151
|
Ribet D, Cossart P. Post-translational modifications in host cells during bacterial infection. FEBS Lett 2010; 584:2748-58. [PMID: 20493189 DOI: 10.1016/j.febslet.2010.05.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 12/24/2022]
Abstract
Post-translational modification of proteins is a widespread mechanism used by both prokaryotic and eukaryotic cells to modify the activity of key factors that plays fundamental roles in cellular physiology. This review focuses on how bacterial pathogens can interfere with host post-translational modifications to promote their own survival and replication.
Collapse
Affiliation(s)
- David Ribet
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Paris, France.
| | | |
Collapse
|
152
|
Wu S, Ye Z, Liu X, Zhao Y, Xia Y, Steiner A, Petrof EO, Claud EC, Sun J. Salmonella typhimurium infection increases p53 acetylation in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 298:G784-94. [PMID: 20224008 PMCID: PMC2867426 DOI: 10.1152/ajpgi.00526.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/04/2010] [Indexed: 01/31/2023]
Abstract
The ability of Salmonella typhimurium to enter intestinal epithelial cells constitutes a crucial step in pathogenesis. Salmonella invasion of the intestinal epithelium requires bacterial type three secretion system. Type three secretion system is a transport device that injects virulence proteins, called effectors, to paralyze or reprogram the eukaryotic cells. Avirulence factor for Salmonella (AvrA) is a Salmonella effector that inhibits the host's inflammatory responses. The mechanism by which AvrA modulates host cell signaling is not entirely clear. p53 is situated at the crossroads of a network of signaling pathways that are essential for genotoxic and nongenotoxic stress responses. We hypothesized that Salmonella infection activates the p53 pathway. We demonstrated that Salmonella infection increased p53 acetylation. Cells infected with AvrA-sufficient Salmonella have increased p53 acetylation, whereas cells infected with AvrA-deficient Salmonella have less p53 acetylation. In a cell-free system, AvrA possessed acetyltransferase activity and used p53 as a substrate. AvrA expression increased p53 transcriptional activity and induced cell cycle arrest. HCT116 p53-/- cells had less inflammatory responses. In a mouse model of Salmonella infection, intestinal epithelial p53 acetylation was increased by AvrA expression. Our studies provide novel mechanistic evidence that Salmonella modulates the p53 pathway during intestinal inflammation and infection.
Collapse
Affiliation(s)
- Shaoping Wu
- Dept. of Medicine, University of Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence. Infect Immun 2010; 78:2584-98. [PMID: 20368345 DOI: 10.1128/iai.00141-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Yersinia spp. undermine the immune responses of infected animals by translocating Yops directly into host cells with a type III secretion system. YopM, a leucine-rich repeat protein, is a critical virulence factor in infection. YopM localizes to both the nucleus and the cytoplasm in cultured cells, interacts with mammalian p90 ribosomal S6 kinase 1 (RSK1), and causes a decrease in NK cell populations in spleens. Little is known about the molecular interaction between YopM and RSK1 and its significance in pathogenesis. We performed a systematic deletion analysis of YopM in Yersinia pseudotuberculosis to determine which regions are required for RSK1 interactions, nuclear localization, virulence, and changes in immune cell populations during infection of mice. Full-length YopM associated with RSK1 in at least two protein complexes in infected cells, and deletion of its C-terminal tail abrogated all RSK1 interactions. The C-terminal tail was required for tissue colonization, as yopM mutants that failed to interact with RSK1 were as defective for tissue colonization as was a DeltayopM mutant; however, nuclear localization of YopM was not dependent on its RSK1 interaction. Mutants expressing YopM proteins which do not interact with RSK1 caused more pathology than did the DeltayopM mutant, suggesting that there are other RSK1-independent functions of YopM. Histopathological and flow cytometric analyses of spleens showed that infection with wild-type Y. pseudotuberculosis caused an influx of neutrophils, while mice infected with yopM mutants had increased numbers of macrophages. Decreases in NK cells after Y. pseudotuberculosis infection did not correlate with YopM expression. In conclusion, the C terminus of YopM is essential for RSK1 interactions and for virulence.
Collapse
|
154
|
Morgan RL, Zhou H, Lehto E, Nguyen N, Bains A, Wang X, Ma W. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts. Mol Microbiol 2010; 76:437-55. [PMID: 20233307 DOI: 10.1111/j.1365-2958.2010.07107.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The type III secretion systems (T3SS) and secreted effectors (T3SEs) are essential virulence factors in Gram-negative bacteria. During the arms race, plants have evolved resistance (R) genes to detect specific T3SEs and activate defence responses. However, this immunity can be efficiently defeated by the pathogens through effector evolution. HopZ1 of the plant pathogen Pseudomonas syringae is a member of the widely distributed YopJ T3SE family. Three alleles are known to be present in P. syringae, with HopZ1a most resembling the ancestral allelic form. In this study, molecular mechanisms underlying the sequence diversification-enabled HopZ1 allelic specificity is investigated. Using domain shuffling experiments, we present evidence showing that a central domain upstream of the conserved catalytic cysteine residue determines HopZ1 recognition specificity. Random and targeted mutagenesis identified three amino acids involved in HopZ1 allelic specificity. Particularly, the exchange of cysteine141 in HopZ1a with lysine137 at the corresponding position in HopZ1b abolished HopZ1a recognition in soybean. This position is under strong positive selection, suggesting that the cysteine/lysine mutation might be a key step driving the evolution of HopZ1. Our data support a model in which sequence diversification imposed by the plant R gene-associated immunity has driven HopZ1 evolution by allowing allele-specific substrate-binding.
Collapse
Affiliation(s)
- Robyn L Morgan
- Center for Plant Cell Biology, Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Tan KS, Chen Y, Lim YC, Tan GYG, Liu Y, Lim YT, Macary P, Gan YH. Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. THE JOURNAL OF IMMUNOLOGY 2010; 184:5160-71. [PMID: 20335533 DOI: 10.4049/jimmunol.0902663] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Burkholderia pseudomallei is a Gram-negative saprophyte that is the causative agent of melioidosis, a severe infectious disease endemic in Northern Australia and Southeast Asia. This organism has sparked much scientific interest in the West because of its classification as a potential bioterrorism agent by the U.S. Centers for Disease Control and Prevention. However, relatively little is known about its pathogenesis. We demonstrate that B. pseudomallei actively inhibits NF-kappaB and type I IFN pathway activation, thereby downregulating host inflammatory responses. We found the virulence factor TssM to be responsible for this activity. TssM interferes with the ubiquitination of critical signaling intermediates, including TNFR-associated factor-3, TNFR-associated factor-6, and IkappaBalpha. The expression but not secretion of TssM is regulated by the type III secretion system. We demonstrate that TssM is important for B. pseudomallei infection in vivo as inflammation in the tssM mutant-infected mice is more severe and corresponds to a more rapid death compared with wild-type bacteria-infected mice. Abs to TssM can be detected in the sera of melioidosis patients, indicating that TssM is functionally expressed in vivo and thus could contribute to bacterial pathogenesis in human melioidosis.
Collapse
Affiliation(s)
- Kai Soo Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Neutrophils are resistant to Yersinia YopJ/P-induced apoptosis and are protected from ROS-mediated cell death by the type III secretion system. PLoS One 2010; 5:e9279. [PMID: 20174624 PMCID: PMC2823771 DOI: 10.1371/journal.pone.0009279] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/30/2010] [Indexed: 12/18/2022] Open
Abstract
Background The human innate immune system relies on the coordinated activity of macrophages and polymorphonuclear leukocytes (neutrophils or PMNs) for defense against bacterial pathogens. Yersinia spp. subvert the innate immune response to cause disease in humans. In particular, the Yersinia outer protein YopJ (Y. pestis and Y. pseudotuberculosis) and YopP (Y. enterocolitica) rapidly induce apoptosis in murine macrophages and dendritic cells. However, the effects of Yersinia Yop J/P on neutrophil fate are not clearly defined. Methodology/Principal Findings In this study, we utilized wild-type and mutant strains of Yersinia to test the contribution of YopJ and YopP on induction of apoptosis in human monocyte-derived macrophages (HMDM) and neutrophils. Whereas YopJ and YopP similarly induced apoptosis in HMDMs, interaction of human neutrophils with virulence plasmid-containing Yersinia did not result in PMN caspase activation, release of LDH, or loss of membrane integrity greater than PMN controls. In contrast, interaction of human PMNs with the virulence plasmid-deficient Y. pestis strain KIM6 resulted in increased surface exposure of phosphatidylserine (PS) and cell death. PMN reactive oxygen species (ROS) production was inhibited in a virulence plasmid-dependent but YopJ/YopP-independent manner. Following phagocytic interaction with Y. pestis strain KIM6, inhibition of PMN ROS production with diphenyleneiodonium chloride resulted in a reduction of PMN cell death similar to that induced by the virulence plasmid-containing strain Y. pestis KIM5. Conclusions Our findings showed that Yersinia YopJ and/or YopP did not induce pronounced apoptosis in human neutrophils. Furthermore, robust PMN ROS production in response to virulence plasmid-deficient Yersinia was associated with increased PMN cell death, suggesting that Yersinia inhibition of PMN ROS production plays a role in evasion of the human innate immune response in part by limiting PMN apoptosis.
