suggested that cell size and hull thickness may be important factors for the BRR. CONCLUSION In the study, the qBRR-10 affected the BRR and was finally located to a region between two markers, P13 and P14. Two candidate genes were selected based on the expression difference between two parents, which facilitated the further cloning of the qBRR-10 gene and largely contributed to improve the grain yield and quality in rice.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yuchun Rao
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Lichao Huang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yujia Leng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Jiang Hu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Mei Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Guangheng Zhang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Li Zhu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zhenyu Gao
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Guojun Dong
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Qian Qian
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China.
| | - Dali Zeng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China.
| |
Collapse
|
184
|
Chen L, Gao W, Chen S, Wang L, Zou J, Liu Y, Wang H, Chen Z, Guo T. High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice. RICE (NEW YORK, N.Y.) 2016; 9:48. [PMID: 27659284 PMCID: PMC5033801 DOI: 10.1186/s12284-016-0121-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/14/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Grain appearance quality is a main determinant of market value in rice and one of the highly important traits requiring improvement in breeding programs. The genetic basis of grain shape and endosperm chalkiness have been given significant attention because of their importance in affecting grain quality. Meanwhile, the introduction of NGS (Next Generation Sequencing) has a significant part to play in the area of genomics, and offers the possibility for high-resolution genetic map construction, population genetics analysis and systematic expression profile study. RESULTS A RIL population derived from an inter-subspecific cross between indica rice PYZX and japonica rice P02428 was generated, based on the significant variations for the grain morphology and cytological structure between these two parents. Using the Genotyping-By-Sequencing (GBS) approach, 2711 recombination bin markers with an average physical length of 137.68 kb were obtained, and a high-density genetic map was constructed. Global genetic mapping of QTLs affecting grain shape and chalkiness traits was performed across four environments and the newly identified stable loci were obtained. Twelve important QTL clusters were detected, four of which were coincident with the genomic regions of cloned genes or fine mapped QTL reported. Eight novel QTL clusters (including six for grain shape, one for chalkiness, and one for both grain shape and chalkiness) were firstly obtained and highlighted the value and reliability of the QTL analysis. The important QTL cluster on chromosome 5 affects multiple traits including circularity (CS), grain width (GW), area size of grain (AS), percentage of grains with chalkiness (PGWC) and degree of endosperm chalkiness (DEC), indicating some potentially pleiotropic effects. The transcriptome analysis demonstrated an available gene expression profile responsible for the development of chalkiness, and several DEGs (differentially expressed genes) were co-located nearby the three chalkiness-related QTL regions on chromosomes 5, 7, and 8. Candidate genes were extrapolated, which were suitable for functional validation and breeding utilization. CONCLUSION QTLs affecting grain shape (grain width, grain length, length-width ratio, circularity, area size of grain, and perimeter length of grain) and chalkiness traits (percentage of grains with chalkiness and degree of endosperm chalkiness) were mapped with the high-density GBS-SNP based markers. The important differentially expressed genes (DEGs) were co-located in the QTL cluster regions on chromosomes 5, 7 and 8 affecting PGWC and DEC parameters. Our research provides a crucial insight into the genetic architecture of rice grain shape and chalkiness, and acquired potential candidate loci for molecular cloning and grain quality improvement.
