151
|
Cho EJ, Choi SH, Kim JH, Kim JE, Lee MH, Chung BY, Woo HR, Kim JH. A Mutation in Plant-Specific SWI2/SNF2-Like Chromatin-Remodeling Proteins, DRD1 and DDM1, Delays Leaf Senescence in Arabidopsis thaliana. PLoS One 2016; 11:e0146826. [PMID: 26752684 PMCID: PMC4709239 DOI: 10.1371/journal.pone.0146826] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023] Open
Abstract
Leaf senescence is a finely regulated complex process; however, evidence for the involvement of epigenetic processes in the regulation of leaf senescence is still fragmentary. Therefore, we chose to examine the functions of DRD1, a SWI2/SNF2 chromatin remodeling protein, in epigenetic regulation of leaf senescence, particularly because drd1-6 mutants exhibited a delayed leaf senescence phenotype. Photosynthetic parameters such as Fv/Fm and ETRmax were decreased in WT leaves compared to leaves of drd1-6 mutants after dark treatment. The WT leaves remarkably lost more chlorophyll and protein content during dark-induced senescence (DIS) than the drd1-6 leaves did. The induction of senescence-associated genes was noticeably inhibited in the drd1-6 mutant after 5-d of DIS. We compared changes in epigenetic regulation during DIS via quantitative expression analysis of 180-bp centromeric (CEN) and transcriptionally silent information (TSI) repeats. Their expression levels significantly increased in both the WT and the drd1-6 mutant, but did much less in the latter. Moreover, the delayed leaf senescence was observed in ddm1-2 mutants as well as the drd1-6, but not in drd1-p mutants. These data suggest that SWI2/SNF2 chromatin remodeling proteins such as DRD1 and DDM1 may influence leaf senescence possibly via epigenetic regulation.
Collapse
Affiliation(s)
- Eun Ju Cho
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung Hee Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji Eun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Min Hee Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy ResearchInstitute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
152
|
Wehner G, Balko C, Humbeck K, Zyprian E, Ordon F. Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC PLANT BIOLOGY 2016; 16:3. [PMID: 26733420 PMCID: PMC4702385 DOI: 10.1186/s12870-015-0701-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/28/2015] [Accepted: 12/22/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Drought stress in juvenile stages of crop development and premature leaf senescence induced by drought stress have an impact on biomass production and yield formation of barley (Hordeum vulgare L.). Therefore, in order to get information of regulatory processes involved in the adaptation to drought stress and leaf senescence expression analyses of candidate genes were conducted on a set of 156 barley genotypes in early developmental stages, and expression quantitative trait loci (eQTL) were identified by a genome wide association study. RESULTS Significant effects of genotype and treatment were detected for leaf colour measured at BBCH 25 as an indicator of leaf senescence and for the expression level of the genes analysed. Furthermore, significant correlations were detected within the group of genes involved in drought stress (r = 0.84) and those acting in leaf senescence (r = 0.64), as well as between leaf senescence genes and the leaf colour (r = 0.34). Based on these expression data and 3,212 polymorphic single nucleotide polymorphisms (SNP) with a minor allele frequency >5% derived from the Illumina 9 k iSelect SNP Chip, eight cis eQTL and seven trans eQTL were found. Out of these an eQTL located on chromosome 3H at 142.1 cM is of special interest harbouring two drought stress genes (GAD3 and P5CS2) and one leaf senescence gene (Contig7437), as well as an eQTL on chromosome 5H at 44.5 cM in which two genes (TRIUR3 and AVP1) were identified to be associated to drought stress tolerance in a previous study. CONCLUSION With respect to the expression of genes involved in drought stress and early leaf senescence, genotypic differences exist in barley. Major eQTL for the expression of these genes are located on barley chromosome 3H and 5H. Respective markers may be used in future barley breeding programmes for improving tolerance to drought stress and leaf senescence.
Collapse
Affiliation(s)
- Gwendolin Wehner
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Rudolf-Schick-Platz 3, 18190, Sanitz, Germany.
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany.
| | - Christiane Balko
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Rudolf-Schick-Platz 3, 18190, Sanitz, Germany.
| | - Klaus Humbeck
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany.
- Martin-Luther-University Halle-Wittenberg, Institute of Biology, Weinbergweg 10, 06120, Halle, Germany.
| | - Eva Zyprian
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding, Geilweilerhof, 76833, Siebeldingen, Germany.
| | - Frank Ordon
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany.
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany.
| |
Collapse
|
153
|
Liu L. Ultramicroscopy reveals that senescence induces in-situ and vacuolar degradation of plastoglobules in aging watermelon leaves. Micron 2016; 80:135-44. [DOI: 10.1016/j.micron.2015.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022]
|
154
|
Jones DC, Zheng W, Huang S, Du C, Zhao X, Yennamalli RM, Sen TZ, Nettleton D, Wurtele ES, Li L. A Clade-Specific Arabidopsis Gene Connects Primary Metabolism and Senescence. FRONTIERS IN PLANT SCIENCE 2016; 7:983. [PMID: 27462324 PMCID: PMC4940393 DOI: 10.3389/fpls.2016.00983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/15/2016] [Accepted: 06/21/2016] [Indexed: 05/05/2023]
Abstract
Nearly immobile, plants have evolved new components to be able to respond to changing environments. One example is Qua Quine Starch (QQS, AT3G30720), an Arabidopsis thaliana-specific orphan gene that integrates primary metabolism with adaptation to environment changes. SAQR (Senescence-Associated and QQS-Related, AT1G64360), is unique to a clade within the family Brassicaceae; as such, the gene may have arisen about 20 million years ago. SAQR is up-regulated in QQS RNAi mutant and in the apx1 mutant under light-induced oxidative stress. SAQR plays a role in carbon allocation: overexpression lines of SAQR have significantly decreased starch content; conversely, in a saqr T-DNA knockout (KO) line, starch accumulation is increased. Meta-analysis of public microarray data indicates that SAQR expression is correlated with expression of a subset of genes involved in senescence, defense, and stress responses. SAQR promoter::GUS expression analysis reveals that SAQR expression increases after leaf expansion and photosynthetic capacity have peaked, just prior to visible natural senescence. SAQR is expressed predominantly within leaf and cotyledon vasculature, increasing in intensity as natural senescence continues, and then decreasing prior to death. In contrast, under experimentally induced senescence, SAQR expression increases in vasculature of cotyledons but not in true leaves. In SAQR KO line, the transcript level of the dirigent-like disease resistance gene (AT1G22900) is increased, while that of the Early Light Induced Protein 1 gene (ELIP1, AT3G22840) is decreased. Taken together, these data indicate that SAQR may function in the QQS network, playing a role in integration of primary metabolism with adaptation to internal and environmental changes, specifically those that affect the process of senescence.
Collapse
Affiliation(s)
- Dallas C. Jones
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
| | - Wenguang Zheng
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
| | - Sheng Huang
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
| | - Chuanlong Du
- Department of Statistics, Iowa State University, AmesIA, USA
| | - Xuefeng Zhao
- Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, AmesIA, USA
| | - Ragothaman M. Yennamalli
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture-Agriculture Research Service, AmesIA, USA
| | - Taner Z. Sen
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture-Agriculture Research Service, AmesIA, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, AmesIA, USA
| | - Eve S. Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Center for Metabolic Biology, Iowa State University, AmesIA, USA
| | - Ling Li
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Center for Metabolic Biology, Iowa State University, AmesIA, USA
- *Correspondence: Ling Li,
| |
Collapse
|
155
|
Fernández-Calvino L, Guzmán-Benito I, Del Toro FJ, Donaire L, Castro-Sanz AB, Ruíz-Ferrer V, Llave C. Activation of senescence-associated Dark-inducible (DIN) genes during infection contributes to enhanced susceptibility to plant viruses. MOLECULAR PLANT PATHOLOGY 2016; 17:3-15. [PMID: 25787925 PMCID: PMC6638341 DOI: 10.1111/mpp.12257] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/21/2023]
Abstract
Virus infections in plants cause changes in host gene expression that are common to other environmental stresses. In this work, we found extensive overlap in the transcriptional responses between Arabidopsis thaliana plants infected with Tobacco rattle virus (TRV) and plants undergoing senescence. This is exemplified by the up-regulation during infection of several senescence-associated Dark-inducible (DIN) genes, including AtDIN1 (Senescence 1, SEN1), AtDIN6 (Asparagine synthetase 1, AtASN1) and AtDIN11. DIN1, DIN6 and DIN11 homologues were also activated in Nicotiana benthamiana in response to TRV and Potato virus X (PVX) infection. Reduced TRV levels in RNA interference (RNAi) lines targeting AtDIN11 indicate that DIN11 is an important modulator of susceptibility to TRV in Arabidopsis. Furthermore, low accumulation of TRV in Arabidopsis protoplasts from RNAi lines suggests that AtDIN11 supports virus multiplication in this species. The effect of DIN6 on virus accumulation was negligible in Arabidopsis, perhaps as a result of gene or functional redundancy. However, TRV-induced silencing of NbASN, the DIN6 homologue in N. benthamiana, compromises TRV and PVX accumulation in systemically infected leaves. Interestingly, NbASN inactivation correlates with the appearance of morphological defects in infected leaves. We found that DIN6 and DIN11 regulate virus multiplication in a step prior to the activation of plant defence responses. We hypothesize on the possible roles of DIN6 and DIN11 during virus infection.