Collapse
|
157
|
Wilkes TE, Darby AC, Choi JH, Colbourne JK, Werren JH, Hurst GDD. The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:59-73. [PMID: 20167018 DOI: 10.1111/j.1365-2583.2009.00963.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Four percent of female Nasonia vitripennis carry the son-killer bacterium Arsenophonus nasoniae, a microbe with notably different biology from other inherited parasites and symbionts. In this paper, we examine a draft genome sequence of the bacterium for open reading frames (ORFs), structures and pathways involved in interactions with its insect host. The genome data suggest that A. nasoniae carries multiple type III secretion systems, and an array of toxin and virulence genes found in Photorhabdus, Yersinia and other gammaproteobacteria. Of particular note are ORFs similar to those known to affect host innate immune functioning in other bacteria, and four ORFs related to pro-apoptotic exotoxins. The genome sequences for both A. nasoniae and its Nasonia host are useful tools for examining functional genomic interactions of microbial survival in hostile immune environments, and mechanisms of passage through gut epithelia, in a whole organism context.
Collapse
Affiliation(s)
- T E Wilkes
- School of Biological Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
158
|
Tipping the balance by manipulating post-translational modifications. Curr Opin Microbiol 2010; 13:34-40. [PMID: 20071215 DOI: 10.1016/j.mib.2009.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 11/23/2022]
Abstract
Bacteria use a variety of mechanisms during infection to ensure their survival including the delivery of virulence factors via a type III secretion system into the infected cell. The factors exhibit diverse activities that in many cases mimic eukaryotic mechanisms used by the host to defend against infection. Herein we describe a class of effectors that use post-translational modifications, some reversible and others irreversible, to manipulate host signaling systems to subvert the host response.
Collapse
|
159
|
Prasad BD, Creissen G, Lamb C, Chattoo BB. Overexpression of rice (Oryza sativa L.) OsCDR1 leads to constitutive activation of defense responses in rice and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1635-44. [PMID: 19888828 DOI: 10.1094/mpmi-22-12-1635] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant aspartic proteases (AP) play key roles in the regulation of biological processes, such as the recognition of pathogens and pests and the induction of effective defense responses. A large number of AP (>400) have been identified in silico in the rice genome. None have previously been isolated and functionally characterized for their involvement in disease resistance. We describe here the isolation and characterization of a gene (OsCDR1) from rice which encodes a predicted aspartate protease. Expression of OsCDR1 was activated upon treatments with benzothiadiazole and salicylic acid, which are signal molecules in plant disease resistance responses. Ectopic expression of OsCDR1 in Arabidopsis and rice conferred enhanced resistance against bacterial and fungal pathogens. The enhanced disease resistance observed in transgenic plants was correlated with induction of pathogenesis-related gene expression and was shown by mutational analysis to be dependent on AP activity of the transgene-encoded product. OsCDR1 accumulates in intercellular fluids (IF) in transgenic plants. Infiltration of IF from transgenic Arabidopsis plants into leaves of wild-type (WT) Arabidopsis induced the systemic defense response. These results demonstrate the conservation of CDR1 function between rice and Arabidopsis during the disease resistance response.
Collapse
Affiliation(s)
- Bishun Deo Prasad
- Genome Research Centre, Department of Microbiology and Biotechnology Centre, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | | | | | | |
Collapse
|
160
|
SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc Natl Acad Sci U S A 2009; 106:20532-7. [PMID: 19918071 DOI: 10.1073/pnas.0903859106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Arabidopsis thaliana ecotype Pi-0 is resistant to Pseudomonas syringae pathovar tomato (Pst) strain DC3000 expressing the T3S effector protein AvrBsT. Resistance is due to a loss of function mutation (sober1-1) in a conserved alpha/beta hydrolase, SOBER1 (Suppressor of AvrBsT Elicited Resistance1). Members of this superfamily possess phospholipase and carboxylesterase activity with diverse substrate specificity. The nature of SOBER1 enzymatic activity and substrate specificity was not known. SOBER1-dependent suppression of the hypersensitive response (HR) in Pi-0 suggested that it might hydrolyze a plant lipid or precursor required for HR induction. Here, we show that Pi-0 leaves infected with Pst DC3000 expressing AvrBsT accumulated higher levels of phosphatidic acid (PA) compared to leaves infected with Pst DC3000. Phospholipase D (PLD) activity was required for high PA levels and AvrBsT-dependent HR in Pi-0. Overexpression of SOBER1 in Pi-0 reduced PA levels and inhibited HR. These data implicated PA, phosphatidylcholine (PC) and lysophosphatidylcholine (LysoPC) as potential SOBER1 substrates. Recombinant His(6)-SOBER1 hydrolyzed PC but not PA or LysoPC in vitro indicating that the enzyme has phospholipase A(2) (PLA(2)) activity. Chemical inhibition of PLA(2) activity in leaves expressing SOBER1 resulted in HR in response to Pst DC3000 AvrBsT. These data are consistent with the model that SOBER1 PLA(2) activity suppresses PLD-dependent production of PA in response to AvrBsT elicitation. This work highlights an important role for SOBER1 in the regulation of PA levels generated in plants in response to biotic stress.
Collapse
|
161
|
Abstract
A review of type III effectors (T3 effectors) from strains of Xanthomonas reveals a growing list of candidate and known effectors based on functional assays and sequence and structural similarity searches of genomic data. We propose that the effectors and suspected effectors should be distributed into 39 so-called Xop groups reflecting sequence similarity. Some groups have structural motifs for putative enzymatic functions, and recent studies have provided considerable insight into the interaction with host factors in their function as mediators of virulence and elicitors of resistance for a few specific T3 effectors. Many groups are related to T3 effectors of plant and animal pathogenic bacteria, and several groups appear to have been exploited primarily by Xanthomonas species based on available data. At the same time, a relatively large number of candidate effectors remain to be examined in more detail with regard to their function within host cells.
Collapse
Affiliation(s)
- Frank F White
- Department of Plant Pathology, 4024 Throckmorton Hall, Kansas State University, Manhattan, KS 66506-550, USA.
| | | | | | | |
Collapse
|
162
|
Pei J, Grishin NV. The Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold. Proteins 2009; 77:413-9. [PMID: 19434753 PMCID: PMC3688474 DOI: 10.1002/prot.22447] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A Rho GTPase inactivation domain (RID) has been discovered in the multifunctional, autoprocessing RTX toxin RtxA from Vibrio cholerae. The RID domain causes actin depolymerization and rounding of host cells through inactivation of the small Rho GTPases Rho, Rac, and Cdc42. With only a few toxin proteins containing RID domains in the current sequence database, the structure and molecular mechanisms of this domain are unknown. Using comparative sequence and structural analyses, we report homology inference, fold recognition, and active site prediction for RID domains. Remote homologs of RID domains were identified in two other experimentally characterized bacterial virulence factors: IcsB of Shigella flexneri and BopA of Burkholderia pseudomallei, as well as in a group of uncharacterized bacterial membrane proteins. IcsB plays an important role in helping Shigella to evade the host autophagy defense system. RID domain homologs share a conserved diad of cysteine and histidine residues, and are predicted to adopt a circularly permuted papain-like thiol protease fold. RID domains from MARTX toxins and virulence factors IcsB and BopA thus could function as proteases or acyltransferases acting on host molecules. Our results provide structural and mechanistic insights into several important proteins functioning in bacterial pathogenesis.
