201
|
Lucarelli B, Merli P, Strocchio L, Cefalo MG, Brescia LP, Locatelli F. T Cell Immunotherapy for Immune Reconstitution and GVHD Prevention After Allogeneic Hematopoietic Stem Cell Transplantation. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-015-0027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
202
|
Barese CN, Felizardo TC, Sellers SE, Keyvanfar K, Di Stasi A, Metzger ME, Krouse AE, Donahue RE, Spencer DM, Dunbar CE. Regulated apoptosis of genetically modified hematopoietic stem and progenitor cells via an inducible caspase-9 suicide gene in rhesus macaques. Stem Cells 2015; 33:91-100. [PMID: 25330775 DOI: 10.1002/stem.1869] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/29/2014] [Indexed: 01/05/2023]
Abstract
The high risk of insertional oncogenesis reported in clinical trials using integrating retroviral vectors to genetically modify hematopoietic stem and progenitor cells (HSPCs) requires the development of safety strategies to minimize risks associated with novel cell and gene therapies. The ability to ablate genetically modified cells in vivo is desirable, should an abnormal clone emerge. Inclusion of "suicide genes" in vectors to facilitate targeted ablation of vector-containing abnormal clones in vivo is one potential safety approach. We tested whether the inclusion of the "inducible Caspase-9" (iCasp9) suicide gene in a gamma-retroviral vector facilitated efficient elimination of vector-containing HSPCs and their hematopoietic progeny in vivo long-term, in an autologous non-human primate transplantation model. Following stable engraftment of iCasp9 expressing hematopoietic cells in rhesus macaques, administration of AP1903, a chemical inducer of dimerization able to activate iCasp9, specifically eliminated vector-containing cells in all hematopoietic lineages long-term, suggesting activity at the HSPC level. Between 75% and 94% of vector-containing cells were eliminated by well-tolerated AP1903 dosing, but lack of complete ablation was linked to lower iCasp9 expression in residual cells. Further investigation of resistance mechanisms demonstrated upregulation of Bcl-2 in hematopoietic cell lines transduced with the vector and resistant to AP1903 ablation. These results demonstrate both the potential and the limitations of safety approaches using iCasp9 to HSPC-targeted gene therapy settings, in a model with great relevance to clinical development.
Collapse
Affiliation(s)
- Cecilia N Barese
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Houghton BC, Booth C, Thrasher AJ. Lentivirus technologies for modulation of the immune system. Curr Opin Pharmacol 2015; 24:119-27. [PMID: 26363252 DOI: 10.1016/j.coph.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 01/21/2023]
Abstract
Lentiviral vectors (LVV) are important tools for the treatment of immune system disorders. Integration of therapeutic genetic material into the haematopoietic stem cell compartment using LVV can mediate long-term correction of haematopoietic lineages, thereby correcting disease phenotypes. Twenty years of vector development have successfully brought LVV to the clinic, with follow up studies of clinical trials treating primary immunodeficiencies now being reported. Results have demonstrated clear improvements in the quality of life for patients with a number of conditions in the absence of the severe adverse events observed in earlier retroviral gene therapy trials. Growing interest in gene modified adoptive T cell transfer as an alternative strategy has driven further technology innovation, including characterisation of novel viral envelopes. We will also discuss the progression of gene editing technology to preclinical investigations in models of immune deficiency.
Collapse
Affiliation(s)
- Benjamin C Houghton
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Claire Booth
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK; Department of Paediatric Immunology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK.
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK; Department of Paediatric Immunology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
204
|
Abstract
Allogeneic blood or bone-marrow transplantation (alloBMT) is a potentially curative treatment for a variety of haematological malignancies and nonmalignant diseases. Historically, human leukocyte antigen (HLA)-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with alloBMT using other donors. Although only approximately one-third of patients have an HLA-matched sibling, nearly all patients have HLA-haploidentical related donors. Early studies using HLA-haploidentical alloBMT resulted in unacceptably high rates of graft rejection and graft-versus-host disease (GVHD), leading to high nonrelapse mortality and consequently poor survival. Several novel approaches to HLA-haploidentical alloBMT have yielded encouraging results with high rates of successful engraftment, effective GVHD control and favourable outcomes. In fact, outcomes of several retrospective comparative studies seem similar to those seen using other allograft sources, including those of HLA-matched-sibling alloBMT. In this Review, we provide an overview of the three most-developed approaches to HLA-haploidentical alloBMT: T-cell depletion with 'megadose' CD34(+) cells; granulocyte colony-stimulating factor-primed allografts combined with intensive pharmacological immunosuppression, including antithymocyte globulin; and high-dose, post-transplantation cyclophosphamide. We review the preclinical and biological data supporting each approach, results from major clinical studies, and completed or ongoing clinical studies comparing these approaches with other alloBMT platforms.
Collapse
|
205
|
Abstract
Tumors originate from a number of genetic events that deregulate homeostatic mechanisms controlling normal cell behavior. The immune system, devoted to patrol the organism against pathogenic events, can identify transformed cells, and in several cases cause their elimination. It is however clear that several mechanisms encompassing both central and peripheral tolerance limit antitumor immunity, often resulting into progressive diseases. Adoptive T-cell therapy with either allogeneic or autologous T cells can transfer therapeutic immunity. To date, genetic engineering of T cells appears to be a powerful tool for shaping tumor immunity. In this review, we discuss the most recent achievements in the areas of suicide gene therapy, and TCR-modified T cells and chimeric antigen receptor gene-modified T cells. We provide an overview of current strategies aimed at improving the safety and efficacy of these approaches, with an outlook on prospective developments.
Collapse
Affiliation(s)
- Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
206
|
Tzannou I, Leen AM. Preventing stem cell transplantation-associated viral infections using T-cell therapy. Immunotherapy 2015; 7:793-810. [PMID: 26250410 DOI: 10.2217/imt.15.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cell transplantation is the treatment of choice for many hematologic malignancies and genetic diseases. However, viral infections continue to account for substantial post-transplant morbidity and mortality. While antiviral drugs are available against some viruses, they are associated with significant side effects and are frequently ineffective. This review focuses on the immunotherapeutic strategies that have been used to prevent and treat infections over the past 20 years and outlines different refinements that have been introduced with the goal of moving this therapy beyond specialized academic centers.
Collapse
Affiliation(s)
- Ifigeneia Tzannou
- Center for Cell & Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital & Texas Children's Hospital, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| | - Ann M Leen
- Center for Cell & Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital & Texas Children's Hospital, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| |
Collapse
|
207
|
Abstract
It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.
Collapse
Affiliation(s)
- Pınar Ataca
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey E-mail:
| | | |
Collapse
|
208
|
Gatza E, Choi SW. Approaches for the prevention of graft-versus-host disease following hematopoietic cell transplantation. Int J Hematol Oncol 2015; 4:113-126. [PMID: 27182433 DOI: 10.2217/ijh.15.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is an important therapeutic option for malignant and non-malignant diseases, but the more widespread application of the therapy remains limited by the occurrence of graft versus host disease (GVHD). GVHD results from immune-mediated injury by donor immune cells against tissues in the HCT recipient, and can be characterized as acute or chronic depending on the time of onset and site of organ involvement. The majority of efforts have focused on GVHD prevention. Calcineurin inhibitors are the most widely used agents and are included in almost all regimens. Despite current prophylaxis strategies, 40-70% of patients remain at risk for developing GVHD. Herein, we review standard and emerging therapies used in GVHD management.
Collapse
Affiliation(s)
- Erin Gatza
- Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, United States; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Sung Won Choi
- Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, United States; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
209
|
Kongtim P, Lee DA, Cooper LJN, Kebriaei P, Champlin RE, Ciurea SO. Haploidentical Hematopoietic Stem Cell Transplantation as a Platform for Post-Transplantation Cellular Therapy. Biol Blood Marrow Transplant 2015; 21:1714-20. [PMID: 26172479 DOI: 10.1016/j.bbmt.2015.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/07/2015] [Indexed: 01/07/2023]
Abstract
Haploidentical transplantation can extend the opportunity for transplantation to almost all patients who lack an HLA-matched donor. Advances in the field of haploidentical transplantation have led to a marked decrease in treatment-related mortality, allowing investigators to focus on developing rationale pre- and peri-remission therapies aimed at preventing disease relapse after transplantation. Because of widespread availability, low treatment-related mortality, and cost, haploidentical donors may become the preferred "alternative" donors for allogeneic hematopoietic stem cell transplantation. One of the major advantages of using a related donor is the possibility of collecting or generating additional cellular products from the same immediately available donor, which will not be rejected. Infusion of these cells in the peri-transplantation period, derived from the same immune system, is opening the possibility of markedly enhancing the antitumor effects of the graft and hastening immunologic reconstitution after transplantation.