Collapse
Affiliation(s)
- Lourdes Fernández-Calvino
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Irene Guzmán-Benito
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francisco J Del Toro
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Livia Donaire
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana B Castro-Sanz
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Virginia Ruíz-Ferrer
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - César Llave
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
156
|
GhNAC12, a neutral candidate gene, leads to early aging in cotton (Gossypium hirsutum L). Gene 2016; 576:268-74. [DOI: 10.1016/j.gene.2015.10.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 01/15/2023]
|
157
|
Stigter KA, Plaxton WC. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence. PLANTS 2015; 4:773-98. [PMID: 27135351 PMCID: PMC4844268 DOI: 10.3390/plants4040773] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/20/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 11/16/2022]
Abstract
Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters.
Collapse
Affiliation(s)
- Kyla A Stigter
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
158
|
Chen C, Wang J, Zhao X. Leaf senescence induced by EGY1 defection was partially restored by glucose in Arabidopsis thaliana. BOTANICAL STUDIES 2015; 57:5. [PMID: 28510790 PMCID: PMC5432902 DOI: 10.1186/s40529-016-0120-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/30/2015] [Accepted: 01/20/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Ethylene-dependent gravitropism-deficient and yellow-green 1 (EGY1) protein is required for chloroplast development and photosynthesis conduction. The egy1 deletion mutants have a yellow-green phenotype and reduced granal thylakoids. Furthermore, the yellow-green phenotype of egy1 mutants is more obvious than that of wild-type (WT) plants with increasing leaf age, suggesting an early senescence in the egy1 mutants. However, the relationship between EGY1 functions and leaf senescence still remains poorly understood. RESULTS We observed that egy1 mutant leaves were more yellow than those of WT (the same age) in Arabidopsis thaliana. In accompany with this phenotype, leaf survival, chlorophyll content, Fv/Fm and soluble protein content decreased, and ion leakage increased significantly in egy1 mutants compared to WT plants. At molecular level, the expressions of senescence-associated genes increased, and photosynthesis genes decreased significantly in the mutants compared to those in WT plants. Furthermore, after darkness treatment, the yellow-green phenotype of egy1 mutants was more obvious than that of WT. These results indicate that the loss-of-function of egy1 gene induces leaf senescence in A. thaliana. In addition, our results showed that the yellow-green phenotype, chlorophyll content and ion leakage of egy1 mutants was partially restored after exogenously applied glucose for 5 weeks. At the same time, the expression of hexokinase 1 (HXK1) and/or senescence-associated gene 12 (SAG12) in egy1 mutants growing on 2 % glucose was lower than that in egy1 mutants without glucose. CONCLUSION EGY1-defection induced leaf senescence and this senescence was partially restored by glucose in A. thaliana.
Collapse
Affiliation(s)
- Cuiyun Chen
- Stress Physiology and Ecology Laboratory, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Jin Wang
- Stress Physiology and Ecology Laboratory, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Xin Zhao
- Stress Physiology and Ecology Laboratory, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
159
|
Wang J, Leister D, Bolle C. Photosynthetic lesions can trigger accelerated senescence in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6891-903. [PMID: 26272903 PMCID: PMC4623695 DOI: 10.1093/jxb/erv393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/05/2023]
Abstract
Senescence is a highly regulated process characterized by the active breakdown of cells, which ultimately leads to the death of plant organs or whole plants. In annual plants such as Arabidopsis thaliana senescence can be observed in each individual leaf. Whether deficiencies in photosynthesis promote the induction of senescence was investigated by monitoring chlorophyll degradation, photosynthetic parameters, and reactive oxygen species accumulation in photosynthetic mutants. Several mutations affecting components of the photosynthetic apparatus, including psal-2, psan-2, and psbs, were found to lead to premature or faster senescence, as did simultaneous inactivation of the STN7 and STN8 kinases. Premature senescence is apparently not directly linked to an overall reduction in photosynthesis but to perturbations in specific aspects of the process. Dark-induced senescence is accelerated in mutants affected in linear electron flow, especially psad2-1, psan-2, and pete2-1, as well as in stn7 and stn8 mutants and STN7 and STN8 overexpressor lines. Interestingly, no direct link with ROS production could be observed.
Collapse
Affiliation(s)
- Jing Wang
- Ludwig-Maximilians-Universität München (LMU), Department Biologie I, Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Ludwig-Maximilians-Universität München (LMU), Department Biologie I, Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Cordelia Bolle
- Ludwig-Maximilians-Universität München (LMU), Department Biologie I, Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
160
|
Yamada Y, Umehara M. Possible Roles of Strigolactones during Leaf Senescence. PLANTS 2015; 4:664-77. [PMID: 27135345 PMCID: PMC4844400 DOI: 10.3390/plants4030664] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/29/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.
Collapse
Affiliation(s)
- Yusuke Yamada
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan.
| | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan.
| |
Collapse
|
161
|
Fan K, Bibi N, Gan S, Li F, Yuan S, Ni M, Wang M, Shen H, Wang X. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4669-82. [PMID: 25991739 PMCID: PMC4507772 DOI: 10.1093/jxb/erv240] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/15/2023]
Abstract
Premature leaf senescence has a negative influence on the yield and quality of cotton, and several genes have been found to regulate leaf senescence. Howeer, many underlying transcription factors are yet to be identified. In this study, a NAP-like transcription factor (GhNAP) was isolated from Gossypium hirsutum. GhNAP has the typical NAC structure and a conserved novel subdomain in its divergent transcription activation region (TAR). GhNAP was demonstrated to be a nuclear protein, and it showed transcriptional activation activity in yeast. Furthermore, the expression of GhNAP was closely associated with leaf senescence. GhNAP could rescue the delayed-senescence phenotype of the atnap null mutant. Overexpression of GhNAP could cause precocious senescence in Arabidopsis. However, down-regulation of GhNAP delayed leaf senescence in cotton, and affected cotton yield and its fibre quality. Moreover, the expression of GhNAP can be induced by abscisic acid (ABA), and the delayed leaf senescence phenotype in GhNAPi plants might be caused by the decreased ABA level and reduced expression level of ABA-responsive genes. All of the results suggested that GhNAP could regulate the leaf senescence via the ABA-mediated pathways and was further related to the yield and quality in cotton.
Collapse
Affiliation(s)
- Kai Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Noreen Bibi
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Susheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904, USA
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shuna Yuan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Mi Ni
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Ming Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Hao Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
162
|
Nitric oxide prevents wound-induced browning and delays senescence through inhibition of hydrogen peroxide accumulation in fresh-cut lettuce. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
163
|
Almoguera C, Personat JM, Prieto-Dapena P, Jordano J. Heat shock transcription factors involved in seed desiccation tolerance and longevity retard vegetative senescence in transgenic tobacco. PLANTA 2015; 242:461-75. [PMID: 26021607 DOI: 10.1007/s00425-015-2336-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/14/2014] [Accepted: 05/20/2015] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION Transcription factors normally expressed in sunflower seeds delayed vegetative senescence induced by severe stress in transgenic tobacco. This revealed a novel connection between seed heat shock factors, desiccation tolerance and vegetative longevity. HaHSFA9 and HaHSFA4a coactivate a genetic program that, in sunflower (Helianthus annuus L.), contributes to seed longevity and desiccation tolerance. We have shown that overexpression of HaHSFA9 in transgenic tobacco seedlings resulted in tolerance to drastic dehydration and oxidative stress. Overexpression of HaHSFA9 alone was linked to a remarkable protection of the photosynthetic apparatus. In addition, the combined overexpression of HaHSFA9 and HaHSFA4a enhanced all these stress-resistance phenotypes. Here, we find that HaHSFA9 confers protection against damage induced by different stress conditions that accelerate vegetative senescence during different stages of development. Seedlings and plants that overexpress HaHSFA9 survived lethal treatments of dark-induced senescence. HaHSFA9 overexpression induced resistance to effects of culture under darkness for several weeks. Only some homoiochlorophyllous resurrection plants are able to withstand this experimental severe stress condition. The combined overexpression of HaHSFA9 and HaHSFA4a did not result in further slowing of dark-induced seedling senescence. However, combined expression of the two transcription factors caused improved recovery of the photosynthetic organs of seedlings after lethal dark treatments. At later stages of vegetative development, HaHSFA9 delayed the appearance of senescence symptoms in leaves of plants grown under normal illumination. This delay was observed under either control or stress treatments. Thus, HaHSFA9 delayed both natural and stress-induced leaf senesce. These novel observations connect transcription factors involved in desiccation tolerance with leaf longevity.
Collapse
Affiliation(s)
- Concepción Almoguera
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain
| | | | | | | |
Collapse
|
164
|
Podzimska-Sroka D, O'Shea C, Gregersen PL, Skriver K. NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops. PLANTS (BASEL, SWITZERLAND) 2015; 4:412-48. [PMID: 27135336 PMCID: PMC4844398 DOI: 10.3390/plants4030412] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/03/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023]
Abstract
Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics of these domains determine the interactions in gene regulatory networks. Emerging local NAC-centered gene regulatory networks reveal complex molecular mechanisms of stress- and hormone-regulated senescence and basic physiological steps of the senescence process. For example, through molecular interactions involving the hormone abscisic acid, Arabidopsis NAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants. This is also exemplified by the wheat NAM1 genes which promote senescence and increase grain zinc, iron, and protein content. Thus, NAC genes are promising targets for fine-tuning senescence for increased yield and quality.