Collapse
Affiliation(s)
- Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050, USA.
| | | |
Collapse
|
163
|
Abstract
Plant pathogenic bacteria of the genus Xanthomonas cause a variety of diseases in economically important monocotyledonous and dicotyledonous crop plants worldwide. Successful infection and bacterial multiplication in the host tissue often depend on the virulence factors secreted including adhesins, polysaccharides, LPS and degradative enzymes. One of the key pathogenicity factors is the type III secretion system, which injects effector proteins into the host cell cytosol to manipulate plant cellular processes such as basal defense to the benefit of the pathogen. The coordinated expression of bacterial virulence factors is orchestrated by quorum-sensing pathways, multiple two-component systems and transcriptional regulators such as Clp, Zur, FhrR, HrpX and HpaR. Furthermore, virulence gene expression is post-transcriptionally controlled by the RNA-binding protein RsmA. In this review, we summarize the current knowledge on the infection strategies and regulatory networks controlling secreted virulence factors from Xanthomonas species.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | | |
Collapse
|
164
|
Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, Narusaka Y. RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:218-26. [PMID: 19519800 DOI: 10.1111/j.1365-313x.2009.03949.x] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Colletotrichum higginsianum is a fungal pathogen that infects a wide variety of cruciferous plants, causing important crop losses. We have used map-based cloning and natural variation analysis of 19 Arabidopsis ecotypes to identify a dominant resistance locus against C. higginsianum. This locus named RCH2 (for recognition of C. higginsianum) maps in an extensive cluster of disease-resistance loci known as MRC-J in the Arabidopsis ecotype Ws-0. By analyzing natural variations within the MRC-J region, we found that alleles of RRS1 (resistance to Ralstonia solanacearum 1) from susceptible ecotypes contain single nucleotide polymorphisms that may affect the encoded protein. Consistent with this finding, two susceptible mutants, rrs1-1 and rrs1-2, were identified by screening a T-DNA-tagged mutant library for the loss of resistance to C. higginsianum. The screening identified an additional susceptible mutant (rps4-21) that has a 5-bp deletion in the neighboring gene, RPS4-Ws, which is a well-characterized R gene that provides resistance to Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 (Pst-avrRps4). The rps4-21/rrs1-1 double mutant exhibited similar levels of susceptibility to C. higginsianum as the single mutants. We also found that both RRS1 and RPS4 are required for resistance to R. solanacearum and Pst-avrRps4. Thus, RPS4-Ws and RRS1-Ws function as a dual resistance gene system that prevents infection by three distinct pathogens.
Collapse
Affiliation(s)
- Mari Narusaka
- Research Institute for Biological Sciences, 7549-1 Yoshikawa, Kibityuo, Kaga-gun, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
165
|
Du F, Galán JE. Selective inhibition of type III secretion activated signaling by the Salmonella effector AvrA. PLoS Pathog 2009; 5:e1000595. [PMID: 19779561 PMCID: PMC2742890 DOI: 10.1371/journal.ppat.1000595] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/27/2009] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica utilizes a type III secretion system (TTSS) encoded in its pathogenicity island 1 to mediate its initial interactions with intestinal epithelial cells, which are characterized by the stimulation of actin cytoskeleton reorganization and a profound reprogramming of gene expression. These responses result from the stimulation of Rho-family GTPases and downstream signaling pathways by specific effector proteins delivered by this TTSS. We show here that AvrA, an effector protein of this TTSS, specifically inhibits the Salmonella-induced activation of the JNK pathway through its interaction with MKK7, although it does not interfere with the bacterial infection-induced NF-κB activation. We also show that AvrA is phosphorylated at evolutionary conserved residues by a TTSS-effector-activated ERK pathway. This interplay between effector proteins delivered by the same TTSS highlights the remarkable complexity of these systems. Salmonella Typhimurium is a major cause of diarrheal disease worldwide. Central to S. Typhimurium's pathogenesis is its ability to induce intestinal inflammation, which is initiated by several bacterial proteins injected into intestinal epithelial cells by a nanomachine known as the type III secretion system. We show here that another bacterial protein injected by this machine negatively influences the responses triggered by Salmonella, presumably to limit cellular damage. This interplay between bacterial proteins of opposite function highlights the remarkable complexity of the host/pathogen interface.
Collapse
Affiliation(s)
- Fangyong Du
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E. Galán
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
166
|
Wiley DJ, Shrestha N, Yang J, Atis N, Dayton K, Schesser K. The activities of the Yersinia protein kinase A (YpkA) and outer protein J (YopJ) virulence factors converge on an eIF2alpha kinase. J Biol Chem 2009; 284:24744-53. [PMID: 19553678 PMCID: PMC2757178 DOI: 10.1074/jbc.m109.010140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 06/22/2009] [Indexed: 12/23/2022] Open
Abstract
The Yersinia protein kinase A (YpkA) and outer protein J (YopJ) are co-expressed from a single transcript and are injected directly into eukaryotic cells by the plague bacterium Yersinia pestis. When overexpressed in vertebrate or yeast cells, YpkA disrupts the actin-based cytoskeletal system by an unknown mechanism, whereas YopJ obstructs inductive chemokine expression by inhibiting MAPK and NF-kappaB signaling. Previously, we showed that the fission yeast Schizosaccharomyces pombe was sensitive to the kinase activity of YpkA. Here, we screened yeast for cellular processes important for YpkA activity and found that the eIF2alpha kinases mollify the toxicity imparted by the kinase activity of YpkA. Specifically, strains lacking the eIF2alpha kinase Hri2 were particularly sensitive to YpkA. Unexpectedly, the activity of YopJ, which conferred a phenotype consistent with its inhibitory effect on MAPK signaling, was also found to be dependent on Hri2. When expressed in S. pombe, YopJ sensitized cells to osmotic and oxidative stresses through a Hri2-dependent mechanism. However, when co-expressed with YpkA, YopJ protected cells from YpkA-mediated toxicity, and this protection was entirely dependent on Hri2. In contrast, YopJ did not confer protection against the toxic effects of the Yersinia virulence factor YopE. These findings are the first to functionally link YpkA and YopJ and suggest that eIF2alpha kinases, which are critically important in antiviral defenses and protection against environmental stresses, also play a role in bacterial virulence.
Collapse
Affiliation(s)
- David J. Wiley
- From the Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Niraj Shrestha
- From the Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Jing Yang
- From the Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Nadege Atis
- From the Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Kevin Dayton
- From the Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Kurt Schesser
- From the Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|
167
|
Pandey AK, Sodhi A. Recombinant YopJ induces apoptosis in murine peritoneal macrophages in vitro: involvement of mitochondrial death pathway. Int Immunol 2009; 21:1239-49. [PMID: 19736292 DOI: 10.1093/intimm/dxp086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Yersinia species during infection adhere to host immune cells primarily to macrophages and employ its secretary proteins known as Yersinia outer proteins to trigger death in infected cells. In the present study, it is shown that recombinant Yersinia outer protein J (rYopJ) could induce apoptosis in murine peritoneal macrophages in vitro as assessed by morphological features, internucleosomal DNA fragmentation, change in mitochondrial membrane potential (MMP) (Deltapsim), activation of caspases and Annexin V binding. rYopJ-induced cell death was dose and time dependent. Pre-treatment with broad-spectrum caspase inhibitor Z-VAD-FMK, caspase-3 inhibitor Ac-DEVD-CHO and caspase-8 inhibitor Z-IETD-FMK prevented the change in MMP and DNA fragmentation, suggesting caspase-dependent apoptosis of rYopJ-treated macrophages. Blocking the endocytosis by pre-treatment of cells with cytochalasin B did not prevent the rYopJ-induced macrophages apoptosis. The data further suggest that rYopJ-induced apoptosis is mediated by molecules upstream of caspase-8 and relay through mitochondrial pathway involving Bax, Bcl-2, activation of caspase-8 and caspase-3, Bid and polyadenosine diphosphate-ribose polymerase cleavage, cytochrome c release and DNA fragmentation.
Collapse
Affiliation(s)
- Ashok Kumar Pandey
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
168
|
Sun J. Pathogenic Bacterial Proteins and their Anti-Inflammatory Effects in the Eukaryotic Host. Antiinflamm Antiallergy Agents Med Chem 2009; 8:214-227. [PMID: 20090866 DOI: 10.2174/187152309789151986] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria use multiple strategies to bypass the inflammatory responses in order to survive in the host cells. In this review, we discuss the mechanism of the bacerial proteins in inhibiting inflammation. We highlight the anti-inflammatory roles of the type three secretion proteins including Salmonella AvrA, Enteropathogenic Escherichia coli Cif, and Yersinia YopJ, Staphylococcus aureus extracellular adherence protein, and Chlamydia proteins. We also discuss the research progress on the structures of these anti-inflammatory bacterial proteins. The current therapeutic methods for diseases, such as inflammatory bowel diseases, sclerosis, lack influence on the course of chronic inflammation and infection. Therefore, based on the molecular mechanism of the anti-inflammatory bacterial proteins and their 3-Dimension structure, we can design new peptides or non-peptidic molecules that serve as anti-inflammatory drugs without the possible side effect of promoting bacterial infection.