Collapse
Affiliation(s)
- Piyanuch Kongtim
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas; Division of Hematology, Department of Internal Medicine, Faculty of Medicine Thammasat University, Thailand
| | - Dean A Lee
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Laurence J N Cooper
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Stefan O Ciurea
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
210
|
Corrigan-Curay J, Kiem HP, Baltimore D, O'Reilly M, Brentjens RJ, Cooper L, Forman S, Gottschalk S, Greenberg P, Junghans R, Heslop H, Jensen M, Mackall C, June C, Press O, Powell D, Ribas A, Rosenberg S, Sadelain M, Till B, Patterson AP, Jambou RC, Rosenthal E, Gargiulo L, Montgomery M, Kohn DB. T-cell immunotherapy: looking forward. Mol Ther 2015; 22:1564-74. [PMID: 25186558 DOI: 10.1038/mt.2014.148] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jacqueline Corrigan-Curay
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - David Baltimore
- California Institute of Technology, Pasadena, California, USA
| | - Marina O'Reilly
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | - Philip Greenberg
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - Crystal Mackall
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carl June
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Oliver Press
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel Powell
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Antoni Ribas
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Steven Rosenberg
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michel Sadelain
- Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Brian Till
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Amy P Patterson
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert C Jambou
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Eugene Rosenthal
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Linda Gargiulo
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Maureen Montgomery
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Donald B Kohn
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
211
|
Noviello M, Forcina A, Veronica V, Crocchiolo R, Stanghellini MTL, Carrabba M, Greco R, Vago L, Giglio F, Assanelli A, Carbone MR, Magnani Z, Crippa F, Corti C, Bernardi M, Peccatori J, Bordignon C, Ciceri F, Bonini C, Bondanza A. Early recovery of CMV immunity after HLA-haploidentical hematopoietic stem cell transplantation as a surrogate biomarker for a reduced risk of severe infections overall. Bone Marrow Transplant 2015; 50:1262-4. [PMID: 26076126 DOI: 10.1038/bmt.2015.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - A Forcina
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - R Crocchiolo
- Department of Hematology, Humanitas Clinical Institute, Milan, Italy
| | - M T L Stanghellini
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - M Carrabba
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - R Greco
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - L Vago
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy.,Unit of Molecular and Functional Immunogenetics, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - F Giglio
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - A Assanelli
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - M R Carbone
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - Z Magnani
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - F Crippa
- Infectious Disease Unit, San Paolo Hospital, University of Milan, Milan, Italy
| | - C Corti
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - M Bernardi
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - J Peccatori
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - C Bordignon
- Vita-Salute San Raffaele University, Milan, Italy.,MolMed S.p.a, Milan, Italy
| | - F Ciceri
- Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - C Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - A Bondanza
- Vita-Salute San Raffaele University, Milan, Italy.,Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Milan, Italy
| |
Collapse
|
212
|
Bejanyan N, Haddad H, Brunstein C. Alternative Donor Transplantation for Acute Myeloid Leukemia. J Clin Med 2015; 4:1240-68. [PMID: 26239557 PMCID: PMC4484998 DOI: 10.3390/jcm4061240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative therapy for adult patients with acute myeloid leukemia (AML), but its use for consolidation therapy after first remission with induction chemotherapy used to be limited to younger patients and those with suitable donors. The median age of AML diagnosis is in the late 60s. With the introduction of reduced-intensity conditioning (RIC), many older adults are now eligible to receive allo-HCT, including those who are medically less fit to receive myeloablative conditioning. Furthermore, AML patients commonly have no human leukocyte antigen (HLA)-identical or medically suitable sibling donor available to proceed with allo-HCT. Technical advances in donor matching, suppression of alloreactivity, and supportive care have made it possible to use alternative donors, such as unrelated umbilical cord blood (UCB) and partially HLA-matched related (haploidentical) donors. Outcomes after alternative donor allo-HCT are now approaching the outcomes observed for conventional allo-HCT with matched related and unrelated donors. Thus, with both UCB and haploidentical donors available, lack of donor should rarely be a limiting factor in offering an allo-HCT to adults with AML.
Collapse
Affiliation(s)
- Nelli Bejanyan
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 480, Minneapolis, MN 55455, USA.
| | - Housam Haddad
- Hematology and Oncology Department, Staten Island University Hospital, 475 Seaview Ave, Staten Island, NY 10305, USA.
| | - Claudio Brunstein
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 480, Minneapolis, MN 55455, USA.
| |
Collapse
|
213
|
T-cell depletion: from positive selection to negative depletion in adult patients. Bone Marrow Transplant 2015; 50 Suppl 2:S11-3. [DOI: 10.1038/bmt.2015.88] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
214
|
Post-transplantation Cyclophosphamide and Sirolimus after Haploidentical Hematopoietic Stem Cell Transplantation Using a Treosulfan-based Myeloablative Conditioning and Peripheral Blood Stem Cells. Biol Blood Marrow Transplant 2015; 21:1506-14. [PMID: 26001696 DOI: 10.1016/j.bbmt.2015.04.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/30/2015] [Indexed: 01/08/2023]
Abstract
Haploidentical hematopoietic stem cell transplantation (HSCT) performed using bone marrow (BM) grafts and post-transplantation cyclophosphamide (PTCy) has gained much interest for the excellent toxicity profile after both reduced-intensity and myeloablative conditioning. We investigated, in a cohort of 40 high-risk hematological patients, the feasibility of peripheral blood stem cells grafts after a treosulfan-melphalan myeloablative conditioning, followed by a PTCy and sirolimus-based graft-versus-host disease (GVHD) prophylaxis (Sir-PTCy). Donor engraftment occurred in all patients, with full donor chimerism achieved by day 30. Post-HSCT recovery of lymphocyte subsets was broad and fast, with a median time to CD4 > 200/μL of 41 days. Cumulative incidences of grade II to IV and III-IV acute GVHD were 15% and 7.5%, respectively, and were associated with a significant early increase in circulating regulatory T cells at day 15 after HSCT, with values < 5% being predictive of subsequent GVHD occurrence. The 1-year cumulative incidence of chronic GVHD was 20%. Nonrelapse mortality (NRM) at 100 days and 1 year were 12% and 17%, respectively. With a median follow-up for living patients of 15 months, the estimated 1-year overall and disease-free survival (DFS) was 56% and 48%, respectively. Outcomes were more favorable in patients who underwent transplantation in complete remission (1-year DFS 71%) versus patients who underwent transplantation with active disease (DFS, 34%; P = .01). Overall, myeloablative haploidentical HSCT with peripheral blood stem cells (PBSC) and Sir-PTCy is a feasible treatment option: the low rates of GVHD and NRM as well as the favorable immune reconstitution profile pave the way for a prospective comparative trial comparing BM and PBSC in this specific transplantation setting.
Collapse
|
215
|
Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood 2015; 125:4103-13. [PMID: 25977584 DOI: 10.1182/blood-2015-02-628354] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/04/2015] [Indexed: 12/15/2022] Open
Abstract
To test the feasibility of a single T-cell manipulation to eliminate alloreactivity while sparing antiviral and antitumor T cells, we infused 12 haploidentical hematopoietic stem cell transplant patients with increasing numbers of alloreplete haploidentical T cells expressing the inducible caspase 9 suicide gene (iC9-T cells). We determined whether the iC9-T cells produced immune reconstitution and if any resultant graft-versus-host disease (GVHD) could be controlled by administration of a chemical inducer of dimerization (CID; AP1903/Rimiducid). All patients receiving >10(4) alloreplete iC9-T lymphocytes per kilogram achieved rapid reconstitution of immune responses toward 5 major pathogenic viruses and concomitant control of active infections. Four patients received a single AP1903 dose. CID infusion eliminated 85% to 95% of circulating CD3(+)CD19(+) T cells within 30 minutes, with no recurrence of GVHD within 90 days. In one patient, symptoms and signs of GVHD-associated cytokine release syndrome (CRS-hyperpyrexia, high levels of proinflammatory cytokines, and rash) resolved within 2 hours of AP1903 infusion. One patient with varicella zoster virus meningitis and acute GVHD had iC9-T cells present in the cerebrospinal fluid, which were reduced by >90% after CID. Notably, virus-specific T cells recovered even after AP1903 administration and continued to protect against infection. Hence, alloreplete iC9-T cells can reconstitute immunity posttransplant and administration of CID can eliminate them from both peripheral blood and the central nervous system (CNS), leading to rapid resolution of GVHD and CRS. The approach may therefore be useful for the rapid and effective treatment of toxicities associated with infusion of engineered T lymphocytes. This trial was registered at www.clinicaltrials.gov as #NCT01494103.