Collapse
Affiliation(s)
- Dagmara Podzimska-Sroka
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark.
| | - Charlotte O'Shea
- Department of Biology, University of Copenhagen, 5 Ole Maaloesvej, Copenhagen DK-2200, Denmark.
| | - Per L Gregersen
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark.
| | - Karen Skriver
- Department of Biology, University of Copenhagen, 5 Ole Maaloesvej, Copenhagen DK-2200, Denmark.
| |
Collapse
|
165
|
Brown AV, Hudson KA. Developmental profiling of gene expression in soybean trifoliate leaves and cotyledons. BMC PLANT BIOLOGY 2015; 15:169. [PMID: 26149852 PMCID: PMC4492100 DOI: 10.1186/s12870-015-0553-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/01/2014] [Accepted: 06/15/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Immediately following germination, the developing soybean seedling relies on the nutrient reserves stored in the cotyledons to sustain heterotrophic growth. During the seed filling period, developing seeds rely on the transport of nutrients from the trifoliate leaves. In soybean, both cotyledons and leaves develop the capacity for photosynthesis, and subsequently senesce and abscise once their function has ended. Before this occurs, the nutrients they contain are mobilized and transported to other parts of the plant. These processes are carefully orchestrated by genetic regulation throughout the development of the leaf or cotyledon. RESULTS To identify genes involved in the processes of leaf or cotyledon development and senescence in soybean, we used RNA-seq to profile multiple stages of cotyledon and leaf tissues. Differentially expressed genes between stages of leaf or cotyledon development were determined, major patterns of gene expression were defined, and shared genes were identified. Over 38,000 transcripts were expressed during the course of leaf and cotyledon development. Of those transcripts, 5,000 were expressed in a tissue specific pattern. Of the genes that were differentially expressed between both later stage tissues, 90 % had the same direction of change, suggesting that the mechanisms of senescence are conserved between tissues. Analysis of the enrichment of biological functions within genes sharing common expression profiles highlights the main processes occurring within these defined temporal windows of leaf and cotyledon development. Over 1,000 genes were identified with predicted regulatory functions that may have a role in control of leaf or cotyledon senescence. CONCLUSIONS The process of leaf and cotyledon development can be divided into distinct stages characterized by the expression of specific gene sets. The importance of the WRKY, NAC, and GRAS family transcription factors as major regulators of plant senescence is confirmed for both soybean leaf and cotyledon tissues. These results help validate functional annotation for soybean genes and promoters.
Collapse
Affiliation(s)
- Anne V Brown
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA.
| | - Karen A Hudson
- USDA-ARS Crop Production and Pest Control Research Unit, 915 West State Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
166
|
Rapp YG, Ransbotyn V, Grafi G. Senescence Meets Dedifferentiation. PLANTS 2015; 4:356-68. [PMID: 27135333 PMCID: PMC4844402 DOI: 10.3390/plants4030356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/20/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 01/07/2023]
Abstract
Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation) or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation) and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation.
Collapse
Affiliation(s)
- Yemima Givaty Rapp
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990 Israel.
| | - Vanessa Ransbotyn
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990 Israel.
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990 Israel.
| |
Collapse
|
167
|
Jiang L, Wu J, Fan S, Li W, Dong L, Cheng Q, Xu P, Zhang S. Isolation and Characterization of a Novel Pathogenesis-Related Protein Gene (GmPRP) with Induced Expression in Soybean (Glycine max) during Infection with Phytophthora sojae. PLoS One 2015; 10:e0129932. [PMID: 26114301 PMCID: PMC4482714 DOI: 10.1371/journal.pone.0129932] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
Pathogenesis-related proteins (PR proteins) play crucial roles in the plant defense system. A novel PRP gene was isolated from highly resistant soybean infected with Phytophthora sojae (P. sojae) and was named GmPRP (GenBank accession number: KM506762). The amino acid sequences of GmPRP showed identities of 74%, 73%, 72% and 69% with PRP proteins from Vitis vinifera, Populus trichocarpa, Citrus sinensis and Theobroma cacao, respectively. Quantitative real-time reverse transcription PCR (qRT-PCR) data showed that the expression of GmPRP was highest in roots, followed by the stems and leaves. GmPRP expression was upregulated in soybean leaves infected with P. sojae. Similarly, GmPRP expression also responded to defense/stress signaling molecules, including salicylic acid (SA), ethylene (ET), abscisic acid (ABA) and jasmonic acid (JA). GmPRP was localized in the cell plasma membrane and cytoplasm. Recombinant GmPRP protein exhibited ribonuclease activity and significant inhibition of hyphal growth of P. sojae 1 in vitro. Overexpression of the GmPRP gene in T2 transgenic tobacco and T2 soybean plants resulted in enhanced resistance to Phytophthora nicotianae (P. nicotianae) and P. sojae race 1, respectively. These results indicated that the GmPRP protein played an important role in the defense of soybean against P. sojae infection.
Collapse
Affiliation(s)
- Liangyu Jiang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Junjiang Wu
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Collaborative Innovation Center of Grain Production Capacity Improvement in Heilongjiang Province, Harbin, 150086, Heilongjiang, People’s Republic of China
| | - Sujie Fan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Wenbin Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Lidong Dong
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Qun Cheng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| |
Collapse
|
168
|
Wehner GG, Balko CC, Enders MM, Humbeck KK, Ordon FF. Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC PLANT BIOLOGY 2015; 15:125. [PMID: 25998066 PMCID: PMC4440603 DOI: 10.1186/s12870-015-0524-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/16/2015] [Accepted: 05/11/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Premature leaf senescence induced by external stress conditions, e.g. drought stress, is a main factor for yield losses in barley. Research in drought stress tolerance has become more important as due to climate change the number of drought periods will increase and tolerance to drought stress has become a goal of high interest in barley breeding. Therefore, the aim is to identify quantitative trait loci (QTL) involved in drought stress induced leaf senescence and drought stress tolerance in early developmental stages of barley (Hordeum vulgare L.) by applying genome wide association studies (GWAS) on a set of 156 winter barley genotypes. RESULTS After a four weeks stress period (BBCH 33) leaf colour as an indicator of leaf senescence, electron transport rate at photosystem II, content of free proline, content of soluble sugars, osmolality and the aboveground biomass indicative for drought stress response were determined in the control and stress variant in greenhouse pot experiments. Significant phenotypic variation was observed for all traits analysed. Heritabilities ranged between 0.27 for osmolality and 0.61 for leaf colour in stress treatment and significant effects of genotype, treatment and genotype x treatment were estimated for most traits analysed. Based on these phenotypic data and 3,212 polymorphic single nucleotide polymorphisms (SNP) with a minor allele frequency >5% derived from the Illumina 9 k iSelect SNP Chip, 181 QTL were detected for all traits analysed. Major QTLs for drought stress and leaf senescence were located on chromosome 5H and 2H. BlastX search for associated marker sequences revealed that respective SNPs are in some cases located in proteins related to drought stress or leaf senescence, e.g. nucleotide pyrophosphatase (AVP1) or serine/ threonin protein kinase (SAPK9). CONCLUSIONS GWAS resulted in the identification of many QTLs involved in drought stress and leaf senescence of which two major QTLs for drought stress and leaf senescence were located on chromosome 5H and 2H. Results may be the basis to incorporate breeding for tolerance to drought stress or leaf senescence in barley breeding via marker based selection procedures.
Collapse
Affiliation(s)
- Gwendolin G Wehner
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Rudolf-Schick-Platz 3, Sanitz, 18190, Germany.
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, Halle (Saale), 06120, Germany.
| | - Christiane C Balko
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Rudolf-Schick-Platz 3, Sanitz, 18190, Germany.
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, Halle (Saale), 06120, Germany.
| | - Matthias M Enders
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, Quedlinburg, 06484, Germany.
| | - Klaus K Humbeck
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, Halle (Saale), 06120, Germany.
- Martin-Luther-University Halle-Wittenberg, Institute of Biology, Weinbergweg 10, Halle (Saale), 06120, Germany.
| | - Frank F Ordon
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, Halle (Saale), 06120, Germany.
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, Quedlinburg, 06484, Germany.
| |
Collapse
|
169
|
Wei S, Wang X, Zhang J, Liu P, Zhao B, Li G, Dong S. The role of nitrogen in leaf senescence of summer maize and analysis of underlying mechanisms using comparative proteomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:72-81. [PMID: 25711815 DOI: 10.1016/j.plantsci.2015.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/12/2014] [Revised: 12/29/2014] [Accepted: 01/03/2015] [Indexed: 05/24/2023]
Abstract
Leaf senescence is associated with fundamental changes on the level of the proteome and it can be modulated by nitrogen. To determine the precise regulatory mechanisms underlying these effects, we conducted a comparative proteomics study using 2-dimensional gel electrophoresis and MALDI-TOF/TOF MS. Based on our study of the maize leaf proteome, leaf senescence induces complex responses including the degradation of 32 senescence-associated proteins that are involved in many biological processes, especially energy, metabolism and cell rescue, defense and virulence pathways. Although similar conclusions have been highlighted in other crops, this study filled the knowledge gap in maize leaf senescence. Moreover, we discovered, for the first time, 29 "nitrogen-regulated senescence proteins" had significant (P≤0.05) interaction term for nitrogen×stage. Although further study of nitrogen-related senescence proteins, such as 30S ribosomal protein, will be required to fully elucidate their complex functions, the surprising results in our study provide a new vision to research the relationship between nitrogen and senescence.