Collapse
Affiliation(s)
- Jun Sun
- Department of Medicine, Gastroenterology & Hepatology Division and Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Ave., Rochester, New York 14642, USA
| |
Collapse
|
169
|
Köberle M, Klein-Günther A, Schütz M, Fritz M, Berchtold S, Tolosa E, Autenrieth IB, Bohn E. Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model. PLoS Pathog 2009; 5:e1000551. [PMID: 19680448 PMCID: PMC2718809 DOI: 10.1371/journal.ppat.1000551] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 07/22/2009] [Indexed: 11/18/2022] Open
Abstract
Yersinia enterocolitica (Ye) evades the immune system of the host by injection of Yersinia outer proteins (Yops) via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-β-lactamase hybrid protein and a fluorescent staining sensitive to β-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-β1A, and HeLa cells demonstrated that β1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80+, 11% of CD11c+, 7% of CD49b+, 5% of Gr1+ cells, 2.3% of CD19+, and 2.6% of CD3+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19+CD21+CD23+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-γR (receptor)- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-β-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops. An important strategy of Yersinia enterocolitica (Ye) to suppress the immune defense is to inject bacterial proteins (Yersinia outer proteins, Yops) after cell contact directly into host cells, which affects their functions. However, tracking of cells in which Yop injection occurred has only been described for Yersinia pestis thus far. We adapted the described reporter system specifically for the use of infections with Ye and report the usefulness and limitations of this system. Using cell culture experiments, we demonstrated that β1-integrins and the RhoGTPases RhoA and Rac1 are involved in Yop injection. Since cell culture experiments also revealed that Yop injection is detectable in a similar manner into all subpopulations of the spleen, the system can be used to detect interaction of bacteria with host cells in vivo. In a mouse infection model we found that follicular B cells, granulocytes, macrophages, and dendritic cells are the main targets of Yop injection. Interestingly, Yop-injected B cells displayed an increased activation as indicated by increased CD69 expression. In contrast, interaction of bacteria with T cells seems to be rather a rare event. In immunocompromised gene-targeted mice we found increased frequencies of Yop-injected host cells for yet unknown reasons. Taken together, this novel reporter system represents a powerful tool to further study interaction of host cells with Ye.
Collapse
Affiliation(s)
- Martin Köberle
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Annegret Klein-Günther
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Monika Schütz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Michaela Fritz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Susanne Berchtold
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Eva Tolosa
- Hertie-Institut für klinische Hirnforschung, Universitätsklinikum Tübingen, Tübingen, Germany
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | - Ingo B. Autenrieth
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
170
|
Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague. PLoS One 2009; 4:e5938. [PMID: 19529770 PMCID: PMC2691952 DOI: 10.1371/journal.pone.0005938] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/15/2009] [Indexed: 12/20/2022] Open
Abstract
An important virulence strategy evolved by bacterial pathogens to overcome host defenses is the modulation of host cell death. Previous observations have indicated that Yersinia pestis, the causative agent of plague disease, exhibits restricted capacity to induce cell death in macrophages due to ineffective translocation of the type III secretion effector YopJ, as opposed to the readily translocated YopP, the YopJ homologue of the enteropathogen Yersinia enterocolitica Oratio8. This led us to suggest that reduced cytotoxic potency may allow pathogen propagation within a shielded niche, leading to increased virulence. To test the relationship between cytotoxic potential and virulence, we replaced Y. pestis YopJ with YopP. The YopP-expressing Y. pestis strain exhibited high cytotoxic activity against macrophages in vitro. Following subcutaneous infection, this strain had reduced ability to colonize internal organs, was unable to induce septicemia and exhibited at least a 10(7)-fold reduction in virulence. Yet, upon intravenous or intranasal infection, it was still as virulent as the wild-type strain. The subcutaneous administration of the cytotoxic Y. pestis strain appears to activate a rapid and potent systemic, CTL-independent, immunoprotective response, allowing the organism to overcome simultaneous coinfection with 10,000 LD(50) of virulent Y. pestis. Moreover, three days after subcutaneous administration of this strain, animals were also protected against septicemic or primary pneumonic plague. Our findings indicate that an inverse relationship exists between the cytotoxic potential of Y. pestis and its virulence following subcutaneous infection. This appears to be associated with the ability of the engineered cytotoxic Y. pestis strain to induce very rapid, effective and long-lasting protection against bubonic and pneumonic plague. These observations have novel implications for the development of vaccines/therapies against Y. pestis and shed new light on the virulence strategies of Y. pestis in nature.
Collapse
|
171
|
Xu Z, Chan HY, Lam WL, Lam KH, Lam LSM, Ng TB, Au SWN. SUMO proteases: redox regulation and biological consequences. Antioxid Redox Signal 2009; 11:1453-84. [PMID: 19186998 DOI: 10.1089/ars.2008.2182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small-ubiquitin modifier (SUMO) has emerged as a novel modification system that governs the activities of a wide spectrum of protein substrates. SUMO-specific proteases (SENP) are of particular interest, as they are responsible for both the maturation of SUMO precursors and for their deconjugation. The interruption of SENPs has been implicated in embryonic defects and carcinoma cells, indicating that a proper balance of SUMO conjugation and deconjugation is crucial. Recent advances in molecular and cellular biology have highlighted the distinct subcellular localization, and endopeptidase and isopeptidase activities of SENPs, suggesting that they are nonredundant. A better understanding of the molecular basis of SUMO recognition and hydrolytic cleavage has been obtained from the crystal structures of SENP-substrate complexes. While a number of proteomic studies have shown an upregulation of sumoylation, attention is now increasingly being directed towards the regulatory mechanism of sumoylation, in particular the oxidative effect. Findings on the oxidation-induced intermolecular disulfide of E1-E2 ligases and SENP1/2 have improved our understanding of the mechanism by which modification is switched up or down. More intriguingly, a growing body of evidence suggests that sumoylation cross-talks with other modifications, and that the upstream and downstream signaling pathway is co-regulated by more than one modifier.
Collapse
Affiliation(s)
- Zheng Xu
- Centre for Protein Science and Crystallography, Department of Biochemistry and Molecular Biotechnology Program, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
172
|
Bartetzko V, Sonnewald S, Vogel F, Hartner K, Stadler R, Hammes UZ, Börnke F. The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall-associated defense responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:655-64. [PMID: 19445590 DOI: 10.1094/mpmi-22-6-0655] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria uses the type III secretion system (T3SS) to inject effector proteins into cells of its Solanaceous host plants. It is generally assumed that these effectors manipulate host pathways to favor bacterial replication and survival. However, the molecular mechanisms by which type III effectors suppress host defense responses are far from being understood. Based on sequence similarity, Xanthomonas outer protein J (XopJ) is a member of the YopJ/AvrRxv family of SUMO peptidases and acetyltranferases, although its biochemical activity has not yet been demonstrated. Confocal laser scanning microscopy revealed that green fluorescent protein (GFP) fusions of XopJ are targeted to the plasma membrane when expressed in plant cells, which most likely involves N-myristoylation. In contrast to a XopJ(C235A) mutant disrupted in the catalytic triad sequence, the wild-type effector GFP fusion protein was also localized in vesicle-like structures colocalizing together with a Golgi marker protein, suggesting an effect of XopJ on vesicle trafficking. To explore an effect of XopJ on protein secretion, we used a GFP-based secretion assay. When a secreted (sec)GFP marker was coexpressed with XopJ in leaves of Nicotiana benthamiana, GFP fluorescence was retained in reticulate structures. In contrast, in plant cells expressing secGFP alone or along with the XopJ(C235A) mutant, no GFP fluorescence accumulated within the cells. Moreover, coexpressing secGFP together with XopJ led to a reduced accumulation of secGFP within the apoplastic fluid of N. benthamiana leaves, further showing that XopJ affects protein secretion. Transgenic expression of XopJ in Arabidopsis suppressed callose deposition elicited by a T3SS-negative mutant of Pseudomonas syringae pv. tomato DC3000. A role of XopJ in the inhibition of cell wall-based defense responses is discussed.
Collapse
Affiliation(s)
- Verena Bartetzko
- Institut für Biologie, Lehrstuhl für Biochemie, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
Rhizobia - a diverse group of soil bacteria - induce the formation of nitrogen-fixing nodules on the roots of legumes. Nodulation begins when the roots initiate a molecular dialogue with compatible rhizobia in the soil. Most rhizobia reply by secreting lipochitooligosaccharidic nodulation factors that enable entry into the legume. A molecular exchange continues, which, in compatible interactions, permits rhizobia to invade root cortical cells, differentiate into bacteroids and fix nitrogen. Rhizobia also use additional molecular signals, such as secreted proteins or surface polysaccharides. One group of proteins secreted by rhizobia have homologues in bacterial pathogens and may have been co-opted by rhizobia for symbiotic purposes.
Collapse
|
174
|
Kay S, Bonas U. How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 2009; 12:37-43. [PMID: 19168386 DOI: 10.1016/j.mib.2008.12.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 11/15/2022]
Affiliation(s)
- Sabine Kay
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | |
Collapse
|
175
|
Zhou H, Morgan RL, Guttman DS, Ma W. Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:176-89. [PMID: 19132870 DOI: 10.1094/mpmi-22-2-0176] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The bacterial plant pathogen Pseudomonas syringae depends on the type III secretion system and type III-secreted effectors to cause disease in plants. HopZ is a diverse family of type III effectors widely distributed in P. syringae isolates. Among the HopZ homologs, HopZ1 is ancient to P. syringae and has been shown to be under strong positive selection driven by plant resistance-imposed selective pressure. Here, we characterized the virulence and avirulence functions of the three HopZ1 alleles in soybean and Nicotiana benthamiana. In soybean, HopZ1 alleles have distinct functions: HopZ1a triggers defense response, HopZ1b promotes bacterial growth, and HopZ1c has no observable effect. In N. benthamiana, HopZ1a and HopZ1b both induce plant defense responses. However, they appear to trigger different resistance pathways, evidenced by two major differences between HopZ1a- and HopZ1b-triggered hypersensitive response (HR): i) the putative N-acylation sites had no effect on HopZ1a-triggered cell death, whereas it greatly enhanced HopZ1b-triggered cell death; and ii) the HopZ1b-triggered HR, but not the HopZ1a-triggered HR, was suppressed by another HopZ homolog, HopZ3. We previously demonstrated that HopZ1a most resembled the ancestral allelic form of HopZ1; therefore, this new evidence suggested that differentiated resistance systems have evolved in plant hosts to adapt to HopZ1 diversification in P. syringae.