Collapse
|
216
|
Minagawa K, Zhou X, Mineishi S, Di Stasi A. Seatbelts in CAR therapy: How Safe Are CARS? Pharmaceuticals (Basel) 2015; 8:230-49. [PMID: 26110321 PMCID: PMC4491658 DOI: 10.3390/ph8020230] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 12/29/2022] Open
Abstract
T-cells genetically redirected with a chimeric antigen receptor (CAR) to recognize tumor antigens and kill tumor cells have been infused in several phase 1 clinical trials with success. Due to safety concerns related to on-target/off-tumor effects or cytokine release syndrome, however, strategies to prevent or abate serious adverse events are required. Pharmacologic therapies; suicide genes; or novel strategies to limit the cytotoxic effect only to malignant cells are under active investigations. In this review, we summarize results and toxicities of investigations employing CAR redirected T-cells, with a focus on published strategies to grant safety of this promising cellular application.
Collapse
Affiliation(s)
- Kentaro Minagawa
- Bone Marrow Transplantation and Cellular Therapy, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| | - Xiaoou Zhou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030-2399, USA.
| | - Shin Mineishi
- Bone Marrow Transplantation and Cellular Therapy, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| | - Antonio Di Stasi
- Bone Marrow Transplantation and Cellular Therapy, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| |
Collapse
|
217
|
Infusion of donor lymphocytes expressing the herpes simplex virus thymidine kinase suicide gene for recurrent hematologic malignancies after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2015; 102:101-10. [PMID: 25948083 DOI: 10.1007/s12185-015-1801-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
The infusion of donor lymphocytes expressing the herpes simplex virus thymidine kinase suicide gene (TK-cells) is a promising strategy for the treatment of hematologic malignancies relapsing after allogeneic hematopoietic stem cell transplantation. Here we report the results of a phase I clinical trial designed to examine the feasibility, safety, and efficacy of donor lymphocyte infusion (DLI) of TK-cells. Three patients (two with malignant lymphomas, one with acute myeloid leukemia) were enrolled in the trial and received a single DLI of 1 × 10(7) or 5 × 10(7) TK-cells/kg. No local or systemic toxicity related to the gene-transfer procedure was observed. Two patients achieved stable disease. No patient had severe graft-versus-host disease requiring systemic steroid and/or ganciclovir administration. TK-cells were detected in the peripheral blood of all three patients by PCR, but did not persist longer than 28 days. Analysis of cytotoxic T lymphocyte activity detected no immune response against TK-cells by the recipient's own T cells. Flow cytometric analysis showed low proliferative activity and cytotoxic function of TK-cells. In conclusion, DLI of TK-cells was safely performed in all three patients. Our analysis suggests the probable cause of rapid disappearance of TK-cells to be insufficient in vivo expansion of TK-cells in these patients.
Collapse
|
218
|
Greco R, Oliveira G, Stanghellini MTL, Vago L, Bondanza A, Peccatori J, Cieri N, Marktel S, Mastaglio S, Bordignon C, Bonini C, Ciceri F. Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol 2015; 6:95. [PMID: 25999859 PMCID: PMC4419602 DOI: 10.3389/fphar.2015.00095] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/17/2015] [Indexed: 01/07/2023] Open
Abstract
While opening new frontiers for the cure of malignant and non-malignant diseases, the increasing use of cell therapy poses also several new challenges related to the safety of a living drug. The most effective and consolidated cell therapy approach is allogeneic hematopoietic stem cell transplantation (HSCT), the only cure for several patients with high-risk hematological malignancies. The potential of allogeneic HSCT is strictly dependent on the donor immune system, particularly on alloreactive T lymphocytes, that promote the beneficial graft-versus-tumor effect (GvT), but may also trigger the detrimental graft-versus-host-disease (GvHD). Gene transfer technologies allow to manipulate donor T-cells to enforce GvT and foster immune reconstitution, while avoiding or controlling GvHD. The suicide gene approach is based on the transfer of a suicide gene into donor lymphocytes, for a safe infusion of a wide T-cell repertoire, that might be selectively controlled in vivo in case of GvHD. The herpes simplex virus thymidine kinase (HSV-TK) is the suicide gene most extensively tested in humans. Expression of HSV-TK in donor lymphocytes confers lethal sensitivity to the anti-herpes drug, ganciclovir. Progressive improvements in suicide genes, vector technology and transduction protocols have allowed to overcome the toxicity of GvHD while preserving the antitumor efficacy of allogeneic HSCT. Several phase I-II clinical trials in the last 20 years document the safety and the efficacy of HSV-TK approach, able to maintain its clear value over the last decades, in the rapidly progressing horizon of cancer cellular therapy.
Collapse
Affiliation(s)
- Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Giacomo Oliveira
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Maria Teresa Lupo Stanghellini
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Luca Vago
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy ; Unit of Molecular and Functional Immunogenetics, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Attilio Bondanza
- Leukemia Immunotherapy Unit, Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Jacopo Peccatori
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Nicoletta Cieri
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Sarah Marktel
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Sara Mastaglio
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | | | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| |
Collapse
|
219
|
Weissinger EM, Borchers S, Silvani A, Provasi E, Radrizzani M, Beckmann IK, Benati C, Schmidtke J, Kuehnau W, Schweier P, Luther S, Fernandez-Munoz I, Beutel G, Ciceri F, Bonini C, Ganser A, Hertenstein B, Stadler M. Long term follow up of patients after allogeneic stem cell transplantation and transfusion of HSV-TK transduced T-cells. Front Pharmacol 2015; 6:76. [PMID: 25954199 PMCID: PMC4407574 DOI: 10.3389/fphar.2015.00076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/24/2015] [Indexed: 11/13/2022] Open
Abstract
Allogeneic stem cell transplantation (allo-HSCT) is one of the curative treatments for hematologic malignancies, but is hampered by severe complications, such as acute or chronic graft-versus-host-disease (aGvHD; cGvHD) and infections. CD34-selection of stem cells reduces the risk of aGvHD, but also leads to increased infectious complications and relapse. Thus, we studied the safety, efficacy, and feasibility of transfer of gene modified donor T-cells shortly after allo-HSCT in two clinical trials between 2002 and 2007 and here we compare the results to unmodified donor leukocyte infusion (DLI). The aim of these trials was to provide patients with the protection of T-cells after T-cell-depleted allo-HSCT in the matched or mismatched donor setting with an option to delete transduced T-cells, if severe aGvHD occurred within the trial period. Donor-T-cells were transduced with the replication-deficient retrovirus SFCMM-3, expressing HSV-TK and the truncated ΔLNGFR for selection of transduced cells. Transduced cells were transfused either after day +60 (matched donors) or on day +42 (haploidentical donors). Nine patients were included in the first trial (MHH; 2002 until 2007), two were included in TK007 (2005–2009) and six serves as a control group for outcome after haploidentical transplantation without HSV-TK-transduced DLI. Three patients developed acute GvHD, two had grade I of the skin, one had aGvHD on day +131 (post-HSCT; +89 post-HSV-TK DLI) grade II, which was successfully controlled by ganciclovir (GCV). Donor chimerism was stabilized after transfusion of the transduced cells in all patients treated. Functionality of HSV-TK gene expressing T-cells was shown by loss of bcr-able gene expression as well as by control of cytomegalovirus-reactivation. To date, six patients have relapsed and died, two after a second hematopoietic stem cell transplantation without T-cell depletion or administration of unmodified T-cells. Eleven patients (seven post-HSV-TK DLI) are alive and well to date.