Collapse
Affiliation(s)
- Shanshan Wei
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Xiangyu Wang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Geng Li
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China.
| |
Collapse
|
170
|
Kong L, Guo H, Sun M. Signal transduction during wheat grain development. PLANTA 2015; 241:789-801. [PMID: 25680351 DOI: 10.1007/s00425-015-2260-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/07/2014] [Accepted: 02/03/2015] [Indexed: 05/08/2023]
Abstract
This review examines the signaling pathways from the developmental and environmental point of view and the interactions among external conditions, hormonal regulations, and sugarsensing in wheat. Grain development is the key phase of reproductive growth that is closely associated with vegetative organ senescence, initiation of grain filling, pre-stored assimilates remobilization, and maturation. Senescence is characterized by loss of chlorophyll and the degradation of proteins, nucleic acids, lipids as well as nutrient exports to the sink. The initiation and progression of vegetative organ senescence are under the control of an array of environmental signals (such as biotic and abiotic stresses, darkness, and nutrient availability) and endogenous factors (including aging, multiple hormones, and sugar availability). This review will discuss the major breakthroughs in signal transduction for the wheat (Triticum aestivum) grain development achieved in the past several years, with focuses on the regulation of senescence, reserves remobilization and biosynthesis of main components of the grain. Different mechanisms of diverse signals in controlling different phrases of wheat grain development, and cross talks between different signaling pathways will also be discussed. For perspectives, key signaling networks for grain development remain to be elucidated, including cross talks and the interactions between various environmental factors and internal signals.
Collapse
Affiliation(s)
- Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100, China,
| | | | | |
Collapse
|
171
|
Springer A, Acker G, Bartsch S, Bauerschmitt H, Reinbothe S, Reinbothe C. Differences in gene expression between natural and artificially induced leaf senescence in barley. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:180-91. [PMID: 25637827 DOI: 10.1016/j.jplph.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/27/2014] [Revised: 12/24/2014] [Accepted: 01/02/2015] [Indexed: 05/22/2023]
Abstract
Senescence is the last step of leaf development in the life span of an annual plant. Senescence can be induced prematurely by treating leaf tissues with jasmonic acid methyl ester (methyl jasmonate, MeJA). During both senescence programmes, drastic changes occur at the biochemical, cellular and ultra-structural levels that were compared here for primary leaves of barley (Hordeum vulgare L.). Our findings indicate that both types of senescence are similar with respect to the morphological changes including the loss of chlorophyll, disintegration of thylakoids, and formation of plastoglobules. However, the time elapsed for reaching senescence completion was different and ranged from 7 to 8 days for artificially senescing, MeJA-treated plants to 7-8 weeks for naturally senescing plants. Pulse-labelling studies along with RNA and protein gel blot analyses showed differential changes in the expression of both plastid and nuclear genes coding for photosynthetic proteins. Several unique messenger products accumulated in naturally and artificially senescing, MeJA-treated leaves. Detailed expression and crosslinking studies revealed that pheophorbide a oxygenase (PAO), a previously implicated key enzyme of chlorophyll breakdown, is most likely not rate-limiting for chlorophyll destruction under both senescence conditions. Metabolite profiling identified differential changes in the composition of carotenoid derivatives and prenyl-lipids to occur in naturally senescing and artificially senescing plants that underscored the differences between both senescence programmes.
Collapse
Affiliation(s)
- Armin Springer
- Universität Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Georg Acker
- Universität Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Sandra Bartsch
- Universität Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | | | - Steffen Reinbothe
- Université Joseph Fourier, LBFA, BP53, F-38041 Grenoble cedex 9, France.
| | | |
Collapse
|
172
|
Pujol B. Genes and quantitative genetic variation involved with senescence in cells, organs, and the whole plant. Front Genet 2015; 6:57. [PMID: 25755664 PMCID: PMC4337380 DOI: 10.3389/fgene.2015.00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2014] [Accepted: 02/06/2015] [Indexed: 11/22/2022] Open
Abstract
Senescence, the deterioration of morphological, physiological, and reproductive functions with age that ends with the death of the organism, was widely studied in plants. Genes were identified that are linked to the deterioration of cells, organs and the whole plant. It is, however, unclear whether those genes are the source of age dependent deterioration or get activated to regulate such deterioration. Furthermore, it is also unclear whether such genes are active as a direct consequence of age or because they are specifically involved in some developmental stages. At the individual level, it is the relationship between quantitative genetic variation, and age that can be used to detect the genetic signature of senescence. Surprisingly, the latter approach was only scarcely applied to plants. This may be the consequence of the demanding requirements for such approaches and/or the fact that most research interest was directed toward plants that avoid senescence. Here, I review those aspects in turn and call for an integrative genetic theory of senescence in plants. Such conceptual development would have implications for the management of plant genetic resources and generate progress on fundamental questions raised by aging research.
Collapse
Affiliation(s)
- Benoit Pujol
- CNRS, Université Paul Sabatier, ENFA, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique) Toulouse, France ; Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB Toulouse, France
| |
Collapse
|
173
|
de los Reyes BG, Mohanty B, Yun SJ, Park MR, Lee DY. Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining. RICE (NEW YORK, N.Y.) 2015; 8:14. [PMID: 25844119 PMCID: PMC4385054 DOI: 10.1186/s12284-015-0041-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/02/2014] [Accepted: 01/12/2015] [Indexed: 05/23/2023]
Abstract
Dissecting the upstream regulatory architecture of rice genes and their cognate regulator proteins is at the core of network biology and its applications to comparative functional genomics. With the rapidly advancing comparative genomics resources in the genus Oryza, a reference genome annotation that defines the various cis-elements and trans-acting factors that interface each gene locus with various intrinsic and extrinsic signals for growth, development, reproduction and adaptation must be established to facilitate the understanding of phenotypic variation in the context of regulatory networks. Such information is also important to establish the foundation for mining non-coding sequence variation that defines novel alleles and epialleles across the enormous phenotypic diversity represented in rice germplasm. This review presents a synthesis of the state of knowledge and consensus trends regarding the various cis-acting and trans-acting components that define spatio-temporal regulation of rice genes based on representative examples from both foundational studies in other model and non-model plants, and more recent studies in rice. The goal is to summarize the baseline for systematic upstream sequence annotation of the rapidly advancing genome sequence resources in Oryza in preparation for genus-wide functional genomics. Perspectives on the potential applications of such information for gene discovery, network engineering and genomics-enabled rice breeding are also discussed.
Collapse
Affiliation(s)
| | - Bijayalaxmi Mohanty
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Song Joong Yun
- />Department of Crop Science and Institute of Agricultural Science and Technology, Chonbuk National University, Chonju, 561-756 Korea
| | - Myoung-Ryoul Park
- />School of Biology and Ecology, University of Maine, Orono, ME 04469 USA
| | - Dong-Yup Lee
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| |
Collapse
|
174
|
Zmienko A, Samelak-Czajka A, Goralski M, Sobieszczuk-Nowicka E, Kozlowski P, Figlerowicz M. Selection of reference genes for qPCR- and ddPCR-based analyses of gene expression in Senescing Barley leaves. PLoS One 2015; 10:e0118226. [PMID: 25723393 PMCID: PMC4344324 DOI: 10.1371/journal.pone.0118226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2014] [Accepted: 01/10/2015] [Indexed: 01/12/2023] Open
Abstract
Leaf senescence is a tightly regulated developmental or stress-induced process. It is accompanied by dramatic changes in cell metabolism and structure, eventually leading to the disintegration of chloroplasts, the breakdown of leaf proteins, internucleosomal fragmentation of nuclear DNA and ultimately cell death. In light of the global and intense reorganization of the senescing leaf transcriptome, measuring time-course gene expression patterns in this model is challenging due to the evident problems associated with selecting stable reference genes. We have used oligonucleotide microarray data to identify 181 genes with stable expression in the course of dark-induced senescence of barley leaf. From those genes, we selected 5 candidates and confirmed their invariant expression by both reverse transcription quantitative PCR and droplet digital PCR (ddPCR). We used the selected reference genes to normalize the level of the expression of the following senescence-responsive genes in ddPCR assays: SAG12, ICL, AGXT, CS and RbcS. We were thereby able to achieve a substantial reduction in the data variability. Although the use of reference genes is not considered mandatory in ddPCR assays, our results show that it is advisable in special cases, specifically those that involve the following conditions: i) a low number of repeats, ii) the detection of low-fold changes in gene expression or iii) series data comparisons (such as time-course experiments) in which large sample variation greatly affects the overall gene expression profile and biological interpretation of the data.