Collapse
Affiliation(s)
- Huanbin Zhou
- Department of Plant Pathology and Microbiology, University of California, Riverside 92521, USA
| | | | | | | |
Collapse
|
176
|
Dodds P, Thrall P. Recognition events and host-pathogen co-evolution in gene-for-gene resistance to flax rust. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:395-408. [PMID: 21760756 PMCID: PMC3134234 DOI: 10.1071/fp08320] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The outcome of infection of individual plants by pathogenic organisms is governed by complex interactions between the host and pathogen. These interactions are the result of long-term co-evolutionary processes involving selection and counterselection between plants and their pathogens. These processes are ongoing, and occur at many spatio-temporal scales, including genes and gene products, cellular interactions within host individuals, and the dynamics of host and pathogen populations. However, there are few systems in which host-pathogen interactions have been studied across these broad scales. In this review, we focus on research to elucidate the structure and function of plant resistance and pathogen virulence genes in the flax-flax rust interaction, and also highlight complementary co-evolutionary studies of a related wild plant-pathogen interaction. The confluence of these approaches is beginning to shed new light on host-pathogen molecular co-evolution in natural environments.
Collapse
Affiliation(s)
- Peter Dodds
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Peter Thrall
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
177
|
Kado CI. Horizontal gene transfer: sustaining pathogenicity and optimizing host-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2009; 10:143-50. [PMID: 19161360 PMCID: PMC6640513 DOI: 10.1111/j.1364-3703.2008.00518.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Successful host-pathogen interactions require the presence, maintenance and expression of gene cassettes called 'pathogenicity islands' (PAIs) and 'metabolic islands' (MAIs) in the respective pathogen. The products of these genes confer on the pathogen the means to recognize their host(s) and to efficiently evade host defences in order to colonize, propagate within the host and eventually disseminate from the host. Virulence effectors secreted by type III and type IV secretion systems, among others, play vital roles in sustaining pathogenicity and optimizing host-pathogen interactions. Complete genome sequences of plant pathogenic bacteria have revealed the presence of PAIs and MAIs. The genes of these islands possess mosaic structures with regions displaying differences in nucleotide composition and codon usage in relation to adjacent genome structures, features that are highly suggestive of their acquisition from a foreign donor. These donors can be other bacteria, as well as lower members of the Archaea and Eukarya. Genes that have moved from the domains Archaea and Eukarya to the domain Bacteria are true cases of horizontal gene transfer. They represent interdomain genetic transfer. Genetic exchange between distinct members of the domain Bacteria, however, represents lateral gene transfer, an intradomain event. Both horizontal and lateral gene transfer events have been used to facilitate survival fitness of the pathogen.
Collapse
Affiliation(s)
- Clarence I Kado
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
178
|
Hsu Y, Jubelin G, Taieb F, Nougayrède JP, Oswald E, Stebbins CE. Structure of the cyclomodulin Cif from pathogenic Escherichia coli. J Mol Biol 2008; 384:465-77. [PMID: 18845161 PMCID: PMC2659761 DOI: 10.1016/j.jmb.2008.09.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/09/2008] [Accepted: 09/13/2008] [Indexed: 12/27/2022]
Abstract
Bacterial pathogens have evolved a sophisticated arsenal of virulence factors to modulate host cell biology. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) use a type III protein secretion system (T3SS) to inject microbial proteins into host cells. The T3SS effector cycle inhibiting factor (Cif) produced by EPEC and EHEC is able to block host eukaryotic cell-cycle progression. We present here a crystal structure of Cif, revealing it to be a divergent member of the superfamily of enzymes including cysteine proteases and acetyltransferases that share a common catalytic triad. Mutation of these conserved active site residues abolishes the ability of Cif to block cell-cycle progression. Finally, we demonstrate that irreversible cysteine protease inhibitors do not abolish the Cif cytopathic effect, suggesting that another enzymatic activity may underlie the biological activity of this virulence factor.
Collapse
Affiliation(s)
- Yun Hsu
- Laboratory of Structural Microbiology, Rockefeller University, New York, NY 10021, USA
| | - Gregory Jubelin
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, Toulouse F-31076, France
| | - Frédéric Taieb
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, Toulouse F-31076, France
| | | | - Eric Oswald
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, Toulouse F-31076, France
| | - C. Erec Stebbins
- Laboratory of Structural Microbiology, Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
179
|
The Yersinia pestis Ail protein mediates binding and Yop delivery to host cells required for plague virulence. Infect Immun 2008; 77:825-36. [PMID: 19064637 DOI: 10.1128/iai.00913-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although adhesion to host cells is a critical step in the delivery of cytotoxic Yop proteins by Yersinia pestis, the mechanism has not been defined. To identify adhesins critical for Yop delivery, we initiated two transposon mutagenesis screens using the mariner transposon. To avoid redundant cell binding activities, we initiated the screen with a strain deleted for two known adhesins, pH 6 antigen and the autotransporter, YapC, as well as the Caf1 capsule, which is known to obscure some adhesins. The mutants that emerged contained insertions within the ail (attachment and invasion locus) gene of Y. pestis. A reconstructed mutant with a single deletion in the ail locus (y1324) was severely defective for delivery of Yops to HEp-2 human epithelial cells and significantly defective for delivery of Yops to THP-1 human monocytes. Specifically, the Yop delivery defect was apparent when cell rounding and translocation of an ELK-tagged YopE derivative into host cells were monitored. Although the ail mutant showed only a modest decrease in cell binding capacity in vitro, the KIM5 Deltaail mutant exhibited a >3,000-fold-increased 50% lethal dose in mice. Mice infected with the Deltaail mutant also had 1,000-fold fewer bacteria in their spleens, livers, and lungs 3 days after infection than did those infected with the parental strain, KIM5. Thus, the Ail protein is critical for both Y. pestis type III secretion in vitro and infection in mice.
Collapse
|
180
|
Y4lO of Rhizobium sp. strain NGR234 is a symbiotic determinant required for symbiosome differentiation. J Bacteriol 2008; 191:735-46. [PMID: 19060155 DOI: 10.1128/jb.01404-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Type 3 (T3) effector proteins, secreted by nitrogen-fixing rhizobia with a bacterial T3 secretion system, affect the nodulation of certain host legumes. The open reading frame y4lO of Rhizobium sp. strain NGR234 encodes a protein with sequence similarities to T3 effectors from pathogenic bacteria (the YopJ effector family). Transcription studies showed that the promoter activity of y4lO depended on the transcriptional activator TtsI. Recombinant Y4lO protein expressed in Escherichia coli did not acetylate two representative mitogen-activated protein kinase kinases (human MKK6 and MKK1 from Medicago truncatula), indicating that YopJ-like proteins differ with respect to their substrate specificities. The y4lO gene was mutated in NGR234 (strain NGROmegay4lO) and in NGR Omega nopL, a mutant that does not produce the T3 effector NopL (strain NGR Omega nopLOmegay4lO). When used as inoculants, the symbiotic properties of the mutants differed. Tephrosia vogelii, Phaseolus vulgaris cv. Yudou No. 1, and Vigna unguiculata cv. Sui Qing Dou Jiao formed pink effective nodules with NGR234 and NGR Omega nopL Omega y4lO. Nodules induced by NGR Omega y4lO were first pink but rapidly turned greenish (ineffective nodules), indicating premature senescence. An ultrastructural analysis of the nodules induced by NGR Omega y4lO revealed abnormal formation of enlarged infection droplets in ineffective nodules, whereas symbiosomes harboring a single bacteroid were frequently observed in effective nodules induced by NGR234 or NGR Omega nopL Omega y4lO. It is concluded that Y4lO is a symbiotic determinant involved in the differentiation of symbiosomes. Y4lO mitigated senescence-inducing effects caused by the T3 effector NopL, suggesting synergistic effects for Y4lO and NopL in nitrogen-fixing nodules.