Collapse
Affiliation(s)
- Eva M Weissinger
- Laboratory for Transplantation Biology, Department of Hematology/Hemostasis/Oncology/Stem Cell Transplantation, Hannover Medical School Hannover, Germany
| | - Sylvia Borchers
- Laboratory for Transplantation Biology, Department of Hematology/Hemostasis/Oncology/Stem Cell Transplantation, Hannover Medical School Hannover, Germany
| | | | - Elena Provasi
- Cancer Immunotherapy and Gene Therapy Program, San Raffaele Hospital Milano, Italy
| | | | - Irene K Beckmann
- Laboratory for Transplantation Biology, Department of Hematology/Hemostasis/Oncology/Stem Cell Transplantation, Hannover Medical School Hannover, Germany
| | | | - Joerg Schmidtke
- Institute of Human Genetics, Hannover Medical School Hannover, Germany
| | - Wolfgang Kuehnau
- Institute of Human Genetics, Hannover Medical School Hannover, Germany
| | - Patrick Schweier
- Laboratory for Transplantation Biology, Department of Hematology/Hemostasis/Oncology/Stem Cell Transplantation, Hannover Medical School Hannover, Germany
| | - Susanne Luther
- Laboratory for Transplantation Biology, Department of Hematology/Hemostasis/Oncology/Stem Cell Transplantation, Hannover Medical School Hannover, Germany
| | - Ivonne Fernandez-Munoz
- Laboratory for Transplantation Biology, Department of Hematology/Hemostasis/Oncology/Stem Cell Transplantation, Hannover Medical School Hannover, Germany
| | - Gernot Beutel
- Laboratory for Transplantation Biology, Department of Hematology/Hemostasis/Oncology/Stem Cell Transplantation, Hannover Medical School Hannover, Germany
| | - Fabio Ciceri
- Cancer Immunotherapy and Gene Therapy Program, San Raffaele Hospital Milano, Italy
| | - Chiara Bonini
- Cancer Immunotherapy and Gene Therapy Program, San Raffaele Hospital Milano, Italy
| | - Arnold Ganser
- Laboratory for Transplantation Biology, Department of Hematology/Hemostasis/Oncology/Stem Cell Transplantation, Hannover Medical School Hannover, Germany
| | - Bernd Hertenstein
- Laboratory for Transplantation Biology, Department of Hematology/Hemostasis/Oncology/Stem Cell Transplantation, Hannover Medical School Hannover, Germany ; Department of Hematology/Oncology, Klinikum Bremen-Mitte Bremen, Germany
| | - Michael Stadler
- Laboratory for Transplantation Biology, Department of Hematology/Hemostasis/Oncology/Stem Cell Transplantation, Hannover Medical School Hannover, Germany
| |
Collapse
|
220
|
Ciurea SO, Bayraktar UD. "No donor"? Consider a haploidentical transplant. Blood Rev 2015; 29:63-70. [PMID: 25307958 PMCID: PMC4379127 DOI: 10.1016/j.blre.2014.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/13/2014] [Accepted: 09/16/2014] [Indexed: 12/25/2022]
Abstract
Haploidentical stem cell transplantation (HaploSCT) is an attractive option for patients requiring a hematopoietic stem cell transplant who do not have an HLA-matched donor, because it is cheaper, can be performed faster, and may extend transplantation to virtually all patients in need. Significant advances have been made in the recent decade with dramatic improvement in treatment outcomes. Historically, overcoming the HLA-incompatibility barrier has been a significant limitation to the expansion of this form of transplant. While ex vivo T-cell depletion effectively prevented the development of acute GVHD, it was associated with a higher treatment-related mortality, in excess of 40% in some series, due to a significant delay in recovery of the adaptive immune system. Newer methods have successfully maintained the memory T cells in the graft and/or selectively depleted alloreactive T cells, and are associated with improved treatment outcomes. Post-transplant cyclophosphamide for GVHD prevention has proven very effective in controlling GVHD with lower incidence of infectious complications and treatment-related mortality-as low as 7% at 1 year-and has become the new standard in how this transplant is performed. Here, we reviewed the current experience with this approach and various other strategies employed to control alloreactivity in this setting, including selective depletion of T cells from the graft, as well as we discuss post-transplantation therapy to prevent disease relapse and improve immunologic reconstitution.
Collapse
Affiliation(s)
- Stefan O Ciurea
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ulas D Bayraktar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
221
|
Barbero N, Magistris C, Quagliotto P, Bonandini L, Barolo C, Buscaino R, Compari C, Contardi L, Fisicaro E, Viscardi G. Synthesis, Physicochemical Characterization, and Interaction with DNA of Long-Alkyl-Chain Gemini Pyridinium Surfactants. Chempluschem 2015; 80:952-962. [PMID: 31973260 DOI: 10.1002/cplu.201500007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 11/10/2022]
Abstract
Pyridinium gemini surfactants with hexadecyl chains linked to nitrogen atoms and a tuned aliphatic spacer that bridges the two pyridinium polar heads in 2,2'-positions have been synthesized and characterized. A multitechnique approach allowed us to study the aggregation behavior, using conductivity, surface tension, and fluorescence. Graphs of the specific conductivity (κ) versus the surfactant molar concentration (C), and graphs of the molar conductivity (Λ) versus C0.5 suggest pre-aggregation phenomena of these amphiphiles at very low concentration. The trends of Amin as a function of the spacer length confirm the hypothesis of a conformational change of the molecule with four methylene groups as spacer owing to stacking interactions between the two pyridinium rings mediated by the counterion. Moreover, the trends of Amin and counterion binding (β) suggest that the spacer must be longer than eight carbon atoms to fold efficiently toward the micellar core. The opportunity to tune the surfactant structure and aggregation properties make those surfactants-particularly the long-chain ones for which the DNA complexing ability was shown by means of atomic force microscopy (AFM) imaging-desirable candidates for gene-delivery experiments.
Collapse
Affiliation(s)
- Nadia Barbero
- Dipartimento di Chimica, Interdepartmental "Nanostructured Surfaces and Interfaces", NIS Centre-Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy)
| | - Claudio Magistris
- Dipartimento di Chimica, Interdepartmental "Nanostructured Surfaces and Interfaces", NIS Centre-Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy)
| | - Pierluigi Quagliotto
- Dipartimento di Chimica, Interdepartmental "Nanostructured Surfaces and Interfaces", NIS Centre-Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy)
| | - Luca Bonandini
- Dipartimento di Chimica, Interdepartmental "Nanostructured Surfaces and Interfaces", NIS Centre-Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy)
| | - Claudia Barolo
- Dipartimento di Chimica, Interdepartmental "Nanostructured Surfaces and Interfaces", NIS Centre-Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy)
| | - Roberto Buscaino
- Dipartimento di Chimica, Interdepartmental "Nanostructured Surfaces and Interfaces", NIS Centre-Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy)
| | - Carlotta Compari
- Dipartimento di Farmacia-Università di Parma, Parco Area delle Scienze 27A, 43124 Parma (Italy)
| | - Laura Contardi
- Dipartimento di Farmacia-Università di Parma, Parco Area delle Scienze 27A, 43124 Parma (Italy)
| | - Emilia Fisicaro
- Dipartimento di Farmacia-Università di Parma, Parco Area delle Scienze 27A, 43124 Parma (Italy)
| | - Guido Viscardi
- Dipartimento di Chimica, Interdepartmental "Nanostructured Surfaces and Interfaces", NIS Centre-Università di Torino, Via Pietro Giuria 7, 10125 Torino (Italy)
| |
Collapse
|
222
|
Abstract
Serious viral infections are a common cause of morbidity and mortality after allogeneic stem cell transplantation. They occur in the majority of allograft recipients and are fatal in 17–20%. These severe infections may be prolonged or recurrent and add substantially to the cost, both human and financial, of the procedure. Many features of allogeneic stem cell transplantation contribute to this high rate of viral disease. The cytotoxic and immunosuppressive drugs administered pretransplant to eliminate the host hematopoietic/immune system and any associated malignancy, the delay in recapitulating immune ontogeny post‐transplant, the immunosuppressive drugs given to prevent graft versus host disease (GvHD), and the effects of GvHD itself, all serve to make stem cell transplant recipients vulnerable to disease from endogenous (latent) and exogenous (community) viruses, and to be incapable of controlling them as quickly and effectively as most normal individuals.