Collapse
Affiliation(s)
- Agnieszka Zmienko
- Molecular and Systems Biology Department, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Faculty of Computing, Poznan University of Technology, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Computing Science, Faculty of Computing, Poznan University of Technology, Poznan, Poland
| | - Michal Goralski
- Molecular and Systems Biology Department, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Piotr Kozlowski
- Molecular and Systems Biology Department, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marek Figlerowicz
- Molecular and Systems Biology Department, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Faculty of Computing, Poznan University of Technology, Poznan, Poland
- * E-mail:
| |
Collapse
|
175
|
Sobieszczuk-Nowicka E, Zmienko A, Samelak-Czajka A, Łuczak M, Pietrowska-Borek M, Iorio R, Del Duca S, Figlerowicz M, Legocka J. Dark-induced senescence of barley leaves involves activation of plastid transglutaminases. Amino Acids 2015; 47:825-38. [PMID: 25583605 PMCID: PMC4361728 DOI: 10.1007/s00726-014-1912-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2014] [Accepted: 12/27/2014] [Indexed: 12/13/2022]
Abstract
Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell apoptosis and only limited information on the role of these enzymes in plant senescence, we decided to investigate the activity of chloroplast transglutaminases (ChlTGases) and the fate of chloroplast-associated polyamines in Hordeum vulgare L. 'Nagrad' leaves, where the senescence process was induced by darkness (day 0) and continued until chloroplast degradation (day 12). Using an anti-TGase antibody, we detected on a subcellular level, the ChlTGases that were associated with destacked/degraded thylakoid membranes, and beginning on day 5, were also found in the stroma. Colorimetric and radiometric assays revealed during senescence an increase in ChlTGases enzymatic activity. The MS/MS identification of plastid proteins conjugated with exogenous polyamines had shown that the ChlTGases are engaged in the post-translational modification of proteins involved in photosystem organization, stress response, and oxidation processes. We also computationally identified the cDNA of Hv-Png1-like, a barley homologue of the Arabidopsis AtPng1 gene. Its mRNA level was raised from days 3 to 10, indicating that transcriptional regulation controls the activity of barley ChlTGases. Together, the presented results deepen our knowledge of the mechanisms of the events happened in dark-induced senescence of barley leaves that might be activation of plastid transglutaminases.
Collapse
Affiliation(s)
- E Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University of Poznań, ul. Umultowska 89, 61-614, Poznań, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Pearce S, Tabbita F, Cantu D, Buffalo V, Avni R, Vazquez-Gross H, Zhao R, Conley CJ, Distelfeld A, Dubcovksy J. Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC PLANT BIOLOGY 2014; 14:368. [PMID: 25524236 PMCID: PMC4302714 DOI: 10.1186/s12870-014-0368-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/27/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND During wheat senescence, leaf components are degraded in a coordinated manner, releasing amino acids and micronutrients which are subsequently transported to the developing grain. We have previously shown that the simultaneous downregulation of Grain Protein Content (GPC) transcription factors, GPC1 and GPC2, greatly delays senescence and disrupts nutrient remobilization, and therefore provide a valuable entry point to identify genes involved in micronutrient transport to the wheat grain. RESULTS We generated loss-of-function mutations for GPC1 and GPC2 in tetraploid wheat and showed in field trials that gpc1 mutants exhibit significant delays in senescence and reductions in grain Zn and Fe content, but that mutations in GPC2 had no significant effect on these traits. An RNA-seq study of these mutants at different time points showed a larger proportion of senescence-regulated genes among the GPC1 (64%) than among the GPC2 (37%) regulated genes. Combined, the two GPC genes regulate a subset (21.2%) of the senescence-regulated genes, 76.1% of which are upregulated at 12 days after anthesis, before the appearance of any visible signs of senescence. Taken together, these results demonstrate that GPC1 is a key regulator of nutrient remobilization which acts predominantly during the early stages of senescence. Genes upregulated at this stage include transporters from the ZIP and YSL gene families, which facilitate Zn and Fe export from the cytoplasm to the phloem, and genes involved in the biosynthesis of chelators that facilitate the phloem-based transport of these nutrients to the grains. CONCLUSIONS This study provides an overview of the transport mechanisms activated in the wheat flag leaf during monocarpic senescence. It also identifies promising targets to improve nutrient remobilization to the wheat grain, which can help mitigate Zn and Fe deficiencies that afflict many regions of the developing world.
Collapse
Affiliation(s)
- Stephen Pearce
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Facundo Tabbita
- />Consejo Nacional de Investigaciones Científicas y Técnicas and Instituto de Recursos Biológicos, CIRN, INTA, N. Repetto y Los Reseros s/n (1686), Hurlingham, Argentina
| | - Dario Cantu
- />Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Vince Buffalo
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Raz Avni
- />Faculty of Life Sciences, Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Hans Vazquez-Gross
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Rongrong Zhao
- />Department of Plant Nutrition, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193 People’s Republic of China
| | | | - Assaf Distelfeld
- />Faculty of Life Sciences, Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Jorge Dubcovksy
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
- />Howard Hughes Medical Institute and Gordon & Betty Moore Foundation Investigator, Davis, CA 95616 USA
| |
Collapse
|
177
|
Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. PLoS One 2014; 9:e114313. [PMID: 25479006 PMCID: PMC4257594 DOI: 10.1371/journal.pone.0114313] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2014] [Accepted: 11/05/2014] [Indexed: 01/04/2023] Open
Abstract
Grain production of rice (Oryza sativa L.) is a top priority in ensuring food security for human beings. One of the approaches to increase yield is to delay leaf senescence and to extend the available time for photosynthesis. MicroRNAs (miRNAs) are key regulators of aging and cellular senescence in eukaryotes. Here, to help understand their biological role in rice leaf senescence, we report identification of miRNAs and their putative target genes by deep sequencing of six small RNA libraries, six RNA-seq libraries and two degradome libraries from the leaves of two super hybrid rice, Nei-2-You 6 (N2Y6, age-resistant rice) and Liang-You-Pei 9 (LYP9, age-sensitive rice). In total 372 known miRNAs, 162 miRNA candidates and 1145 targets were identified. Compared with the expression of miRNAs in the leaves of LYP9, the numbers of miRNAs up-regulated and down-regulated in the leaves of N2Y6 were 47 and 30 at early stage of grain-filling, 21 and 17 at the middle stage, and 11 and 37 at the late stage, respectively. Six miRNA families, osa-miR159, osa-miR160 osa-miR164, osa-miR167, osa-miR172 and osa-miR1848, targeting the genes encoding APETALA2 (AP2), zinc finger proteins, salicylic acid-induced protein 19 (SIP19), auxin response factors (ARF) and NAC transcription factors, respectively, were found to be involved in leaf senescence through phytohormone signaling pathways. These results provided valuable information for understanding the miRNA-mediated leaf senescence of rice, and offered an important foundation for rice breeding.
Collapse
|
178
|
Alvarez AE, Alberti D'Amato AM, Tjallingii WF, Dicke M, Vosman B. Response of Solanum tuberosum to Myzus persicae infestation at different stages of foliage maturity. INSECT SCIENCE 2014; 21:727-740. [PMID: 24395750 DOI: 10.1111/1744-7917.12072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 10/10/2013] [Indexed: 05/29/2023]
Abstract
Young leaves of the potato Solanum tuberosum L. cultivar Kardal contain resistance factors to the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) and normal probing behavior is impeded. However, M. persicae can survive and reproduce on mature and senescent leaves of the cv. Kardal plant without problems. We compared the settling of M. persicae on young and old leaves and analyzed the impact of aphids settling on the plant in terms of gene expression. Settling, as measured by aphid numbers staying on young or old leaves, showed that after 21 h significantly fewer aphids were found on the young leaves. At earlier time points there were no difference between young and old leaves, suggesting that the young leaf resistance factors are not located at the surface level but deeper in the tissue. Gene expression was measured in plants at 96 h postinfestation, which is at a late stage in the interaction and in compatible interactions this is long enough for host plant acceptance to occur. In old leaves of cv. Kardal (compatible interaction), M. persicae infestation elicited a higher number of differentially regulated genes than in young leaves. The plant response to aphid infestation included a larger number of genes induced than repressed, and the proportion of induced versus repressed genes was larger in young than in old leaves. Several genes changing expression seem to be involved in changing the metabolic state of the leaf from source to sink.
Collapse
Affiliation(s)
- Adriana E Alvarez
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen; Plant Breeding, Wageningen UR, 6700 AA Wageningen
| | | | | | | | | |
Collapse
|
179
|
Polyamines are common players in different facets of plant programmed cell death. Amino Acids 2014; 47:27-44. [PMID: 25399055 DOI: 10.1007/s00726-014-1865-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 01/16/2023]
Abstract
Programmed cell death (PCD) is a process that occurs throughout the life span of every plant life, from initial germination of the seed to the senescence of the plant. It is a normal physiological milestone during the plant's developmental process, but it can also be induced by external factors, including a variety of environmental stresses and as a response to pathogen infections. Changes in the morphology of the nucleus is one of the most noticeable during PCD but all the components of the plant cell (cytoplasm, cytoskeleton and organelles) are involved in this fascinating process. To date, relatively little is known about PCD in plants, but several factors, among which polyamines (PAs) and plant growth regulators, have been shown to play an important role in the initiation and regulation of the process. The role of PAs in plant PCD appears to be multifaceted acting in some instances as pro-survival molecules, whereas in others seem to be implicated in accelerating PCD. The molecular mechanism is still under study. Here we present some PCD plant models, focusing on the role of the enzyme responsible for PA conjugation to proteins: transglutaminase (TGase), an enzyme linked with the process of PCD also in some animal models. The role of PAs and plant TGase in the senescence and PCD in flowers, leaf and the self-incompatibility of pollen will be discussed and examined in depth.