Collapse
Affiliation(s)
- Likai Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Weiwei Gao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Siping Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Liping Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jiyong Zou
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Agricultural Technology Extension, Guangzhou, 510520, China
| | - Yongzhu Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
185
|
Li W, Yang Q, Gu Z, Wu C, Meng D, Yu J, Chen Q, Li Y, Yuan H, Wang D, Li T. Molecular and genetic characterization of a self-compatible apple cultivar, 'CAU-1'. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:162-175. [PMID: 27717452 DOI: 10.1016/j.plantsci.2016.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In this study, we characterized a naturally occurring self-compatible apple cultivar, 'CAU-1' (S1S9), and studied the underlying mechanism that causes its compatibility. Analyses of both fruit set rate and seed number after self-pollination or cross-pollination with 'Fuji' (S1S9), and of pollen tube growth, demonstrated that 'CAU-1' is self-compatible. Genetic analysis by S-RNase PCR-typing of selfed progeny of 'CAU-1' revealed the presence of all progeny classes (S1S1, S1S9, and S9S9). Moreover, no evidence of S-allele duplication was found. These findings support the hypothesis that loss of function of an S-locus unlinked pollen-part mutation (PPM) expressed in pollen, rather than a natural mutation in the pollen-S gene (S1- and S9- haplotype), leads to SI breakdown in 'CAU-1'. In addition, there were no significant differences in pollen morphology or fertility between 'Fuji' and 'CAU-1'. However, we found that the effect of S1- and S9-RNase on the SI behavior of pollen could not be addressed better in 'CAU-1' than in 'Fuji'. Furthermore, we found that a pollen-expressed hexose transporter, MdHT1, interacted with S-RNases and showed significantly less expression in 'CAU-1' than in 'Fuji' pollen tubes. These findings support the hypothesis that MdHT1 may participate in S-RNase internalization during the SI process, and decrease of MdHT1 expression in 'CAU-1' hindered the release of self S-RNase into the cytoplasm of pollen tubes, thereby protecting pollen from the cytotoxicity of S-RNase, finally probably resulting in self-compatibility. Together, these findings indicate that S-locus external factors are required for gametophytic SI in the Rosaceae subtribe Pyrinae.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Hui Yuan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongmei Wang
- Institute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou 115009, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
186
|
Liu F, Zhang L, Luo Y, Xu M, Fan Y, Wang L. Interactions of Oryza sativa OsCONTINUOUS VASCULAR RING-LIKE 1 (OsCOLE1) and OsCOLE1-INTERACTING PROTEIN reveal a novel intracellular auxin transport mechanism. THE NEW PHYTOLOGIST 2016; 212:96-107. [PMID: 27265035 DOI: 10.1111/nph.14021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/16/2016] [Indexed: 06/05/2023]
Abstract
Little is known about the transport mechanism of intracellular auxin. Here, we report two vacuole-localized proteins, Oryza sativa OsCONTINUOUS VASCULAR RING-LIKE 1 (OsCOLE1) and OsCOLE1-INTERACTING PROTEIN (OsCLIP), that regulate intracellular auxin transport and homoeostasis. Overexpression of OsCOLE1 markedly increased the internode length and auxin content of the stem base, whereas these parameters were decreased in RNA interference (RNAi) plants. OsCOLE1 was localized on the tonoplast and preferentially expressed in mature tissues. We further identified its interacting protein OsCLIP, which was co-localized on the tonoplast. Protein-protein binding assays demonstrated that the N-terminus of OsCOLE1 directly interacted with OsCLIP in yeast cells and the rice protoplast. Furthermore, (3) H-indole-3-acetic acid ((3) H-IAA) transport assays revealed that OsCLIP transported IAA into yeast cells, which was promoted by OsCOLE1. The results indicate that OsCOLE1 affects rice development by regulating intracellular auxin transport through interaction with OsCLIP, which provides a new insight into the regulatory mechanism of intracellular transport of auxin and the roles of vacuoles in plant development.
Collapse
Affiliation(s)
- Fei Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Lan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Yanzhong Luo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| |
Collapse
|
187
|
Zhang M, Wei F, Guo K, Hu Z, Li Y, Xie G, Wang Y, Cai X, Peng L, Wang L. A Novel FC116/ BC10 Mutation Distinctively Causes Alteration in the Expression of the Genes for Cell Wall Polymer Synthesis in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1366. [PMID: 27708650 PMCID: PMC5030303 DOI: 10.3389/fpls.2016.01366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/29/2016] [Indexed: 05/11/2023]
Abstract
We report isolation and characterization of a fragile culm mutant fc116 that displays reduced mechanical strength caused by decreased cellulose content and altered cell wall structure in rice. Map-based cloning revealed that fc116 was a base substitution mutant (G to A) in a putative beta-1,6-N-acetylglucosaminyltransferase (C2GnT) gene (LOC_Os05g07790, allelic to BC10). This mutation resulted in one amino acid missing within a newly-identified protein motif "R, RXG, RA." The FC116/BC10 gene was lowly but ubiquitously expressed in the all tissues examined across the whole life cycle of rice, and slightly down-regulated during secondary growth. This mutant also exhibited a significant increase in the content of hemicelluloses and lignins, as well as the content of pentoses (xylose and arabinose). But the content of hexoses (glucose, mannose, and galactose) was decreased in both cellulosic and non-cellulosic (pectins and hemicelluloses) fractions of the mutant. Transcriptomic analysis indicated that the typical genes in the fc116 mutant were up-regulated corresponding to xylan biosynthesis, as well as lignin biosynthesis including p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). Our results indicate that FC116 has universal function in regulation of the cell wall polymers in rice.