Collapse
Affiliation(s)
- Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | | | |
Collapse
|
223
|
Casucci M, Hawkins RE, Dotti G, Bondanza A. Overcoming the toxicity hurdles of genetically targeted T cells. Cancer Immunol Immunother 2015; 64:123-30. [PMID: 25488419 PMCID: PMC11028535 DOI: 10.1007/s00262-014-1641-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023]
Abstract
The recent successes of clinical trials with T cells genetically modified with either clonal T cell receptors or chimeric antigen receptors have also highlighted their potential toxicities. The aim of this focused review was to describe the adverse events observed in these clinical trials and to link them to the complex biology of genetically targeted T cells. Finally, strategies to overcome these toxicities will be proposed and discussed, including the use of suicide genes and other innovative gene therapy strategies.
Collapse
Affiliation(s)
- Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Robert E. Hawkins
- Cancer Research UK, Department of Medical Oncology, University of Manchester and Christie Hospital NHS Foundation Trust, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, 6621 Fannin St. MC 3-3320, Houston, TX 77030 USA
| | - Attilio Bondanza
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
224
|
Abstract
Using the immune system to control cancer has been investigated for over a century. Yet it is only over the last several years that therapeutic agents acting directly on the immune system have demonstrated improved overall survival for cancer patients in phase III clinical trials. Furthermore, it appears that some patients treated with such agents have been cured of metastatic cancer. This has led to increased interest and acceleration in the rate of progress in cancer immunotherapy. Most of the current immunotherapeutic success in cancer treatment is based on the use of immune-modulating antibodies targeting critical checkpoints (CTLA-4 and PD-1/PD-L1). Several other immune-modulating molecules targeting inhibitory or stimulatory pathways are being developed. The combined use of these medicines is the subject of intense investigation and holds important promise. Combination regimens include those that incorporate targeted therapies that act on growth signaling pathways, as well as standard chemotherapy and radiation therapy. In fact, these standard therapies have intrinsic immune-modulating properties that can support antitumor immunity. In the years ahead, adoptive T-cell therapy will also be an important part of treatment for some cancer patients. Other areas which are regaining interest are the use of oncolytic viruses that immunize patients against their own tumors and the use of vaccines against tumor antigens. Immunotherapy has demonstrated unprecedented durability in controlling multiple types of cancer and we expect its use to continue expanding rapidly.
Collapse
|
225
|
Gao L, Zhang X. Haploidentical hematopoietic transplantation without T-cell depletion: current status and future perspectives. Stem Cell Investig 2015; 2:20. [PMID: 27358888 DOI: 10.3978/j.issn.2306-9759.2015.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 01/14/2023]
Abstract
Human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (HLA-haplo HSCT) without T-cell depletion has tremendously progressed over the past 20 years and has become a feasible treatment option for leukemia patients without an HLA-identical sibling donor. Advances in conditioning regimens, graft manipulation, and pharmacological graft-versus-host disease (GVHD) prophylaxis have reduced the risk of fatal graft failure and severe GVHD, two of the most serious complications of traversing the HLA barrier. According to clinical observations, killer immunoglobulin-like receptor (KIR) mismatch and donor-specific anti-HLA (DSA) antibodies-negative status play potential roles in reducing the risk of GVHD and graft failure following HLA-haploidentical SCT. New strategies to improve transplant outcomes include donor lymphocyte, NK cell and selected T-cell subset infusion, mesenchymal stem cell (MSC) co-transplantation and interleukin-2 (IL-2) application. Future challenges remain in improving post-transplant immune reconstitution and finding the best approach to reduce the incidence and severity of GVHD while simultaneously preserving the graft-versus leukemia effect to prevent the recurrence of underlying malignancy.
Collapse
Affiliation(s)
- Lei Gao
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 40037, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 40037, China
| |
Collapse
|
226
|
Abstract
Although cellular therapies may be effective in cancer treatment, their potential for expansion, damage of normal organs, and malignant transformation is a source of concern. The ability to conditionally eliminate aberrant cells in vivo would ameliorate these concerns and broaden the application of cellular therapy. We devised an inducible T-cell safety switch that can be stably and efficiently expressed in human T cells without impairing phenotype, function, or antigen specificity. This system is based on the fusion of human caspase 9 to a modified human FK-binding protein, allowing conditional dimerization using a small-molecule drug. When exposed to a synthetic dimerizing drug, the inducible caspase 9 (iC9) becomes activated and leads to the rapid apoptosis of cells expressing this construct. We have demonstrated the clinical feasibility and efficacy of this approach after haploidentical hematopoietic stem cell transplant (haplo-HSCT). A single dose of a small-molecule drug (AP1903) eliminated more than 90 % of the modified T cells within 30 min after administration and symptoms resolved without recurrence. This system has the potential to broaden the clinical applications of cellular therapy.
Collapse
Affiliation(s)
- Xiaoou Zhou
- Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, One Baylor Plaza-BCM620, Houston, TX, 77030, USA
| | | | | |
Collapse
|
227
|
Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors. Pharmaceuticals (Basel) 2014; 7:1049-68. [PMID: 25517545 PMCID: PMC4276906 DOI: 10.3390/ph7121049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/26/2014] [Accepted: 12/08/2014] [Indexed: 01/09/2023] Open
Abstract
Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI) and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL) for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as “cellular drugs”. As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs), transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR) gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.
Collapse
|
228
|
Alpharetroviral vectors: from a cancer-causing agent to a useful tool for human gene therapy. Viruses 2014; 6:4811-38. [PMID: 25490763 PMCID: PMC4276931 DOI: 10.3390/v6124811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/07/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022] Open
Abstract
Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings.
Collapse
|
229
|
Piemontese S, Ciceri F, Labopin M, Bacigalupo A, Huang H, Santarone S, Gorin NC, Koc Y, Wu D, Beelen D, Tischer J, Ehninger G, Arcese W, Nagler A, Mohty M. A survey on unmanipulated haploidentical hematopoietic stem cell transplantation in adults with acute leukemia. Leukemia 2014; 29:1069-75. [PMID: 25434302 DOI: 10.1038/leu.2014.336] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/16/2014] [Accepted: 10/27/2014] [Indexed: 01/28/2023]
Abstract
The use of unmanipulated graft is increasingly adopted in the setting of allogeneic hematopoietic stem cell transplantation from haploidentical family donors (haplo-SCT) in acute leukemia (AL). We analyzed the outcome of 229 adult patients with de novo AL, who received an unmanipulated haploidentical transplant as their first allo-SCT between 2007 and 2011. Median follow-up was 30 months. Disease status at transplant was: first complete remission (CR1) for 77, second CR (CR2) for 56, and advanced for 96 patients. One hundred and seventy-one patients received in vivo T-cell depletion by monoclonal antibodies (75%). The 60-day cumulative incidence (CI) of engraftment was 93±2%. The 100-day CI of acute graft-versus-host disease (GvHD) was 32±3% for grade II-IV, 12±3% for grade III-IV. The 3-year CI of chronic GvHD was 34±3%. The 3-year CI of non-relapse mortality was 31±4% with in vivo T-cell depletion and 17±5% without. At 3 years, for patients transplanted in CR1, CR2 or advanced disease leukemia-free survival was 44±6, 42±7 and 12±3%, overall survival was 55±6, 51±7 and 14±4% and CI of relapse was 32±6, 24±6 and 61±5%, respectively. These data suggest that unmanipulated haplo-SCT is a valid treatment option for adult AL patients in complete remission lacking a matched donor.