Collapse
|
180
|
Plett JM, Williams M, LeClair G, Regan S, Beardmore T. Heterologous over-expression of ACC SYNTHASE8 (ACS8) in Populus tremula x P. alba clone 717-1B4 results in elevated levels of ethylene and induces stem dwarfism and reduced leaf size through separate genetic pathways. FRONTIERS IN PLANT SCIENCE 2014; 5:514. [PMID: 25414707 PMCID: PMC4220096 DOI: 10.3389/fpls.2014.00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/30/2014] [Accepted: 09/13/2014] [Indexed: 05/23/2023]
Abstract
Plant height is an important agronomic and horticultural trait that impacts plant productivity, durability and esthetic appeal. A number of the plant hormones such as gibberellic acid (GA), auxin and ethylene have been linked to control of plant architecture and size. Reduction in GA synthesis and auxin transport result in dwarfism while ethylene may have a permissive or repressive effect on tissue growth depending upon the age of plant tissues or the environmental conditions considered. We describe here an activation-tagged mutant of Populus tremula x P. alba clone 717-1B4 identified from 2000 independent transgenic lines due to its significantly reduced growth rate and smaller leaf size. Named dwarfy, the phenotype is due to increased expression of PtaACC SYNTHASE8, which codes for an enzyme in the first committed step in the biosynthesis of ethylene. Stems of dwarfy contain fiber and vessel elements that are reduced in length while leaves contain fewer cells. These morphological differences are linked to PtaACS8 inducing different transcriptomic programs in the stem and leaf, with genes related to auxin diffusion and sensing being repressed in the stem and genes related to cell division found to be repressed in the leaves. Altogether, our study gives mechanistic insight into the genetics underpinning ethylene-induced dwarfism in a perennial model organism.
Collapse
Affiliation(s)
- Jonathan M. Plett
- Department of Biology, Queen's UniversityKingston, ON, Canada
- Hawkesbury Institute for the Environment, University of Western SydneyRichmond, NSW, Australia
| | - Martin Williams
- Atlantic Forestry Centre, Canadian Forest Service, Natural Resources CanadaFredericton, NB, Canada
| | - Gaetan LeClair
- Atlantic Forestry Centre, Canadian Forest Service, Natural Resources CanadaFredericton, NB, Canada
| | - Sharon Regan
- Department of Biology, Queen's UniversityKingston, ON, Canada
| | - Tannis Beardmore
- Atlantic Forestry Centre, Canadian Forest Service, Natural Resources CanadaFredericton, NB, Canada
| |
Collapse
|
181
|
Shane MW, Stigter K, Fedosejevs ET, Plaxton WC. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6097-106. [PMID: 25170100 PMCID: PMC4203141 DOI: 10.1093/jxb/eru348] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/13/2023]
Abstract
Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native 'extremophile' plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors' knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested.
Collapse
Affiliation(s)
- Michael W Shane
- School of Plant Biology (M084), Faculty of Science, The University of Western Australia, Crawley (Perth) 6009, Australia
| | - Kyla Stigter
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Eric T Fedosejevs
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6 Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
182
|
Wang P, Sun X, Xie Y, Li M, Chen W, Zhang S, Liang D, Ma F. Melatonin regulates proteomic changes during leaf senescence in Malus hupehensis. J Pineal Res 2014; 57:291-307. [PMID: 25146528 DOI: 10.1111/jpi.12169] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/17/2014] [Accepted: 08/15/2014] [Indexed: 01/10/2023]
Abstract
Despite the relationship between melatonin and aging, the overall changes and regulation of proteome profiling by long-term melatonin exposure during leaf senescence is not well understood. In this study, leaf senescence in Malus hupehensis plants was delayed when exogenous melatonin was regularly applied to the roots for 2 months compared with natural leaf senescence. Proteins of samples 0 and 50 day for both treatments were extracted and labeled with TMT regents before being examined via NanoLC-MS/MS. The proteomics data showed that 622 and 309 proteins were altered by senescence and melatonin, respectively. Our GO analysis by Blast2GO revealed that most of the altered proteins that are involved in major metabolic processes exhibited hydrolase activity and were mainly located in the plastids. These proteins were classified into several senescence-related functional categories, including degradation of macromolecules, redox and stress responses, transport, photosynthesis, development, and other regulatory proteins. We found that melatonin treatment led to the downregulation of proteins that are normally upregulated during senescence. The melatonin-related delay in senescence might have occurred due to the altering of proteins involved in processes associated with senescence. And as well, there are many unknown regulatory proteins possibly being involved in the melatonin's function. This study is the first to demonstrate changes at the proteome level in response to exogenous melatonin in plants. Our findings provide a set of informative and fundamental data about the role of melatonin in apple leaf senescence.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Moschen S, Bengoa Luoni S, Paniego NB, Hopp HE, Dosio GAA, Fernandez P, Heinz RA. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.). PLoS One 2014; 9:e104379. [PMID: 25110882 PMCID: PMC4128711 DOI: 10.1371/journal.pone.0104379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2014] [Accepted: 07/13/2014] [Indexed: 11/18/2022] Open
Abstract
Cultivated sunflower (Helianthus annuus L.), an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs) regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs) identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR) to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2) previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1) and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could play important roles as potential triggers of leaf senescence and thus can be considered putative candidate genes for senescence in sunflower.
Collapse
Affiliation(s)
- Sebastian Moschen
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sofia Bengoa Luoni
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Norma B. Paniego
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - H. Esteban Hopp
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo A. A. Dosio
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Fisiología Vegetal, Unidad Integrada Universidad Nacional de Mar del Plata, Estación Experimental Agropecuaria INTA Balcarce, Balcarce, Buenos Aires, Argentina
| | - Paula Fernandez
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Ruth A. Heinz
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
184
|
Effects of three years’ increase in density of the geometrid Epirrita autumnata on the change in metabolome of mountain birch trees (Betula pubescens ssp. czerepanovii). CHEMOECOLOGY 2014. [DOI: 10.1007/s00049-014-0164-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
|
185
|
Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Sci Rep 2014; 4:5563. [PMID: 24988911 PMCID: PMC4080195 DOI: 10.1038/srep05563] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 11/09/2022] Open
Abstract
To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study.
Collapse
Affiliation(s)
- Yumiko Arai-Sanoh
- NARO Institute of Crop Science (NICS), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Toshiyuki Takai
- NARO Institute of Crop Science (NICS), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Satoshi Yoshinaga
- 1] NARO Institute of Crop Science (NICS), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan [2] NARO Agricultural Research Center (NARO/ARC), 1-2-1 Inada, Joetsu, Niigata 943-0193, Japan
| | - Hiroshi Nakano
- NARO Institute of Crop Science (NICS), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Motohiko Kondo
- NARO Institute of Crop Science (NICS), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yusaku Uga
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
186
|
Schuster C, Kirchner M, Jakobi G, Menzel A. Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2014; 58:485-498. [PMID: 23912394 DOI: 10.1007/s00484-013-0709-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/06/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
In mountainous regions, inversion situations with cold-air pools in the valleys occur frequently, especially in fall and winter. With the accumulation of inversion days, trees in lower elevations experience lower temperature sums than those in middle elevations. In a two-year observational study, deciduous trees, such as Acer pseudoplatanus and Fagus sylvatica, on altitudinal transects responded in their fall leaf senescence phenology. Phenological phases were advanced and senescence duration was shortened by the cold temperatures in the valley. This effect was more distinct for late phases than for early phases since they experienced more inversion days. The higher the inversion frequency, the stronger the signal was. Acer pseudoplatanus proved to be more sensitive to cold temperatures compared to Fagus sylvatica. We conclude that cold-air pools have a considerable impact on the vegetation period of deciduous trees. Considering this effect, trees in the mid hillside slopes gain advantages compared to lower elevations. Our findings will help to improve knowledge about ecological drivers and responses in mountainous forest ecosystems.
Collapse
Affiliation(s)
- Christina Schuster
- Technische Universität München, Chair of Ecoclimatology, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany,
| | | | | | | |
Collapse
|
187
|
Chen M, Maodzeka A, Zhou L, Ali E, Wang Z, Jiang L. Removal of DELLA repression promotes leaf senescence in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:26-34. [PMID: 24576761 DOI: 10.1016/j.plantsci.2013.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/09/2013] [Revised: 10/19/2013] [Accepted: 11/24/2013] [Indexed: 05/23/2023]
Abstract
Leaf senescence is an integrated response of leaf cells to developmental age and various internal and environmental signals. However, the role of gibberellins (GA) in leaf senescence is not clear. In the current study, we investigated the effect of DELLA on leaf senescence. Compared with the wild type (WT), leaf senescence occurred earlier in the mutant ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 (abbreviated as Q-DELLA/ga1-3) whose DELLA repression was removed, whereas leaf senescence was retarded in the mutant ga1-3 whose GA biosynthesis was blocked and whose DELLA proteins accumulated abnormally. During leaf senescence, SAG12 and SAG29 were upregulated in Q-DELLA/ga1-3 and downregulated in ga1-3 plants. The Q-DELLA/ga1-3 senescent leaves contained more sugar but less chlorophyll and fatty acids (FAs) than those of ga1-3 and WT. Both absolute and relative contents of C18:3 in Q-DELLA/ga1-3 senescent leaves were lower compared with those of the WT and ga1-3 leaves. The genes regulating FA β-oxidation in Q-DELLA/ga1-3, such as KAT2, LACS6, LACS7, ACX1, ACX2 and MAP2, were significantly upregulated. The removal of DELLA repression highly upregulated certain genes on various hormone pathways, suggesting that GA signaling acts upstream of the jasmonic acid, salicylic acid, and ethylene pathways in regulating leaf senescence.