Collapse
Affiliation(s)
- Mingliang Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Feng Wei
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Kai Guo
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yuyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Guosheng Xie
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xiwen Cai
- Department of Plant Science, North Dakota State UniversityFargo, ND, USA
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
188
|
Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 2016; 48:1233-41. [PMID: 27526320 DOI: 10.1038/ng.3636] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023]
Abstract
Maize production is threatened by drought stress worldwide. Identification of the genetic components underlying drought tolerance in maize is of great importance. Here we report a genome-wide association study (GWAS) of maize drought tolerance at the seedling stage that identified 83 genetic variants, which were resolved to 42 candidate genes. The peak GWAS signal showed that the natural variation in ZmVPP1, encoding a vacuolar-type H(+) pyrophosphatase, contributes most significantly to the trait. Further analysis showed that a 366-bp insertion in the promoter, containing three MYB cis elements, confers drought-inducible expression of ZmVPP1 in drought-tolerant genotypes. Transgenic maize with enhanced ZmVPP1 expression exhibits improved drought tolerance that is most likely due to enhanced photosynthetic efficiency and root development. Taken together, this information provides important genetic insights into the natural variation of maize drought tolerance. The identified loci or genes can serve as direct targets for both genetic engineering and selection for maize trait improvement.
Collapse
Affiliation(s)
- Xianglan Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Hongwei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Shengxue Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Jiansheng Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Feng Qin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
189
|
Lin Z, Zheng D, Zhang X, Wang Z, Lei J, Liu Z, Li G, Wang S, Ding Y. Chalky part differs in chemical composition from translucent part of japonica rice grains as revealed by a notched-belly mutant with white-belly. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3937-43. [PMID: 27166835 PMCID: PMC5089642 DOI: 10.1002/jsfa.7793] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/17/2016] [Accepted: 04/30/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Chalkiness has a deleterious influence on rice appearance and milling quality. We identified a notched-belly mutant with a high percentage of white-belly, and thereby developed a novel comparison system that can minimize the influence of genetic background and growing conditions. Using this mutant, we examined the differences in chemical composition between chalky and translucent endosperm, with the aim of exploring relations between occurrence of chalkiness and accumulation of starch, protein and minerals. RESULTS Comparisons showed a significant effect of chalkiness on chemical components in the endosperm. In general, occurrence of chalkiness resulted in higher total starch concentration and lower concentrations of the majority of the amino acids measured. Chalkiness also had a positive effect on the concentrations of As, Ba, Cd, Cr, Mn, Na, Sr and V, but was negatively correlated with those of B, Ca, Cu, Fe and Ni. By contrast, no significant chalkiness effect on P, phytic acid-P, K, Mg or Zn was observed. In addition, substantial influence of the embryo on endosperm composition was detected, with the embryo showing a negative effect on total protein, amino acids such as Arg, His, Leu, Lys, Phe and Tyr, and all the 17 minerals measured, excluding Ca, Cu, P and Sr. CONCLUSION An inverse relation between starch and protein as well as amino acids was found with respect to chalkiness occurrence. Phytic acid and its colocalized elements K and Mg were not affected by chalkiness. The embryo exerted a marked influence on chemical components of the endosperm, in particular minerals, suggesting the necessity of examining the role of the embryo in chalkiness formation. © 2016 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaomiao Lin
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Deyi Zheng
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xincheng Zhang
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zunxin Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinchao Lei
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, People's Republic of China
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, People's Republic of China
| |
Collapse
|
190
|
Zhang H, Lu Y, Zhao Y, Zhou DX. OsSRT1 is involved in rice seed development through regulation of starch metabolism gene expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:28-36. [PMID: 27181944 DOI: 10.1016/j.plantsci.2016.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/06/2016] [Accepted: 04/10/2016] [Indexed: 05/02/2023]
Abstract
OsSRT1 is a NAD(+)-dependent histone deacetylase, closely related to the human SIRT6 that plays key roles in genome stability and metabolic homeostasis. In this work, we investigated the role of OsSRT1 in rice seed development. Down-regulation of OsSRT1 induced higher expression of Rice Starch Regulator1 (RSR1) and amylases genes in developing seeds, which resulted in a decrease of starch synthesis and an increase of starch degradation, leading to abnormal seed development. ChIP assay showed that OsSRT1 was required to reduce histone H3K9 acetylation on starch metabolism genes and transposons in developing seeds. In addition, OsSRT1 was detected to directly bind to starch metabolism genes such as OsAmy3B, OsAmy3E, OsBmy4, and OsBmy9. Our results suggested that OsSRT1-mediated histone deacetylation is involved in starch accumulation and transposon repression to regulate normal seed development.