Collapse
Affiliation(s)
- S Piemontese
- 1] Hematology and Bone Marrow Transplant Unit, San Raffaele Scientific Institute, Milan, Italy [2] EBMT Paris Office, Hosital Saint Antoine, Paris, France
| | - F Ciceri
- 1] Hematology and Bone Marrow Transplant Unit, San Raffaele Scientific Institute, Milan, Italy [2] EBMT Paris Office, Hosital Saint Antoine, Paris, France
| | - M Labopin
- 1] EBMT Paris Office, Hosital Saint Antoine, Paris, France [2] AP-HP, Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Paris, France [3] Sorbonne Niversité, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France [4] INSERM, MR_S 938, CDR Saint-Antoine, Paris, France
| | - A Bacigalupo
- Division of Hematology II, IRCCS, San Martino University Hospital-IST, Genoa, Italy
| | - H Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - S Santarone
- Department of Hematology, Ospedale Civile, Pescara, Italy
| | - N-C Gorin
- 1] EBMT Paris Office, Hosital Saint Antoine, Paris, France [2] AP-HP, Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Paris, France [3] Sorbonne Niversité, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France [4] INSERM, MR_S 938, CDR Saint-Antoine, Paris, France
| | - Y Koc
- Hematopoietic Stem Cell Transplantation Unit, Medical Park Hospital, Antalya, Turkey
| | - D Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - D Beelen
- Department of Bone Marrow Transplantation, University Hospital, Essen, Germany
| | - J Tischer
- University Hospital of Munich-Klinikum Grosshadern (LMU), Department of Internal Medicine III, Hematopoietic Cell Transplantation, Munich, Germany
| | - G Ehninger
- Medizinische Klinik und Poliklinik I, Universitaetsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - W Arcese
- Stem Cell Transplant Unit, Fondazione Policlinico Tor Vergata, Tor Vergata University, Rome, Italy
| | - A Nagler
- 1] EBMT Paris Office, Hosital Saint Antoine, Paris, France [2] Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - M Mohty
- 1] EBMT Paris Office, Hosital Saint Antoine, Paris, France [2] AP-HP, Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Paris, France [3] Sorbonne Niversité, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France [4] INSERM, MR_S 938, CDR Saint-Antoine, Paris, France
| | | |
Collapse
|
230
|
Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol 2014; 5:254. [PMID: 25505885 PMCID: PMC4245885 DOI: 10.3389/fphar.2014.00254] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/31/2014] [Indexed: 01/02/2023] Open
Abstract
Adoptive T-cell therapy can involve donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation, the administration of tumor infiltrating lymphocyte expanded ex-vivo, or more recently the use of T cell receptor or chimeric antigen receptor redirected T cells. However, cellular therapies can pose significant risks, including graft-vs.-host-disease and other on and off-target effects, and therefore strategies need to be implemented to permanently reverse any sign of toxicity. A suicide gene is a genetically encoded molecule that allows selective destruction of adoptively transferred cells. Suicide gene addition to cellular therapeutic products can lead to selective ablation of gene-modified cells, preventing collateral damage to contiguous cells and/or tissues. The “ideal” suicide gene would ensure the safety of gene modified cellular applications by granting irreversible elimination of “all” and “only” the cells responsible for the unwanted toxicity. This review presents the suicide gene safety systems reported to date, with a focus on the state-of-the-art and potential applications regarding two of the most extensively validated suicide genes, including the clinical setting: herpes-simplex-thymidine-kinase and inducible-caspase-9.
Collapse
Affiliation(s)
- Benjamin S Jones
- Bone Marrow Transplantation and Cellular Therapy Unit, Division of Hematology-Oncology, Department of Medicine, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Lawrence S Lamb
- Bone Marrow Transplantation and Cellular Therapy Unit, Division of Hematology-Oncology, Department of Medicine, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Frederick Goldman
- Division of Hematology Oncology, Department of Pediatrics, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Antonio Di Stasi
- Bone Marrow Transplantation and Cellular Therapy Unit, Division of Hematology-Oncology, Department of Medicine, The University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
231
|
Prevention of hepatitis C virus infection by adoptive allogeneic immunotherapy using suicide gene-modified lymphocytes: an in vitro proof-of-concept. Gene Ther 2014; 22:172-80. [PMID: 25394253 DOI: 10.1038/gt.2014.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 08/06/2014] [Accepted: 09/30/2014] [Indexed: 11/08/2022]
Abstract
Hepatitis C virus (HCV)-induced, end-stage liver disease is a major indication for liver transplantation, but systematic graft reinfection accelerates liver disease recurrence. Transplantation recipients may be ineligible for direct-acting antivirals, owing to toxicity, resistance or advanced liver disease. Adoptive immunotherapy with liver graft-derived, ex vivo-activated lymphocytes was previously shown to prevent HCV-induced graft reinfections. Alternatively, the applicability and therapeutic efficacy of adoptive immunotherapy may be enhanced by 'ready for use' suicide gene-modified lymphocytes from healthy blood donors; moreover, conditional, prodrug-induced cell suicide may prevent potential side effects. Here, we demonstrate that allogeneic suicide gene-modified lymphocytes (SGMLs) could potently, dose- and time-dependently, inhibit viral replication. The effect occurs at effector:target cell ratios that exhibits no concomitant cytotoxicity toward virus-infected target cells. The effect, mediated mostly by CD56+ lymphocytes, is interleukin-2-dependent, IFN-γ-mediated and, importantly, resistant to calcineurin inhibitors. Thus, post-transplant immunosuppression may not interfere with this adoptive cell immunotherapy approach. Furthermore, these cells are indeed amenable to conditional cell suicide; in particular, the inducible caspase 9 suicide gene is superior to the herpes simplex virus thymidine kinase suicide gene. Our data provide in vitro proof-of-concept that allogeneic, third-party, SGMLs may prevent HCV-induced liver graft reinfection.
Collapse
|
232
|
Wu C, Hong SG, Winkler T, Spencer DM, Jares A, Ichwan B, Nicolae A, Guo V, Larochelle A, Dunbar CE. Development of an inducible caspase-9 safety switch for pluripotent stem cell-based therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14053. [PMID: 26052521 PMCID: PMC4448736 DOI: 10.1038/mtm.2014.53] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023]
Abstract
Induced pluripotent stem cell (iPSC) therapies offer a promising path for patient-specific regenerative medicine. However, tumor formation from residual undifferentiated iPSC or transformation of iPSC or their derivatives is a risk. Inclusion of a suicide gene is one approach to risk mitigation. We introduced a dimerizable-“inducible caspase-9” (iCasp9) suicide gene into mouse iPSC (miPSC) and rhesus iPSC (RhiPSC) via a lentivirus, driving expression from either a cytomegalovirus (CMV), elongation factor-1 α (EF1α) or pluripotency-specific EOS-C(3+) promoter. Exposure of the iPSC to the synthetic chemical dimerizer, AP1903, in vitro induced effective apoptosis in EF1α-iCasp9-expressing (EF1α)-iPSC, with less effective killing of EOS-C(3+)-iPSC and CMV-iPSC, proportional to transgene expression in these cells. AP1903 treatment of EF1α-iCasp9 miPSC in vitro delayed or prevented teratomas. AP1903 administration following subcutaneous or intravenous delivery of EF1α-iPSC resulted in delayed teratoma progression but did not ablate tumors. EF1α-iCasp9 expression was downregulated during in vitro and in vivo differentiation due to DNA methylation at CpG islands within the promoter, and methylation, and thus decreased expression, could be reversed by 5-azacytidine treatment. The level and stability of suicide gene expression will be important for the development of suicide gene strategies in iPSC regenerative medicine.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - So Gun Hong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Thomas Winkler
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | | | - Alexander Jares
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Brian Ichwan
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Alina Nicolae
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland, USA
| | - Vicky Guo
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Andre Larochelle
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| |
Collapse
|
233
|
Immunotherapy: opportunities, risks and future perspectives. Cytotherapy 2014; 16:S120-9. [PMID: 24629797 DOI: 10.1016/j.jcyt.2014.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 01/06/2023]
Abstract
This review is intended to reflect upon the current status and perspectives of cell-based immunotherapy at a time when the promise of extensive pre-clinical research has been translated into encouraging clinical responses. However, some of these have also been complicated by significant adverse reactions. As the field moves towards definitive late stage trials, with a growing interest from pharmaceutical companies, we realize that novel cell therapy strategies pose questions that are familiar to traditional drug development, along with new considerations due to the potential of T cells to persist long term and to expand after adoptive transfer. These questions address the safety of the product, the efficacy, the mode of action, and the anticipation of risks. From different perspectives, we intend to address exciting opportunities and safety concerns in current concepts of cellular immunotherapy.