Collapse
Affiliation(s)
- Mingxun Chen
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Antony Maodzeka
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Longhua Zhou
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Essa Ali
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Zhong Wang
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Lixi Jiang
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China.
| |
Collapse
|
188
|
Griffiths CA, Gaff DF, Neale AD. Drying without senescence in resurrection plants. FRONTIERS IN PLANT SCIENCE 2014; 5:36. [PMID: 24575108 PMCID: PMC3922084 DOI: 10.3389/fpls.2014.00036] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/16/2013] [Accepted: 01/27/2014] [Indexed: 05/16/2023]
Abstract
Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in younger leaf tissues of resurrection plants that enable suppression of drought-related senescence pathways. As very few studies have directly addressed this phenomenon, this review aims to discuss current literature surrounding the activation and suppression of senescence pathways and how these pathways may differ in resurrection plants.
Collapse
Affiliation(s)
| | | | - Alan D. Neale
- School of Biological Sciences, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
189
|
De Simone V, Soccio M, Borrelli GM, Pastore D, Trono D. Stay-green trait-antioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering. JOURNAL OF PLANT RESEARCH 2014; 127:159-71. [PMID: 23979009 DOI: 10.1007/s10265-013-0584-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/20/2012] [Accepted: 06/16/2013] [Indexed: 05/08/2023]
Abstract
Three independent durum wheat mutant lines that show delayed leaf senescence or stay-green (SG) phenotype, SG196, SG310 and SG504, were compared to the parental genotype, cv. Trinakria, with respect to the photosynthetic parameters and the cellular redox state of the flag leaf in the period from flowering to senescence. The SG mutants maintained their chlorophyll content and net photosynthetic rate for longer than Trinakria, thus revealing a functional SG phenotype. They also showed a better redox state as demonstrated by: (1) a lower rate of superoxide anion production due to generally higher activity of the antioxidant enzymes superoxide dismutase and catalase in all of the SG mutants and also of the total peroxidase in SG196; (2) a higher thiol content that can be ascribed to a higher activity of the NADPH-providing enzyme glucose-6-phosphate dehydrogenase in all of the SG mutants and also of the NADP(+)-dependent malic enzyme in SG196; (3) a lower pro-oxidant activity of lipoxygenase that characterises SG196 and SG504 mutants close to leaf senescence. Overall, these results show a general relationship in durum wheat between the SG phenotype and a better redox state. This relationship differs across the different SG mutants, probably as a consequence of the different set of altered genes underlying the SG trait in these independent mutant lines.
Collapse
Affiliation(s)
- Vanessa De Simone
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per la Cerealicoltura, S.S. 16, Km 675, 71122, Foggia, Italy,
| | | | | | | | | |
Collapse
|
190
|
Palmer NA, Saathoff AJ, Waters BM, Donze T, Heng-Moss TM, Twigg P, Tobias CM, Sarath G. Global changes in mineral transporters in tetraploid switchgrasses (Panicum virgatum L.). FRONTIERS IN PLANT SCIENCE 2014; 4:549. [PMID: 24427165 PMCID: PMC3878055 DOI: 10.3389/fpls.2013.00549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/29/2013] [Accepted: 12/18/2013] [Indexed: 05/10/2023]
Abstract
Switchgrass (Panicum virgatum L) is perennial, C4 grass with great potential as a biofuel crop. An in-depth understanding of the mechanisms that control mineral uptake, distribution and remobilization will benefit sustainable production. Nutrients are mobilized from aerial portions to below-ground crowns and rhizomes as a natural accompaniment to above-ground senescence post seed-set. Mineral uptake and remobilization is dependent on transporters, however, little if any information is available about the specific transporters that are needed and how their relative expression changes over a growing season. Using well-defined classes of mineral transporters, we identified 520 genes belonging to 40 different transporter classes in the tetraploid switchgrass genome. Expression patterns were determined for many of these genes using publically available transcriptomic datasets obtained from both greenhouse and field grown plants. Certain transporters showed strong temporal patterns of expression in distinct developmental stages of the plant. Gene-expression was verified for selected transporters using qRT-PCR. By and large these analyses confirmed the developmental stage-specific expression of these genes. Mineral analyses indicated that K, Fe, Mg, Co, and As had a similar pattern of accumulation with apparent limited remobilization at the end of the growing season. These initial analyses will serve as a foundation for more detailed examination of the nutrient biology of switchgrass.
Collapse
Affiliation(s)
- Nathan A. Palmer
- USDA-Agricultural Research Service, Grain, Forage, and Bioenergy Research UnitLincoln, NE, USA
- Department of Agronomy and Horticulture, University of NebraskaLincoln, NE, USA
| | - Aaron J. Saathoff
- USDA-Agricultural Research Service, Grain, Forage, and Bioenergy Research UnitLincoln, NE, USA
- LI-COR BiosciencesLincoln, NE, USA
| | - Brian M. Waters
- Department of Agronomy and Horticulture, University of NebraskaLincoln, NE, USA
- *Correspondence: Brian M. Waters, Department of Agronomy and Horticulture, University of Nebraska at Lincoln, 377 K Plant Sciences Hall, Lincoln, NE 68583-0915, USA e-mail:
| | - Teresa Donze
- Department of Entomology, University of NebraskaLincoln, NE, USA
| | | | - Paul Twigg
- Biology Department, University of NebraskaKearney, NE, USA
| | - Christian M. Tobias
- USDA-Agricultural Research Service, Genomics and Gene Discovery Research Unit, Western Regional Research CenterAlbany, CA, USA
| | - Gautam Sarath
- USDA-Agricultural Research Service, Grain, Forage, and Bioenergy Research UnitLincoln, NE, USA
| |
Collapse
|
191
|
Machado-Assefh CR, Lucatti AF, Alvarez AE. Induced senescence promotes the feeding activities and nymph development of Myzus persicae (Hemiptera: Aphididae) on potato plants. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:155. [PMID: 25399426 PMCID: PMC5633944 DOI: 10.1093/jisesa/ieu017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/17/2023]
Abstract
The effect of dark-induced senescence on Solanum tuberosum L. (Solanales: Solanaceae) plants was assessed on the feeding behavior and performance of the green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). Senescence was induced by covering the basal part of the plant with a black cloth for 5 d, avoiding the light passage, but keeping the apical buds uncovered. The basal part of control plants was covered with a white nonwoven cloth. The degree of senescence was determined by measuring the chlorophyll content of the covered leaves. The performance and feeding behavior of M. persicae were studied on the uncovered nonsenescent apical leaves. The aphid's performance was evaluated by measuring nymphal mortality and prereproductive time. Aphid feeding behavior was monitored by the electrical penetration graph technique. In plants with dark-induced senescence, the aphids showed a reduction in their prereproductive time. Aphids also spent more time ingesting sap from the phloem than in control plants and performed more test probes after the first sustained ingestion of phloem sap. These data suggest that M. persicae's phloem activities and nymph development benefit from the nutritional enrichment of phloem sap, derived from dark-induced senescence on potato plants. The induced senescence improved plant acceptance by M. persicae through an increase in sap ingestion that likely resulted in a reduction in developmental time.
Collapse
Affiliation(s)
- Cristina R Machado-Assefh
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT-Salta, Av. Bolivia 5150, 4400 Salta, Argentina Cátedra de Química Biológica, Facultad de Ciencias Naturales, Universidad Nacional de Salta (UNSa). Avda. Bolivia 5150. CP 4400. Salta, Argentina
| | - Alejandro F Lucatti
- Cátedra de Química Biológica, Facultad de Ciencias Naturales, Universidad Nacional de Salta (UNSa). Avda. Bolivia 5150. CP 4400. Salta, Argentina
| | - Adriana E Alvarez
- Cátedra de Química Biológica, Facultad de Ciencias Naturales, Universidad Nacional de Salta (UNSa). Avda. Bolivia 5150. CP 4400. Salta, Argentina
| |
Collapse
|
192
|
Koyama T. The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. FRONTIERS IN PLANT SCIENCE 2014; 5:650. [PMID: 25505475 PMCID: PMC4243489 DOI: 10.3389/fpls.2014.00650] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/26/2014] [Accepted: 11/03/2014] [Indexed: 05/18/2023]
Abstract
Leaf senescence is the last stage of leaf development and is accompanied by cell death. In contrast to senescence in individual organisms that leads to death, leaf senescence is associated with dynamic processes that include the translocation of nutrients from old leaves to newly developing or storage tissues within the same plant. The onset of leaf senescence is largely regulated by age and internal and external stimuli, which include the plant hormone ethylene. Earlier studies have documented the important role of ethylene in the regulation of leaf senescence. The production of ethylene coincides with the onset of leaf senescence, whereas the application of ethylene to plants induces precocious leaf senescence. Recently, many studies have described the components of ethylene signaling and biosynthetic pathways that are involved in modulating the onset of leaf senescence. Particularly, transcription factors (TFs) integrate ethylene signals with those from environmental and developmental factors to accelerate or delay leaf senescence. This review aims to discuss the regulatory cascade involving ethylene and TFs in the regulation of onset of leaf senescence.