Collapse
|
181
|
Edelmann MJ, Kessler BM. Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens: Emerging patterns and molecular principles. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:809-16. [PMID: 18817868 PMCID: PMC7126189 DOI: 10.1016/j.bbadis.2008.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 01/08/2023]
Abstract
Attachment of ubiquitin (Ub) or ubiquitin-like (Ubl) modifiers is a reversible post-translational modification that regulates the fate and function of proteins. In particular, proteolytic enzymes with Ub/Ubl processing activity appear to be more widespread than originally anticipated. It is therefore not surprising that bacterial and viral pathogens have exploited many ways to interfere with Ub/Ubl conjugation, but also de-conjugation. On one hand, pathogens were shown to manipulate host encoded enzymes. On the other hand, pathogen derived sequences of proteases specific for Ub/Ubls are emerging as a common feature shared by many viruses, bacteria and protozoa, and we are at an early stage of understanding how these proteases contribute to the pathogenesis of infection. Whereas some of these proteases share a common origin with mammalian cell encoded hydrolases with specific properties towards Ub/Ubls, most of them have ancient intrinsic functions, such as processing pathogen protein components, and may have acquired the specificity for Ub/Ubls by interacting with mammalian hosts and their immune system throughout evolution. Since many of these proteases are clearly distinct from their mammalian counterparts, they represent attractive targets for drug design against infectious diseases.
Collapse
Affiliation(s)
| | - Benedikt M. Kessler
- The Henry Wellcome Building for Molecular Physiology, Department of Clinical Medicine, Roosevelt Drive, University of Oxford, OX3 7BN, UK
| |
Collapse
|
182
|
Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O, Broughton WJ, Deakin WJ. Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol Microbiol 2008; 71:92-106. [PMID: 19019163 DOI: 10.1111/j.1365-2958.2008.06507.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A type III protein secretion system (T3SS) is an important host range determinant for the infection of legumes by Rhizobium sp. NGR234. Although a functional T3SS can have either beneficial or detrimental effects on nodule formation, only the rhizobial-specific positively acting effector proteins, NopL and NopP, have been characterized. NGR234 possesses three open reading frames potentially encoding homologues of effector proteins from pathogenic bacteria. NopJ, NopM and NopT are secreted by the T3SS of NGR234. All three can have negative effects on the interaction with legumes, but NopM and NopT also stimulate nodulation on certain plants. NopT belongs to a family of pathogenic effector proteases, typified by the avirulence protein, AvrPphB. The protease domain of NopT is required for its recognition and a subsequent strong inhibition in infection of Crotalaria juncea. In contrast, the negative effects of NopJ are relatively minor when compared with those induced by its Avr homologues. Thus NGR234 uses a mixture of rhizobial-specific and pathogen-derived effector proteins. Whereas some legumes recognize an effector as potentially pathogen-derived, leading to a block in the infection process, others perceive both the negative- and positive-acting effectors concomitantly. It is this equilibrium of effector action that leads to modulation of symbiotic development.
Collapse
Affiliation(s)
- Kumiko Kambara
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
183
|
Robinson RT, Khader SA, Locksley RM, Lien E, Smiley ST, Cooper AM. Yersinia pestis evades TLR4-dependent induction of IL-12(p40)2 by dendritic cells and subsequent cell migration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:5560-7. [PMID: 18832714 PMCID: PMC2640496 DOI: 10.4049/jimmunol.181.8.5560] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At the temperature of its flea vector (approximately 20-30 degrees C), the causative agent of plague, Yersinia pestis, expresses a profile of genes distinct from those expressed in a mammalian host (37 degrees C). When dendritic cells (DC) are exposed to Y. pestis grown at 26 degrees C (Y. pestis-26 degrees), they secrete copious amounts of IL-12p40 homodimer (IL-12(p40)(2)). In contrast, when DCs are exposed to Y. pestis grown at 37 degrees C (Y. pestis-37 degrees), they transcribe very little IL-12p40, which is secreted as IL-12p40 monomer (IL-12p40). Y. pestis-26 degrees also induces migration of DCs to the homeostatic chemokine CCL19, whereas Y. pestis-37 degrees does not; migratory DCs are positive for IL-12p40 transcription and secrete mostly IL-12(p40)(2); DCs lacking IL-12p40 do not migrate. Expression of acyltransferase LpxL from Escherichia coli in Y. pestis-37 degrees results in the production of a hexa-acylated lipid A, also seen in Y. pestis-26 degrees, rather than tetra-acylated lipid A normally seen in Y. pestis-37 degrees. The LpxL-expressing Y. pestis-37 degrees promotes DC IL-12(p40)(2) production and induction of DC migration. In addition, absence of TLR4 ablates production of IL-12(p40)(2) in DC exposed to Y. pestis-26 degrees. The data demonstrate the molecular pathway by which Y. pestis evades induction of early DC activation as measured by migration and IL-12(p40)(2) production.
Collapse
Affiliation(s)
| | | | - Richard M. Locksley
- Howard Hughes Medical Institute, Department of Medicine and Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Egil Lien
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | | | - Andrea M. Cooper
- Trudeau Institute, Inc. 154 Algonquin Ave., Saranac Lake NY12983
| |
Collapse
|
184
|
Jin JB, Hasegawa PM. Flowering time regulation by the SUMO E3 ligase SIZ1. PLANT SIGNALING & BEHAVIOR 2008; 3:891-2. [PMID: 19704532 PMCID: PMC2634407 DOI: 10.4161/psb.3.10.6513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 06/27/2008] [Indexed: 05/19/2023]
Abstract
Flowering is a developmental process, which is influenced by chemical and environmental stimuli. Recently, our research established that the Arabidopsis SUMO E3 ligase, AtSIZ1, is a negative regulator of transition to flowering through mechanisms that reduce salicylic acid (SA) accumulation and involve SUMO modification of FLOWERING LOCUS D (FLD). FLD is an autonomous pathway determinant that represses the expression of FLOWERING LOCUS C (FLC), a floral repressor. This addendum postulates mechanisms by which SIZ1-mediated SUMO conjugation regulates SA accumulation and FLD activity.
Collapse
Affiliation(s)
- Jing Bo Jin
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, Indiana USA
| | | |
Collapse
|
185
|
Shames SR, Auweter SD, Finlay BB. Co-evolution and exploitation of host cell signaling pathways by bacterial pathogens. Int J Biochem Cell Biol 2008; 41:380-9. [PMID: 18775503 DOI: 10.1016/j.biocel.2008.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/28/2008] [Accepted: 08/01/2008] [Indexed: 01/07/2023]
Abstract
Bacterial pathogens have evolved by combinations of gene acquisition, deletion, and modification, which increases their fitness. Additionally, bacteria are able to evolve in "quantum leaps" via the ability to promiscuously acquire new genes. Many bacterial pathogens - especially Gram-negative enteric pathogens - have evolved mechanisms by which to subvert signal transduction pathways of eukaryotic cells by expressing genes that mimic or regulate host protein factors involved in a variety of signaling cascades. This results in the ability to cause diseases ranging from tumor formation in plants to gastroenteritis and bubonic plague. Here, we present recent advances on mechanisms of bacterial pathogen evolution, including specific signaling cascades targeted by their virulence genes with an emphasis on the ubiquitin modification system, Rho GTPase regulators, cytoskeletal modulators, and host innate immunity. We also comment briefly on evolution of host defense mechanisms in place that limit disease caused by bacterial pathogens.
Collapse
Affiliation(s)
- Stephanie R Shames
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | |
Collapse
|
186
|
Ma W, Guttman DS. Evolution of prokaryotic and eukaryotic virulence effectors. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:412-419. [PMID: 18585954 DOI: 10.1016/j.pbi.2008.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 05/13/2008] [Accepted: 05/16/2008] [Indexed: 05/26/2023]
Abstract
Coevolutionary interactions between plants and their bacterial and eukaryotic pathogens are mediated by virulence effectors. These effectors face the daunting challenge of carrying out virulence functions, while also potentially exposing the pathogen to host defense systems. Very strong selective pressures are imposed by these competing roles, and the subsequent genetic changes leave their footprints in the extant allelic variation. This review examines the evolutionary processes that drive pathogen-host interactions as revealed by the genetic signatures left in virulence effectors, and speculate on the different pressures imposed on bacterial versus eukaryotic pathogens. We find numerous instances of positive selection for new allelic forms, and diversifying selection for genetic variability, which results in altered host-pathogen interactions. We also describe how the genetic structure of both bacterial and eukaryotic virulence effectors may contribute to their rapid generation and turnover.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | |
Collapse
|
187
|
Stulemeijer IJE, Joosten MHAJ. Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. MOLECULAR PLANT PATHOLOGY 2008; 9:545-60. [PMID: 18705867 PMCID: PMC6640405 DOI: 10.1111/j.1364-3703.2008.00468.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microbial plant pathogens impose a continuous threat to global food production. Similar to animals, an innate immune system allows plants to recognize pathogens and swiftly activate defence. To activate a rapid response, receptor-mediated pathogen perception and subsequent downstream signalling depends on post-translational modification (PTM) of components essential for defence signalling. We discuss different types of PTMs that play a role in mounting plant immunity, which include phosphorylation, glycosylation, ubiquitination, sumoylation, nitrosylation, myristoylation, palmitoylation and glycosylphosphatidylinositol (GPI)-anchoring. PTMs are rapid, reversible, controlled and highly specific, and provide a tool to regulate protein stability, activity and localization. Here, we give an overview of PTMs that modify components essential for defence signalling at the site of signal perception, during secondary messenger production and during signalling in the cytoplasm. In addition, we discuss effectors from pathogens that suppress plant defence responses by interfering with host PTMs.