Collapse
Affiliation(s)
- Hua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| | - Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; Institute Plant Science Paris-Saclay (IPS2), Université Paris-Saclay, Université Paris-Sud 11, Orsay, France.
| |
Collapse
|
191
|
Duan E, Wang Y, Liu L, Zhu J, Zhong M, Zhang H, Li S, Ding B, Zhang X, Guo X, Jiang L, Wan J. Pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) regulates carbon metabolism during grain filling in rice. PLANT CELL REPORTS 2016; 35:1321-31. [PMID: 26993329 PMCID: PMC4869756 DOI: 10.1007/s00299-016-1964-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/27/2016] [Indexed: 05/03/2023]
Abstract
Decreased PFPase activity in rice perturbs the equilibration of carbon metabolism during grain filling but has no visible phenotypic effects during the vegetative and reproductive growth stages. Starch is a primary energy reserve for various metabolic processes in plant. Despite much advance has been achieved in pathways involved in starch biosynthesis, information was still lacked for precise regulation related to carbon metabolism during seed filling in rice (Oryza sativa). The objective of this study was to identify and characterize new gene associated with carbon metabolism during grain filling. By screening our chemical mutant pool, two allelic mutants exhibiting floury endosperm were isolated. No visible phenotypic defects were observed during both the vegetative and reproductive growth stages, except for the floury-like endosperm of grains with significantly reduced kernel thickness, 1000-grain weight and total starch content. Map-based cloning revealed that the mutant phenotypes were controlled by a gene encoding pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) β subunit (PFPβ), which catalyzes reversible interconversion between fructose-6-phosphate and fructose-1, 6-bisphosphate. The identity of PFP β was further confirmed by a genetic complementation test. Subcellular analysis demonstrated that PFPβ was localized in cytoplasm. Quantitative PCR and histochemical staining indicated PFP β was ubiquitously expressed in various tissues. Furthermore, we found PFP β could express in both the early and late phases of starch accumulation during grain filling and decreased activity of PFP β in pfp mutants resulted in compromised carbon metabolism with increased soluble sugar contents and unfavorable starch biosynthesis. Our results highlight PFPβ functions in modulating carbon metabolism during grain filling stage.
Collapse
Affiliation(s)
- Erchao Duan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingsheng Zhong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sanfeng Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Baoxu Ding
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
192
|
Lo PC, Hu L, Kitano H, Matsuoka M. Starch metabolism and grain chalkiness under high temperature stress. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pei-Ching Lo
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Li Hu
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Japan
| |
Collapse
|
193
|
Zhang C, Zhou L, Zhu Z, Lu H, Zhou X, Qian Y, Li Q, Lu Y, Gu M, Liu Q. Characterization of Grain Quality and Starch Fine Structure of Two Japonica Rice (Oryza Sativa) Cultivars with Good Sensory Properties at Different Temperatures during the Filling Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4048-57. [PMID: 27128366 DOI: 10.1021/acs.jafc.6b00083] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Temperature during the growing season is a critical factor affecting grain quality. High temperatures at grain filling affect kernel development, resulting in reduced yield, increased chalkiness, reduced amylose content, and poor milling quality. Here, we investigated the grain quality and starch structure of two japonica rice cultivars with good sensory properties grown at different temperatures during the filling stage under natural field conditions. Compared to those grown under normal conditions, rice grains grown under hot conditions showed significantly reduced eating and cooking qualities, including a higher percentage of grains with chalkiness, lower protein and amylose contents, and higher pasting properties. Under hot conditions, rice starch contained reduced long-chain amylose (MW 10(7.1) to 10(7.4)) and significantly fewer short-chain amylopectin (DP 5-12) but more intermediate- (DP 13-34) and long- (DP 45-60) chain amylopectin than under normal conditions, as well as higher crystallinity and gelatinization properties.