Collapse
|
234
|
Incidence, risk factors and clinical outcome of leukemia relapses with loss of the mismatched HLA after partially incompatible hematopoietic stem cell transplantation. Leukemia 2014; 29:1143-52. [DOI: 10.1038/leu.2014.314] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/06/2014] [Accepted: 10/23/2014] [Indexed: 11/09/2022]
|
235
|
Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a "safety switch" to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol 2014; 5:235. [PMID: 25389405 PMCID: PMC4211380 DOI: 10.3389/fphar.2014.00235] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/07/2014] [Indexed: 12/14/2022] Open
Abstract
Immune modulation has become a central element in many cancer treatments, and T cells genetically engineered to express chimeric antigen receptors (CAR) may provide a new approach to cancer immunotherapy. Autologous CAR T cells that have been re-directed toward tumor-associated antigens (TAA) have shown promising results in phase 1 clinical trials, with some patients undergoing complete tumor regression. However, this T-cell therapy must carefully balance effective T-cell activation, to ensure antitumor activity, with the potential for uncontrolled activation that may produce immunopathology. An inducible Caspase 9 (iCasp9) “safety switch” offers a solution that allows for the removal of inappropriately activated CAR T cells. The induction of iCasp9 depends on the administration of the small molecule dimerizer drug AP1903 and dimerization results in rapid induction of apoptosis in transduced cells, preferentially killing activated cells expressing high levels of transgene. The iCasp9 gene has been incorporated into vectors for use in preclinical studies and demonstrates effective and reliable suicide gene activity in phase 1 clinical trials. A third-generation CAR incorporating iCasp9 re-directs T cells toward the GD2 TAA. GD2 is over-expressed in melanoma and other malignancies of neural crest origin and the safety and activity of these GD2-iCAR T cells will be investigated in CARPETS and other actively recruiting phase 1 trials.
Collapse
Affiliation(s)
- Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia Adelaide, SA, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia Adelaide, SA, Australia ; Cancer Clinical Trials Unit, Royal Adelaide Hospital Adelaide, SA, Australia ; Discipline of Medicine, University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
236
|
Abstract
In this edition of Blood, Bertaina et al report 3-year survival exceeding 90% by using haploidentical αβ+CD3+/CD19+-depleted allogeneic transplantation for children with nonmalignant disorders.
Collapse
|
237
|
Solh M. Haploidentical vs cord blood transplantation for adults with acute myelogenous leukemia. World J Stem Cells 2014; 6:371-9. [PMID: 25258659 PMCID: PMC4172666 DOI: 10.4252/wjsc.v6.i4.371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/12/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
Hematopoeitic cell transplantation is established as a curative treatment for patients w acute myelogenous leukemia. Haploidentical family donor and umbilical cord blood (UCB) are alternative sources of stem cells for patients lacking a matched sibling or unrelated donor. The early challenges of transplant complications related to poor engraftment and graft-vs-host disease have been overcome with new strategies such as using 2 units and increased cell dose in UCB and T-cell depletion and post transplantation cyclophosphamide in haploidentical transplantation. The outcomes of alternative transplantation for acute leukemia were compared to other traditional graft sources. For patients lacking a matched sibling or unrelated donor, either strategy is a suitable option. The choice should rely mostly on the urgency of the transplantation and the available cell dose as well as the expertise available at the transplant center. This manuscript reviews the options of alternative donor transplantation and highlights recent advances in each of these promising transplantation options.
Collapse
Affiliation(s)
- Melhem Solh
- Melhem Solh, the Blood and Marrow Transplant Group of Georgia, Northside Hospital, Atlanta, GA 30342, United States
| |
Collapse
|
238
|
Nonmyeloablative conditioning, unmanipulated haploidentical SCT and post-infusion CY for advanced lymphomas. Bone Marrow Transplant 2014; 49:1475-80. [PMID: 25222502 DOI: 10.1038/bmt.2014.197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/18/2014] [Accepted: 07/21/2014] [Indexed: 11/09/2022]
Abstract
Allo-SCT is regularly performed in advanced lymphoma. Haploidentical family donors are a valuable source of hematopoietic stem cells and transplants from these donors, using T-repleted grafts, has recently been successfully reported. We report on 49 patients with refractory lymphoma who received T-repleted haploidentical SCT with a non-myeloablative regimen and post-transplant CY. The median time to recover ANC >0.5 × 10e9/L and transfusion independent plt count >20 × 10e9/L was 20 days (range 14-38) and 26 days (range 14-395). The probability to reach ANC >0.5 × 10e9/L at 30 days was 87% and transfusion independent plt count >20 × 10e9/L at 100 days was 87%. The cumulative incidence of grade 2-4 acute GVHD (aGVHD) was 25.6% (95% confidence interval (CI): 12.9-38.3%) and the cumulative incidence of chronic GVHD (cGVHD) was 5.2% (95% CI: 0-12.4%). The median follow-up is 20.6 months (range 12-54), and the projected 2-year OS and PFS were 71 and 63%. The relapse rate was 18.7% (95% CI: 7.6-29.8%) and the median time to relapse was 4.4 months (range 1.1-8.3). At 2 years, cumulative incidence of NRM was 16.3% (95% CI: 5.9-26.8%). T-repleted Haploidentical transplantation with post-infusion CY is a feasible and effective therapy in the poor prognosis of advanced lymphoma patients.
Collapse
|
239
|
Filippini P, Rutella S. Recent advances on cellular therapies and immune modulators for graft-versus-host disease. Expert Rev Clin Immunol 2014; 10:1357-74. [PMID: 25196777 DOI: 10.1586/1744666x.2014.955475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The efficacy of allogeneic hematopoietic stem cell transplantation is counterbalanced by the occurrence of life-threatening immune-mediated complications, such as graft-versus-host disease (GVHD), a multistep disease which is reportedly fatal to approximately 15% of transplant recipients. It is now established that T-cell-dendritic cell interactions, T-cell activation, release of proinflammatory cytokines and T-cell trafficking partake in GVHD pathogenesis. This article will focus on the most recent strategies aimed at preventing/treating GVHD by manipulating components of the innate and adaptive immune response from both the donor and the host.
Collapse
Affiliation(s)
- Perla Filippini
- Department of Systems Medicine, IRCCS San Raffaele Pisana, Rome, Italy
| | | |
Collapse
|
240
|
Abstract
In this issue of Blood, Zhou et al report long-term follow-up and detailed analysis of immune reconstitution associated with a different suicide gene strategy to abrogate graft-versus-host disease (GVHD).
Collapse
|
241
|
Tsirigotis P, Shimoni A, Nagler A. The expanding horizon of immunotherapy in the treatment of malignant disorders: allogeneic hematopoietic stem cell transplantation and beyond. Ann Med 2014; 46:384-96. [PMID: 24888385 DOI: 10.3109/07853890.2014.918463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-SCT) is a very effective therapeutic modality with curative potential in patients with hematological malignancies. The therapeutic efficacy is mainly based on the alloreactive reaction of donor lymphocytes against malignant cells of the recipient named as 'graft-versus-leukemia' or 'graft-versus-tumor' (GVL, GVT) effect. However, besides the beneficial GVL effect, alloreactive reaction attacks normal cells and provokes the deleterious 'graft-versus-host disease' (GVHD) which represents the major limitation of allo-SCT. Current trials have focused on a dual goal: augmentation of GVL and complete abolishment of GVHD. From a theoretical point of view complete dissociation of GVL from GVHD can occur by selecting antigenic targets present on malignant and absent from normal cells. Hematopoietic tissue-restricted minor histocompatibility antigens and leukemia or tumor-associated antigens are ideal candidates for tumor-targeted immunotherapy. Other options for inducing anti-tumor immunity in the absence of GVHD are natural killer (NK) cell immunotherapy, amplification of immune responses by using monoclonal antibodies, and bispecific T and NK-cell engagers. Genetically modified immune effectors such as T-cells armed with chimeric antigen receptors (CAR) or transduced with T-cell receptors with anti-tumor specificity are another exciting field of immunotherapy against malignancies.