Collapse
Affiliation(s)
- Tomotsugu Koyama
- *Correspondence: Tomotsugu Koyama, Bioorganic Research Institute – Suntory Foundation for Life Sciences, Wakayamadai 1-1-1, Shimamoto, Osaka 618-8503, Japan e-mail:
| |
Collapse
|
193
|
Kusaba M, Tanaka A, Tanaka R. Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. PHOTOSYNTHESIS RESEARCH 2013; 117:221-34. [PMID: 23771643 DOI: 10.1007/s11120-013-9862-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/08/2013] [Accepted: 05/25/2013] [Indexed: 05/08/2023]
Abstract
A practical approach to increasing crop yields is to extend the duration of active photosynthesis. Stay-green is a term that is used to describe mutant and transgenic plants or cultivars with the trait of maintaining their leaves for a longer period of time than the wild-type or crosses from which they are derived. Analyzing stay-green genotypes contributes to our understanding of the molecular mechanism regulating leaf senescence which may allow us to extend the duration of active photosynthesis in crop plants. This article summarizes recent studies on stay-green plants and the insights they provide on the mechanism of leaf senescence. Briefly, mutations suppressing ethylene, abscisic acid, brassinosteroid, and strigolactone signal transduction or those activating cytokinin signaling often lead to stay-green phenotypes indicating a complex signaling network regulating leaf senescence. Developmentally regulated transcription factors, including NAC or WRKY family members, play key roles in the induction of leaf senescence and thus alteration in the activity of these transcription factors also result in stay-green phenotypes. Impairment in the enzymatic steps responsible for chlorophyll breakdown also leads to stay-green phenotypes. Some of these genotypes die in the middle of the process of chlorophyll breakdown due to the accumulation of toxic intermediates, while others appear to stay-green but their photosynthetic activity declines in a manner similar to wild-type plants. Alterations in certain metabolic pathways in chloroplasts (e.g., photosynthesis) can lead to a delayed onset of leaf senescence with maintenance of photosynthetic activity longer than wild-type plants, indicating that chloroplast metabolism can also affect the regulatory mechanism of leaf senescence.
Collapse
Affiliation(s)
- Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | | | | |
Collapse
|
194
|
Carrión CA, Costa ML, Martínez DE, Mohr C, Humbeck K, Guiamet JJ. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4967-80. [PMID: 24106291 DOI: 10.1093/jxb/ert285] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/18/2023]
Abstract
Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.
Collapse
Affiliation(s)
- Cristian A Carrión
- Instituto de Fisiología Vegetal, CONICET-Universidad Nacional de La Plata, cc 327, B1904DPS La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
195
|
Albacete AA, Martínez-Andújar C, Pérez-Alfocea F. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 2013; 32:12-30. [PMID: 24513173 DOI: 10.1016/j.biotechadv.2013.10.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
Abstract
Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source-sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses.
Collapse
Affiliation(s)
- Alfonso A Albacete
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (C.E.B.A.S.), Consejo Superior de Investigaciones Científicas (C.S.I.C.), Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain
| | - Cristina Martínez-Andújar
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (C.E.B.A.S.), Consejo Superior de Investigaciones Científicas (C.S.I.C.), Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain
| | - Francisco Pérez-Alfocea
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (C.E.B.A.S.), Consejo Superior de Investigaciones Científicas (C.S.I.C.), Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain.
| |
Collapse
|
196
|
Generation and analysis of a large-scale expressed sequence Tag database from a full-length enriched cDNA library of developing leaves of Gossypium hirsutum L. PLoS One 2013; 8:e76443. [PMID: 24146870 PMCID: PMC3795732 DOI: 10.1371/journal.pone.0076443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2013] [Accepted: 08/24/2013] [Indexed: 11/21/2022] Open
Abstract
Background Cotton (Gossypium hirsutum L.) is one of the world’s most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. Methodology/Principal Findings In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR), which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. Conclusions/Significance These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence assembly and annotation in G. hirsutum and comparative genomics among Gossypium species.
Collapse
|
197
|
Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC PLANT BIOLOGY 2013; 13:132. [PMID: 24028154 PMCID: PMC3847160 DOI: 10.1186/1471-2229-13-132] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/29/2013] [Accepted: 08/13/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND As the final stage of leaf development, leaf senescence may cause the decline of photosynthesis and gradual reduction of carbon assimilation, which makes it a possible limiting factor for crop yield. NACs are plant-specific transcription factors and some NACs have been confirmed to play important roles in regulating leaf senescence. RESULTS In this study, we reported a member of the NAC transcription factor family named OsNAP whose expression is associated with leaf senescence, and investigated its preliminary function during the process of leaf senescence. The results of qRT-PCR showed that the OsNAP transcripts were accumulated gradually in response to leaf senescence and treatment with methyl jasmonic acid (MeJA). A subcellular localization assay indicated that OsNAP is a nuclear-localized protein. Yeast one-hybrid experiments indicated that OsNAP can bind the NAC recognition site (NACRS)-like sequence. OsNAP-overexpressing transgenic plants displayed an accelerated leaf senescence phenotype at the grain-filling stage, which might be caused by the elevated JA levels and the increased expression of the JA biosynthesis-related genes LOX2 and AOC1, and showed enhanced tolerance ability to MeJA treatment at the seedling stage. Nevertheless, the leaf senescence process was delayed in OsNAP RNAi transgenic plants with a dramatic drop in JA levels and with decreased expression levels of the JA biosynthesis-related genes AOS2, AOC1 and OPR7. CONCLUSIONS These results suggest that OsNAP acts as a positive regulator of leaf senescence and this regulation may occur via the JA pathway.
Collapse
Affiliation(s)
- Yong Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weifeng Huang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Liu
- Plant Reproductive Biology, Mail Stop 5, University of California, 1 Shields Avenue, Davis, CA 95616-8780, USA
| | - Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
198
|
Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 2013; 4:248. [PMID: 24058359 PMCID: PMC3759801 DOI: 10.3389/fmicb.2013.00248] [Citation(s) in RCA: 447] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2013] [Accepted: 08/05/2013] [Indexed: 12/25/2022] Open
Abstract
NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the NAC gene family have been suggested to play important roles in the regulation of the transcriptional reprogramming associated with plant stress responses. A phylogenetic analysis of NAC genes, with a focus on rice and Arabidopsis, was performed. Herein, we present an overview of the regulation of the stress responsive NAC SNAC/(IX) group of genes that are implicated in the resistance to different stresses. SNAC factors have important roles for the control of biotic and abiotic stresses tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. We also review the recent progress in elucidating the roles of NAC transcription factors in plant biotic and abiotic stresses. Modification of the expression pattern of transcription factor genes and/or changes in their activity contribute to the elaboration of various signaling pathways and regulatory networks. However, a single NAC gene often responds to several stress factors, and their protein products may participate in the regulation of several seemingly disparate processes as negative or positive regulators. Additionally, the NAC proteins function via auto-regulation or cross-regulation is extensively found among NAC genes. These observations assist in the understanding of the complex mechanisms of signaling and transcriptional reprogramming controlled by NAC proteins.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, Agrogenomics Research Center, National Institute of Agrobiological Sciences Tsukuba, Japan ; Graduate School of Science and Engineering, Institute for Environmental Science and Technology, Saitama University Saitama, Japan
| | | | | |
Collapse
|
199
|
Li Z, Peng J, Wen X, Guo H. Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. THE PLANT CELL 2013; 25:3311-28. [PMID: 24064769 PMCID: PMC3809534 DOI: 10.1105/tpc.113.113340] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/09/2013] [Revised: 07/14/2013] [Accepted: 09/10/2013] [Indexed: 05/18/2023]
Abstract
Numerous endogenous and environmental signals regulate the intricate and highly orchestrated process of plant senescence. Ethylene is a well-known inducer of senescence, including fruit ripening and flower and leaf senescence. However, the underlying molecular mechanism of ethylene-induced leaf senescence remains to be elucidated. Here, we examine ethylene-insensitive3 (EIN3), a key transcription factor in ethylene signaling, and find that EIN3 is a functional senescence-associated gene. Constitutive overexpression or temporary activation of EIN3 is sufficient to accelerate leaf senescence symptoms. Conversely, loss of EIN3 and EIN3-Like1 (its close homolog) function leads to a delay in age-dependent and ethylene-, jasmonic acid-, or dark-induced leaf senescence. We further found that EIN3 acts downstream of ORESARA2 (ORE2)/ORE3/EIN2 to repress miR164 transcription and upregulate the transcript levels of ORE1/NAC2, a target gene of miR164. EIN3 directly binds to the promoters of microRNA164 (miR164), and this binding activity progressively increases during leaf ageing. Genetic analysis revealed that overexpression of miR164 or knockout of ORE1/NAC2 represses EIN3-induced early-senescence phenotypes. Collectively, our study defines a continuation of the signaling pathway involving EIN2-EIN3-miR164-NAC2 in regulating leaf senescence and provides a mechanistic insight into how ethylene promotes the progression of leaf senescence in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhonghai Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center of Life Sciences, Beijing 100871, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center of Life Sciences, Beijing 100871, China
| | - Xing Wen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center of Life Sciences, Beijing 100871, China
| | - Hongwei Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center of Life Sciences, Beijing 100871, China
- Address correspondence to
| |
Collapse
|
200
|
Guo Y. Towards systems biological understanding of leaf senescence. PLANT MOLECULAR BIOLOGY 2013; 82:519-28. [PMID: 23065109 DOI: 10.1007/s11103-012-9974-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/29/2012] [Accepted: 09/20/2012] [Indexed: 05/22/2023]
Abstract
The application of systems biology approaches has greatly facilitated the process of deciphering the molecular mechanisms underlying leaf senescence. Analyses of the leaf senescence transcriptome have identified some of the major biochemical events during senescence including protein degradation and nutrient remobilization. Proteomic studies have confirmed these findings and have suggested up-regulated energy metabolism during leaf senescence which might be important for cell viability maintenance. As a critical part of systems biology, studies involving transcription regulation networking and senescence-inducing signaling have deepened our understanding on the molecular regulation of leaf senescence. The important next steps towards a systems biological understanding of leaf senescence will be discussed.
Collapse
Affiliation(s)
- Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|