Collapse
Affiliation(s)
- Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University , Yangzhou 225009, China
| | - Lihui Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University , Yangzhou 225009, China
- Jiangsu High Quality Rice Research and Development Center, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences , Nanjing 210014, China
| | - Zhengbin Zhu
- Suzhou Seed Administration Station , Suzhou 215011, China
| | - Huwen Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University , Yangzhou 225009, China
| | - Xingzhong Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University , Yangzhou 225009, China
| | - Yiting Qian
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University , Yangzhou 225009, China
| | - Qianfeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University , Yangzhou 225009, China
| | - Yan Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University , Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University , Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University , Yangzhou 225009, China
| |
Collapse
|
194
|
Xi M, Zhao Y, Lin Z, Zhang X, Ding C, Tang S, Liu Z, Wang S, Ding Y. Comparison of physicochemical characteristics between white-belly and white-core rice grains. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
195
|
Qian Q, Guo L, Smith SM, Li J. Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww006] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
The challenge of meeting the increasing demand for worldwide rice production has driven a sustained quest for advances in rice breeding for yield. Two breakthroughs that led to quantum leaps in productivity last century were the introduction of semidwarf varieties and of hybrid rice. Subsequent gains in yield have been incremental. The next major leap in rice breeding is now upon us through the application of rational design to create defined ideotypes. The exploitation of wide-cross compatibility and intersubspecific heterosis, combined with rapid genome sequencing and the molecular identification of genes for major yield and quality traits have now unlocked the potential for rational design.
Collapse
Affiliation(s)
- Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Steven M. Smith
- School of Biological Sciences, University of Tasmania, Hobart, 7001, Australia
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
196
|
Chen Y, Chen C, Tan Z, Liu J, Zhuang L, Yang Z, Huang B. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:102. [PMID: 26904068 PMCID: PMC4746305 DOI: 10.3389/fpls.2016.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/19/2016] [Indexed: 05/25/2023]
Abstract
Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 10(6) clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance.
Collapse
Affiliation(s)
- Yu Chen
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Chuanming Chen
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhiqun Tan
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Jun Liu
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Lili Zhuang
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhimin Yang
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New JerseyNew Brunswick, NJ, USA
| |
Collapse
|
197
|
Qiu J, Hou Y, Tong X, Wang Y, Lin H, Liu Q, Zhang W, Li Z, Nallamilli BR, Zhang J. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2016; 90:249-265. [PMID: 26613898 DOI: 10.1007/s11103-015-0410-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.
Collapse
Affiliation(s)
- Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Yuxuan Hou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Haiyan Lin
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Qing Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Wen Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Babi R Nallamilli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China.