Collapse
Affiliation(s)
- Panagiotis Tsirigotis
- Second Department of Internal Medicine, Propaedeutic, Attikon General University Hospital, University of Athens , Greece
| | | | | |
Collapse
|
242
|
Rosenblum D, Peer D. Omics-based nanomedicine: The future of personalized oncology. Cancer Lett 2014; 352:126-36. [DOI: 10.1016/j.canlet.2013.07.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 12/18/2022]
|
243
|
Philip B, Kokalaki E, Mekkaoui L, Thomas S, Straathof K, Flutter B, Marin V, Marafioti T, Chakraverty R, Linch D, Quezada SA, Peggs KS, Pule M. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 2014; 124:1277-87. [PMID: 24970931 DOI: 10.1182/blood-2014-01-545020] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A compact marker/suicide gene that utilizes established clinical-grade reagents and pharmaceuticals would be of considerable practical utility to T-cell cancer gene therapy. Marker genes enable measurement of transduction and allow selection of transduced cells, whereas suicide genes allow selective deletion of administered T cells in the face of toxicity. We have created a highly compact marker/suicide gene for T cells combining target epitopes from both CD34 and CD20 antigens (RQR8). This construct allows selection with the clinically approved CliniMACS CD34 system (Miltenyi). Further, the construct binds the widely used pharmaceutical antibody rituximab, resulting in selective deletion of transgene-expressing cells. We have tested the functionality of RQR8 in vitro and in vivo as well as in combination with T-cell engineering components. We predict that RQR8 will make T-cell gene therapy both safer and cheaper.
Collapse
Affiliation(s)
- Brian Philip
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Evangelia Kokalaki
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Leila Mekkaoui
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Simon Thomas
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Karin Straathof
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Barry Flutter
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Virna Marin
- Department of Pediatrics, Centro di Ricerca Matilde Tettamanti, University of Milano-Bicocca, Milan, Italy
| | - Teresa Marafioti
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Ronjon Chakraverty
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - David Linch
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Sergio A Quezada
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Karl S Peggs
- UCL Cancer Institute, University College London, London, United Kingdom; and
| | - Martin Pule
- UCL Cancer Institute, University College London, London, United Kingdom; and
| |
Collapse
|
244
|
Lymphodepletion followed by infusion of suicide gene-transduced donor lymphocytes to safely enhance their antitumor effect: a phase I/II study. Leukemia 2014; 28:2406-10. [DOI: 10.1038/leu.2014.237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
245
|
Abstract
Pharmacologic inhibition of the mechanistic target of rapamycin (mTOR) represents a stress test for tumor cells and T cells. Mechanisms exist that allow cells to survive this stress, including suboptimal target block, alternative signaling pathways, and autophagy. Rapamycin-resistant effector T (T-Rapa) cells have an altered phenotype that associates with increased function. Ex vivo rapamycin, when used in combination with polarizing cytokines and antigen-presenting-cell free costimulation, is a flexible therapeutic approach as polarization to T-helper 1 (Th1)- or Th2-type effectors is possible. Murine T-Rapa cells skewed toward a Th2-type prevented graft rejection and graft-versus-host disease (GVHD) more potently than control Th2 cells and effectively balanced GVHD and graft-versus-tumor (GVT) effects. A phase II clinical trial using low-intensity allogeneic hematopoietic cell transplantation demonstrated that interleukin-4 polarized human T-Rapa cells had a mixed Th2/Th1 phenotype; T-Rapa cell recipients had a balanced Th2/Th1 cytokine profile, conversion of mixed chimerism toward full donor chimerism, and a potentially favorable balance between GVHD and GVT effects. In addition, a phase I clinical trial evaluating autologous T-Rapa cells skewed toward a Th1- and Tc1-type is underway. Use of ex vivo rapamycin to modulate effector T-cell function represents a promising new approach to transplantation therapy.
Collapse
Affiliation(s)
- Daniel H Fowler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| |
Collapse
|
246
|
Abstract
The adoptive transfer of T cells specific for native tumor antigens (TAs) is an increasingly popular cancer treatment option because of the ability of these cells to discriminate between normal and tumor tissues and the corresponding lack of short or long-term toxicities. Infusions of antigen-specific CD4(+) and CD8(+) T cells targeting viral antigens derived from Epstein-Barr virus (EBV) induce sustained complete tumor remissions in patients with highly immunogenic tumors such as post-transplant lymphoproliferative disease, although resistance occurred when the infused T-cell population had restricted antigen specificity. T cells specific for EBV antigens have also produced complete remissions of EBV-positive nasopharyngeal carcinomas and lymphomas developing in immunocompetent individuals, even though in these patients tumor survival is dependent on their ability to evade T-cell immunity. Adapting this strategy to non-viral tumors is more challenging, as the target antigens expressed are less immunogenic and the tumors lack the potent danger signals that are characteristic of viruses. The goals of current studies are to define conditions that promote expansion of antigen-specific T cells ex vivo and to ensure their in vivo persistence and survival by combining with maneuvers such as lymphodepletion, checkpoint inhibition, cytokine infusions, or genetic manipulations. More pragmatic goals are to streamline manufacturing to facilitate the transition of these therapies to late phase trials and to evaluate closely histocompatibility antigen (HLA)-matched banked antigen-specific T cells so that T-cell therapies can be made more broadly available.
Collapse
Affiliation(s)
- Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
247
|
Cieri N, Mastaglio S, Oliveira G, Casucci M, Bondanza A, Bonini C. Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. Immunol Rev 2014; 257:165-80. [PMID: 24329796 DOI: 10.1111/imr.12130] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hematopoietic stem cell transplantation from a healthy donor (allo-HSCT) represents the most potent form of cellular adoptive immunotherapy to treat malignancies. In allo-HSCT, donor T cells are double edge-swords: highly potent against residual tumor cells, but potentially highly toxic, and responsible for graft versus host disease (GVHD), a major clinical complication of transplantation. Gene transfer technologies coupled with current knowledge on cancer immunology have generated a wide range of approaches aimed at fostering the immunological response to cancer cells, while avoiding or controlling GVHD. In this review, we discuss cell and gene therapy approaches currently tested in preclinical models and in clinical trials.
Collapse
Affiliation(s)
- Nicoletta Cieri
- University Vita-Salute San Raffaele, Milan, Italy; Experimental Hematology Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, PIBIC, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
248
|
Affiliation(s)
- Malcolm K Brenner
- Center for Cell and Gene Therapy at Baylor College of Medicine , Houston Methodist Hospital, and Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
249
|
Abstract
Graft-versus-host disease (GVHD) represents the most serious and challenging complication of allogeneic haematopoietic stem-cell transplantation (HSCT). New insights on the role of regulatory T-cells, T cells, and antigen-presenting cells have led to an improved understanding of the pathophysiology of GVHD. However, little progress has been made since the introduction of calcineurin-inhibitor-based regimens in the mid-1980s. Despite standard prophylaxis with these regimens, GVHD still develops in approximately 40-60% of recipients. Thus, there is a need for developing newer approaches to mitigate GVHD, which may facilitate the use of allogeneic HSCT for the treatment of a wider range of haematological cancers. We discuss the rationale, clinical evidence, and outcomes of current (and widely employed) strategies for GVHD prophylaxis, namely calcineurin-inhibitor-based regimens (such as cyclosporine or tacrolimus) combined with methotrexate or mycophenolate mofetil. We assess the clinical evidence for emerging approaches in the prevention of GVHD, including therapies targeting T cells or B cells, the use of mesenchymal stem cells, chemo-cytokine antagonists (such as maraviroc, TNF-α inhibitor, IL-2 receptor antagonist, IL-6 inhibitor), and the use of novel molecular regulators that target multiple cell types simultaneously, including atorvastatin, bortezomib, and epigenetic modulators.
Collapse
|
250
|
Adoptive T-cell therapy: adverse events and safety switches. Clin Transl Immunology 2014; 3:e17. [PMID: 25505965 PMCID: PMC4232067 DOI: 10.1038/cti.2014.11] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 12/17/2022] Open
Abstract
The potential of adoptive T-cell therapy in effecting complete and durable responses has been demonstrated in a number of malignant and infectious diseases. Ongoing progress in T-cell engineering has given cause for optimism in the broader clinical applicability of this approach. However, the development of more potent T cells is checked by safety concerns, highlighted by the occurrence of on-target and off-target toxicities that, although uncommon, have been fatal on occasions. Timely pharmacological intervention is effective in the management of a majority of adverse events but adoptively transferred T cells can persist long term, along with any unwanted effects. A recently validated cellular safety switch, inducible caspase 9 (iCasp9), has the potential to mitigate the risks of T-cell therapy by enabling the elimination of transferred T cells if required. In haematopoietic stem cell transplantation, iCasp9-modified donor T cells can be rapidly eliminated in the event of graft-versus-host disease. This review presents an overview of the risks associated with modern T-cell therapy and the development, clinical results and potential future application of the iCasp9 safety switch.
Collapse
|