Collapse
Affiliation(s)
- Iris J E Stulemeijer
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
188
|
Le Negrate G, Krieg A, Faustin B, Loeffler M, Godzik A, Krajewski S, Reed JC. ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibits IkappaBalpha ubiquitination and degradation. Cell Microbiol 2008; 10:1879-92. [PMID: 18503636 DOI: 10.1111/j.1462-5822.2008.01178.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes various human diseases, including blindness caused by ocular infection and sexually transmitted diseases resulting from urogenital infection. After infecting host cells, Chlamydiae avoid alarming the host's immune system. Among the immune evasion mechanisms, Chlamydiae can inhibit NF-kappaB activation, a crucial pathway for host inflammatory responses. In this study, we show that ChlaDub1, a deubiquitinating and deNeddylating protease from C. trachomatis, is expressed in infected cells. In transfection experiments, ChlaDub1 suppresses NF-kappaB activation induced by several pro-inflammatory stimuli and binds the NF-kappaB inhibitory subunit IkappaBalpha, impairing its ubiquitination and degradation. Thus, we provide further insight into the mechanism by which C. trachomatis may evade the host inflammatory response by demonstrating that ChlaDub1, a protease produced by this microorganism, is capable of inhibiting IkappaBalpha degradation and blocking NF-kappaB activation.
Collapse
Affiliation(s)
- Gaëlle Le Negrate
- Program on Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ. Infect Immun 2008; 76:3911-23. [PMID: 18559430 DOI: 10.1128/iai.01695-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pathogenic Yersinia species utilize a type III secretion system (T3SS) to translocate effectors called Yersinia outer proteins (Yops) into infected host cells. Previous studies demonstrated a role for effector Yops in the inhibition of caspase-1-mediated cell death and secretion of interleukin-1beta (IL-1beta) in naïve macrophages infected with Yersinia enterocolitica. Naïve murine macrophages were infected with a panel of different Yersinia pestis and Yersinia pseudotuberculosis strains to determine whether Yops of these species inhibit caspase-1 activation. Cell death was measured by release of lactate dehydrogenase (LDH), and enzyme-linked immunosorbent assay for secreted IL-1beta was used to measure caspase-1 activation. Surprisingly, isolates derived from the Y. pestis KIM strain (e.g., KIM5) displayed an unusual ability to activate caspase-1 and kill infected macrophages compared to other Y. pestis and Y. pseudotuberculosis strains tested. Secretion of IL-1beta following KIM5 infection was reduced in caspase-1-deficient macrophages compared to wild-type macrophages. However, release of LDH was not reduced in caspase-1-deficient macrophages, indicating that cell death occurred independently of caspase-1. Analysis of KIM-derived strains defective for production of functional effector or translocator Yops indicated that translocation of catalytically active YopJ into macrophages was required for caspase-1 activation and cell death. Release of LDH and secretion of IL-1beta were not reduced when actin polymerization was inhibited in KIM5-infected macrophages, indicating that extracellular bacteria translocating YopJ could trigger cell death and caspase-1 activation. This study uncovered a novel role for YopJ in the activation of caspase-1 in macrophages.
Collapse
|
190
|
Liao AP, Petrof EO, Kuppireddi S, Zhao Y, Xia Y, Claud EC, Sun J. Salmonella type III effector AvrA stabilizes cell tight junctions to inhibit inflammation in intestinal epithelial cells. PLoS One 2008; 3:e2369. [PMID: 18523661 PMCID: PMC2408728 DOI: 10.1371/journal.pone.0002369] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/25/2008] [Indexed: 12/31/2022] Open
Abstract
Salmonella Typhimurium is a major cause of human gastroenteritis. The Salmonella type III secretory system secretes virulence proteins, called effectors. Effectors are responsible for the alteration of tight junction (TJ) structure and function in intestinal epithelial cells. AvrA is a newly described bacterial effector found in Salmonella. We report here that AvrA expression stabilizes cell permeability and tight junctions in intestinal epithelial cells. Cells colonized with an AvrA-deficient bacterial strain (AvrA-) displayed decreased cell permeability, disruption of TJs, and an increased inflammatory response. Western blot data showed that TJ proteins, such as ZO-1, claudin-1, decreased after AvrA- colonization for only 1 hour. In contrast, cells colonized with AvrA-sufficient bacteria maintained cell permeability with stabilized TJ structure. This difference was confirmed in vivo. Fluorescent tracer studies showed increased fluorescence in the blood of mice infected with AvrA- compared to those infected with the AvrA-sufficient strains. AvrA- disrupted TJ structure and function and increased inflammation in vivo, compared to the AvrA- sufficient strain. Additionally, AvrA overexpression increased TJ protein expression when transfected into colonic epithelial cells. An intriguing aspect of this study is that AvrA stabilized TJs, even though the other TTSS proteins, SopB, SopE, and SopE2, are known to disrupt TJs. AvrA may play a role in stabilizing TJs and balancing the opposing action of other bacterial effectors. Our findings indicate an important role for the bacterial effector AvrA in regulation of intestinal epithelial cell TJs during inflammation. The role of AvrA represents a highly refined bacterial strategy that helps the bacteria survive in the host and dampen the inflammatory response.
Collapse
Affiliation(s)
- Anne P. Liao
- Department of Medicine, Gastroenterology and Hepatology Division, University of Rochester, Rochester, New York, United States of America
| | - Elaine O. Petrof
- Department of Medicine, GI Diseases Research Unit and Division of Infectious Diseases, Queen's University, Kingston, Ontario, Canada
| | - Sumalatha Kuppireddi
- Department of Medicine, Gastroenterology and Hepatology Division, University of Rochester, Rochester, New York, United States of America
| | - Yun Zhao
- Department of Medicine, Gastroenterology and Hepatology Division, University of Rochester, Rochester, New York, United States of America
| | - Yinglin Xia
- Department of Medicine, Gastroenterology and Hepatology Division, University of Rochester, Rochester, New York, United States of America
| | - Erika C. Claud
- Department of Paediatrics, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Jun Sun
- Department of Medicine, Gastroenterology and Hepatology Division, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
191
|
Abstract
A molecular docking analysis has been carried out using monoterpene and sesquiterpene hydrocarbons and triterpenoids that have shown enzyme inhibitory activity as ligands for the cysteine protease cruzain. The binding energies of the docked ligands roughly correlate with their inhibitory activities. The orientations of the docked ligands are consistent with a mechanism whereby these hydrophobic compounds dock into a hydrophobic pocket near the active site, thereby blocking binding of the protein target to the protease.
Collapse
Affiliation(s)
- Ifedayo V. Ogungbe
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| |
Collapse
|
192
|
Yersinia pestis type III secretion system-dependent inhibition of human polymorphonuclear leukocyte function. Infect Immun 2008; 76:3754-60. [PMID: 18490459 DOI: 10.1128/iai.00385-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human polymorphonuclear leukocytes (PMNs, or neutrophils) are the primary innate host defense against invading bacterial pathogens. Neutrophils are rapidly recruited to sites of infection and ingest microorganisms through a process known as phagocytosis. Following phagocytosis by human PMNs, microorganisms are killed by reactive oxygen species (ROS) and microbicidal products contained within granules. Yersinia pestis, the causative agent of plague, is capable of rapid replication and dissemination from sites of infection in the host. Although Y. pestis survives in macrophages, the bacterial fate following interaction with human PMNs is less clear. The ability of Y. pestis to inhibit phagocytosis by human PMNs was assessed by differential fluorescence microscopy and was shown to be dependent on expression of the type III secretion system (TTSS). Previous studies have demonstrated that TTSS expression in enteropathogenic Yersinia spp. also inhibits the respiratory burst in PMNs and macrophages, and we show here that human PMN ROS production is similarly repressed by Y. pestis. However, exclusion of uningested TTSS-expressing Y. pestis with gentamicin revealed that intracellular bacteria are eliminated by human PMNs, similar to bacteria lacking the TTSS. In summary, our results suggest that the Y. pestis TTSS contributes to extracellular survival following interactions with human PMNs and that the intracellular fate is independent of TTSS inhibition of neutrophil ROS production.