| |
Collapse
|
198
|
Zhang L, Ren Y, Lu B, Yang C, Feng Z, Liu Z, Chen J, Ma W, Wang Y, Yu X, Wang Y, Zhang W, Wang Y, Liu S, Wu F, Zhang X, Guo X, Bao Y, Jiang L, Wan J. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:633-47. [PMID: 26608643 PMCID: PMC4737065 DOI: 10.1093/jxb/erv469] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In cereal crops, starch synthesis and storage depend mainly on a specialized class of plastids, termed amyloplasts. Despite the importance of starch, the molecular machinery regulating starch synthesis and amyloplast development remains largely unknown. Here, we report the characterization of the rice (Oryza sativa) floury endosperm7 (flo7) mutant, which develops a floury-white endosperm only in the periphery and not in the inner portion. Consistent with the phenotypic alternation in flo7 endosperm, the flo7 mutant had reduced amylose content and seriously disrupted amylopectin structure only in the peripheral endosperm. Notably, flo7 peripheral endosperm cells showed obvious defects in compound starch grain development. Map-based cloning of FLO7 revealed that it encodes a protein of unknown function. FLO7 harbors an N-terminal transit peptide capable of targeting functional FLO7 fused to green fluorescent protein to amyloplast stroma in developing endosperm cells, and a domain of unknown function 1338 (DUF1338) that is highly conserved in green plants. Furthermore, our combined β-glucuronidase activity and RNA in situ hybridization assays showed that the FLO7 gene was expressed ubiquitously but exhibited a specific expression in the endosperm periphery. Moreover, a set of in vivo experiments demonstrated that the missing 32 aa in the flo7 mutant protein are essential for the stable accumulation of FLO7 in the endosperm. Together, our findings identify FLO7 as a unique plant regulator required for starch synthesis and amyloplast development within the peripheral endosperm and provide new insights into the spatial regulation of endosperm development in rice.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bingyue Lu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunyan Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhiming Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhou Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jun Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Weiwei Ma
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ying Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaowen Yu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fuqing Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
199
|
Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice. Sci Rep 2016; 6:19022. [PMID: 26744119 PMCID: PMC4705600 DOI: 10.1038/srep19022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
FRIZZLE PANICLE (FZP) and RFL/ABERRANT PANICLE ORGANIZATION 2 (APO2) play important roles in regulating the ABCDE floral organ identity genes. However, the relationships among FZP and these floral identity genes in the regulation of panicle formation remain unclear. Here, we used the novel mutant fzp-11, wild-type and FZP-overexpressing plants to compare the expression of these genes during panicle development by real-time PCR and in situ hybridization. The results indicate that FZP is a major negative regulator of RFL/APO2 and determines the transition from panicle branching to spikelet formation. Moreover, overexpression of FZP severely represses axillary meristem formation in both the vegetative and reproductive phases and the outgrowth of secondary branches in panicle. FZP overexpression positively regulates the expression of a subset of the class B genes, AGL6 genes (OsMADS6 and OsMADS17) as well as class E genes (OsMADS1, OsMADS7 and OsMADS8) in floral meristem (FM). Thus, it suggested that FZP could specify floral organ identity by regulating the related OsMADS-box genes.
Collapse
|
200
|
Wang R, Yan Y, Zhu M, Yang M, Zhou F, Chen H, Lin Y. Isolation and Functional Characterization of Bidirectional Promoters in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:766. [PMID: 27303432 PMCID: PMC4885881 DOI: 10.3389/fpls.2016.00766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/17/2016] [Indexed: 05/19/2023]
Abstract
Bidirectional promoters, which show great application potential in genetic improvement of plants, have aroused great research interest recently. However, most bidirectional promoters were cloned individually in the studies of single genes. Here, we initiatively combined RNA-seq data and cDNA microarray data to discover the potential bidirectional promoters in rice genome. Based on the expression level and correlation of each adjacent and oppositely transcribed gene pair, we selected four candidate gene pairs. Then, the intergenic region between each pair was isolated and cloned into a dual reporter vector pDX2181 for functional identification. GUS and GFP assays of the transgenic plants indicated that all the intergenic regions showed bidirectional expression activity in various tissues. Through 5' and 3' deletion analysis on one of the above bidirectional promoters, we identified the enhancing region which sharply increased its bidirectional expression efficiency and the essential regions respectively responsible for its 5' and 3' basic expression activity. The bidirectional arrangement of the four gene pairs in six gramineous plants was also analyzed, showing the conserved characteristics of the four bidirectional promoters identified in our study. In addition, two novel cis-sequences conserved in the four bidirectional promoters were discovered by bioinformatic identification. Our study proposes a feasible method for selecting, cloning, and functionally identifying bidirectional promoters as well as for discovering their bidirectional regulatory regions and conserved sequences in rice.
Collapse
Affiliation(s)
- Rui Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Yan Yan
- Chinese Academy of Tropical Agricultural SciencesHainan, China
| | - Menglin Zhu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Mei Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Yongjun Lin
| |
Collapse
|