Collapse
|
193
|
Ruckdeschel K, Deuretzbacher A, Haase R. Crosstalk of signalling processes of innate immunity with Yersinia Yop effector functions. Immunobiology 2008; 213:261-9. [DOI: 10.1016/j.imbio.2007.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/26/2007] [Accepted: 11/02/2007] [Indexed: 12/23/2022]
|
194
|
Lewis JD, Abada W, Ma W, Guttman DS, Desveaux D. The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana. J Bacteriol 2008; 190:2880-91. [PMID: 18263728 PMCID: PMC2293245 DOI: 10.1128/jb.01702-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/28/2008] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae utilizes the type III secretion system to translocate effector proteins into plant cells, where they can contribute to the pathogen's ability to infect and cause disease. Recognition of these effectors by resistance proteins induces defense responses that typically include a programmed cell death reaction called the hypersensitive response. The YopJ/HopZ family of type III effector proteins is a common family of effector proteins found in animal- and plant-pathogenic bacteria. The HopZ family in P. syringae includes HopZ1a(PsyA2), HopZ1b(PgyUnB647), HopZ1c(PmaE54326), HopZ2(Ppi895A) and HopZ3(PsyB728a). HopZ1a is predicted to be most similar to the ancestral hopZ allele and causes a hypersensitive response in multiple plant species, including Arabidopsis thaliana. Therefore, it has been proposed that host defense responses have driven the diversification of this effector family. In this study, we further characterized the hypersensitive response induced by HopZ1a and demonstrated that it is not dependent on known resistance genes. Further, we identified a novel virulence function for HopZ2 that requires the catalytic cysteine demonstrated to be required for protease activity. Sequence analysis of the HopZ family revealed the presence of a predicted myristoylation sequence in all members except HopZ3. We demonstrated that the myristoylation site is required for membrane localization of this effector family and contributes to the virulence and avirulence activities of HopZ2 and HopZ1a, respectively. This paper provides insight into the selective pressures driving virulence protein evolution by describing a detailed functional characterization of the diverse HopZ family of type III effectors with the model plant Arabidopsis.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario M5S 3B2, Canada
| | | | | | | | | |
Collapse
|
195
|
Gröbner S, Adkins I, Schulz S, Richter K, Borgmann S, Wesselborg S, Ruckdeschel K, Micheau O, Autenrieth IB. Catalytically active Yersinia outer protein P induces cleavage of RIP and caspase-8 at the level of the DISC independently of death receptors in dendritic cells. Apoptosis 2008; 12:1813-25. [PMID: 17624595 DOI: 10.1007/s10495-007-0100-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Yersinia outer protein P (YopP) is injected by Y. enterocolitica into host cells thereby inducing apoptotic and necrosis-like cell death in dendritic cells (DC). Here we show the pathways involved in DC death caused by the catalytic activity of YopP. Infection with Yersinia enterocolitica, translocating catalytically active YopP into DC, triggered procaspase-8 cleavage and c-FLIPL degradation. YopP-dependent caspase-8 activation was, however, not mediated by tumor necrosis factor (TNF) receptor family members since the expression of both CD95/Fas/APO-1 and TRAIL-R2 on DC was low, and DC were resistant to apoptosis induced by agonistic anti-CD95 antibodies or TNF-related apoptosis-inducing ligand (TRAIL). Moreover, DC from TNF-Rp55-/- mice were not protected against YopP-induced cell death demonstrating that TNF-R1 is also not involved in this process. Activation of caspase-8 was further investigated by coimmunoprecitation of FADD from Yersinia-infected DC. We found that both cleaved caspase-8 and receptor interacting protein 1 (RIP1) were associated with the Fas-associated death domain (FADD) indicating the formation of an atypical death-inducing signaling complex (DISC). Furthermore, degradation of RIP mediated by the Hsp90 inhibitor geldanamycin significantly impaired YopP-induced cell death. Altogether our findings indicate that Yersinia-induced DC death is independent of death domain containing receptors, but mediated by RIP and caspase-8 at the level of DISC.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/metabolism
- Benzoquinones/metabolism
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- Caspase 8/metabolism
- Cell Death/physiology
- Cells, Cultured
- Death Domain Receptor Signaling Adaptor Proteins/metabolism
- Dendritic Cells/cytology
- Dendritic Cells/metabolism
- Enzyme Activation
- Enzyme Inhibitors/metabolism
- Fas-Associated Death Domain Protein/metabolism
- Humans
- Lactams, Macrocyclic/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptors, Death Domain/genetics
- Receptors, Death Domain/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction/physiology
- Yersinia enterocolitica/metabolism
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Sabine Gröbner
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str., 6, 72076, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Assessment of the genetic diversity of Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans as a basis to identify putative pathogenicity genes and a type III secretion system of the SPI-1 family by multiple suppression subtractive hybridizations. Appl Environ Microbiol 2008; 74:3295-301. [PMID: 18359831 DOI: 10.1128/aem.02507-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fluorescent amplified fragment length polymorphism revealed that strains of Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans are genetically distinct and can be grouped into four genetic lineages. Four suppression subtractive hybridizations were then performed to isolate DNA fragments present in these bean pathogens and absent from closely related xanthomonads. Virulence gene candidates were identified such as homologs of hemagglutinins, TonB-dependent receptors, zinc-dependent metalloproteases, type III effectors, and type IV secretion system components. Unexpectedly, homologs of the type III secretion apparatus components (SPI-1 family), usually reported in animal pathogens and insect symbionts, were also detected.
Collapse
|
197
|
Le Negrate G, Faustin B, Welsh K, Loeffler M, Krajewska M, Hasegawa P, Mukherjee S, Orth K, Krajewski S, Godzik A, Guiney DG, Reed JC. Salmonella Secreted Factor L Deubiquitinase of Salmonella typhimurium Inhibits NF-κB, Suppresses IκBα Ubiquitination and Modulates Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 2008; 180:5045-56. [DOI: 10.4049/jimmunol.180.7.5045] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
198
|
Jankovic D, Collett MA, Lubbers MW, Rakonjac J. Direct selection and phage display of a Gram-positive secretome. Genome Biol 2008; 8:R266. [PMID: 18078523 PMCID: PMC2246268 DOI: 10.1186/gb-2007-8-12-r266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 11/01/2007] [Accepted: 12/13/2007] [Indexed: 12/23/2022] Open
Abstract
A phage display system for direct selection, identification, expression and purification of bacterial secretome proteins has been developed. Surface, secreted and transmembrane protein-encoding open reading frames, collectively the secretome, can be identified in bacterial genome sequences using bioinformatics. However, functional analysis of translated secretomes is possible only if many secretome proteins are expressed and purified individually. We have now developed and applied a phage display system for direct selection, identification, expression and purification of bacterial secretome proteins.
Collapse
Affiliation(s)
- Dragana Jankovic
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
199
|
Shin H, Cornelis GR. Type III secretion translocation pores of Yersinia enterocolitica trigger maturation and release of pro-inflammatory IL-1beta. Cell Microbiol 2008; 9:2893-902. [PMID: 17991047 DOI: 10.1111/j.1462-5822.2007.01004.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacteria from the genus Yersinia deliver a number of effectors into host cells via type III secretion (T3S). Injected Yop effectors interfere and prevent pro-inflammatory warning signals by hijacking the host's intracellular machinery. While macrophages infected by wild-type Yersinia enterocolitica did not release mature IL-1beta, macrophages infected by Y. enterocolitica deprived of all effectors released mature IL-1beta. Surprisingly, macrophages infected by Y. enterocolitica deficient for secretion of all T3S proteins, including effectors and translocators, did not release mature IL-1beta. Using different genetic constructs, we show that insertion of T3S translocation pores trigger activation of caspase-1, maturation of proIL-1beta and release of mature IL-1beta, which occurs independently of cell osmotic lysis. These data show that T3S translocation is intrinsically a pro-inflammatory phenomenon. However, in the case of Yersinia, this effect is neutralized by the action of effectors.
Collapse
Affiliation(s)
- Hwain Shin
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
200
|
Mukherjee S, Negi VS, Keitany G, Tanaka Y, Orth K. In vitro activation of the IkappaB kinase complex by human T-cell leukemia virus type-1 Tax. J Biol Chem 2008; 283:15127-33. [PMID: 18223255 DOI: 10.1074/jbc.m704831200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human T-cell leukemia virus type-I expresses Tax, a 40-kDa oncoprotein that activates IkappaB kinase (IKK), resulting in constitutive activation of NFkappaB. Herein, we have developed an in vitro signaling assay to analyze IKK complex activation by recombinant Tax. Using this assay in combination with reporter assays, we demonstrate that Tax-mediated activation of IKK is independent of phosphatases. We show that sustained activation of the Tax-mediated activation of the NFkappaB pathway is dependent on an intact Hsp90-IKK complex. By acetylating and thereby preventing activation of the IKK complex by the Yersinia effector YopJ, we demonstrate that Tax-mediated activation of the IKK complex requires a phosphorylation step. Our characterization of an in vitro signaling assay system for the mechanism of Tax-mediated activation of the IKK complex with a variety of mutants and inhibitors results in a working model for the biochemical mechanism of Tax-induced activation.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|