• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4678243)   Today's Articles (4615)
For: Gastegger M, Behler J, Marquetand P. Machine learning molecular dynamics for the simulation of infrared spectra. Chem Sci 2017;8:6924-6935. [PMID: 29147518 PMCID: PMC5636952 DOI: 10.1039/c7sc02267k] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/08/2017] [Indexed: 12/28/2022]  Open
Number Cited by Other Article(s)
201
Westermayr J, Faber FA, Christensen AS, von Lilienfeld OA, Marquetand P. Neural networks and kernel ridge regression for excited states dynamics of CH2NH$_2^+$: From single-state to multi-state representations and multi-property machine learning models. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab88d0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
202
Friederich P, Dos Passos Gomes G, De Bin R, Aspuru-Guzik A, Balcells D. Machine learning dihydrogen activation in the chemical space surrounding Vaska's complex. Chem Sci 2020;11:4584-4601. [PMID: 33224459 PMCID: PMC7659707 DOI: 10.1039/d0sc00445f] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]  Open
203
Discovering new perovskites with artificial intelligence. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
204
Carbone MR, Topsakal M, Lu D, Yoo S. Machine-Learning X-Ray Absorption Spectra to Quantitative Accuracy. PHYSICAL REVIEW LETTERS 2020;124:156401. [PMID: 32357067 DOI: 10.1103/physrevlett.124.156401] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
205
Fabregat R, Fabrizio A, Meyer B, Hollas D, Corminboeuf C. Hamiltonian-Reservoir Replica Exchange and Machine Learning Potentials for Computational Organic Chemistry. J Chem Theory Comput 2020;16:3084-3094. [PMID: 32212720 PMCID: PMC7704029 DOI: 10.1021/acs.jctc.0c00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
206
Dral PO. Quantum Chemistry in the Age of Machine Learning. J Phys Chem Lett 2020;11:2336-2347. [PMID: 32125858 DOI: 10.1021/acs.jpclett.9b03664] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
207
Machine-Learning Methods for Computational Science and Engineering. COMPUTATION 2020. [DOI: 10.3390/computation8010015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
208
Noé F, Tkatchenko A, Müller KR, Clementi C. Machine Learning for Molecular Simulation. Annu Rev Phys Chem 2020;71:361-390. [PMID: 32092281 DOI: 10.1146/annurev-physchem-042018-052331] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
209
Aguirre NF, Morgenstern A, Cawkwell MJ, Batista ER, Yang P. Development of Density Functional Tight-Binding Parameters Using Relative Energy Fitting and Particle Swarm Optimization. J Chem Theory Comput 2020;16:1469-1481. [DOI: 10.1021/acs.jctc.9b00880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
210
Lam J, Abdul-Al S, Allouche AR. Combining Quantum Mechanics and Machine-Learning Calculations for Anharmonic Corrections to Vibrational Frequencies. J Chem Theory Comput 2020;16:1681-1689. [DOI: 10.1021/acs.jctc.9b00964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
211
Shao Y, Hellström M, Mitev PD, Knijff L, Zhang C. PiNN: A Python Library for Building Atomic Neural Networks of Molecules and Materials. J Chem Inf Model 2020;60:1184-1193. [DOI: 10.1021/acs.jcim.9b00994] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
212
Gerrard W, Bratholm LA, Packer MJ, Mulholland AJ, Glowacki DR, Butts CP. IMPRESSION - prediction of NMR parameters for 3-dimensional chemical structures using machine learning with near quantum chemical accuracy. Chem Sci 2020;11:508-515. [PMID: 32190270 PMCID: PMC7067266 DOI: 10.1039/c9sc03854j] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]  Open
213
Litman Y, Behler J, Rossi M. Temperature dependence of the vibrational spectrum of porphycene: a qualitative failure of classical-nuclei molecular dynamics. Faraday Discuss 2020;221:526-546. [DOI: 10.1039/c9fd00056a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
214
Sauceda HE, Chmiela S, Poltavsky I, Müller KR, Tkatchenko A. Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights. MACHINE LEARNING MEETS QUANTUM PHYSICS 2020. [DOI: 10.1007/978-3-030-40245-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
215
Dral PO. Quantum chemistry assisted by machine learning. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
216
Accurate Molecular Dynamics Enabled by Efficient Physically Constrained Machine Learning Approaches. MACHINE LEARNING MEETS QUANTUM PHYSICS 2020. [DOI: 10.1007/978-3-030-40245-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
217
Gastegger M, Marquetand P. Molecular Dynamics with Neural Network Potentials. MACHINE LEARNING MEETS QUANTUM PHYSICS 2020. [DOI: 10.1007/978-3-030-40245-7_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
218
Schran C, Behler J, Marx D. Automated Fitting of Neural Network Potentials at Coupled Cluster Accuracy: Protonated Water Clusters as Testing Ground. J Chem Theory Comput 2019;16:88-99. [DOI: 10.1021/acs.jctc.9b00805] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
219
Schütt KT, Gastegger M, Tkatchenko A, Müller KR, Maurer RJ. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. Nat Commun 2019;10:5024. [PMID: 31729373 PMCID: PMC6858523 DOI: 10.1038/s41467-019-12875-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/25/2019] [Indexed: 12/03/2022]  Open
220
Karandashev K, Vaníček J. A combined on-the-fly/interpolation procedure for evaluating energy values needed in molecular simulations. J Chem Phys 2019;151:174116. [PMID: 31703487 DOI: 10.1063/1.5124469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
221
Cheng L, Kovachki NB, Welborn M, Miller TF. Regression Clustering for Improved Accuracy and Training Costs with Molecular-Orbital-Based Machine Learning. J Chem Theory Comput 2019;15:6668-6677. [DOI: 10.1021/acs.jctc.9b00884] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
222
Meyer R, Schmuck KS, Hauser AW. Machine Learning in Computational Chemistry: An Evaluation of Method Performance for Nudged Elastic Band Calculations. J Chem Theory Comput 2019;15:6513-6523. [PMID: 31553610 DOI: 10.1021/acs.jctc.9b00708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
223
A fast neural network approach for direct covariant forces prediction in complex multi-element extended systems. NAT MACH INTELL 2019. [DOI: 10.1038/s42256-019-0098-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
224
Dubbeldam D, Walton KS, Vlugt TJH, Calero S. Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900135] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
225
Westermayr J, Gastegger M, Menger MFSJ, Mai S, González L, Marquetand P. Machine learning enables long time scale molecular photodynamics simulations. Chem Sci 2019;10:8100-8107. [PMID: 31857878 PMCID: PMC6849489 DOI: 10.1039/c9sc01742a] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]  Open
226
Li W, Ando Y. Dependence of a cooling rate on structural and vibrational properties of amorphous silicon: A neural network potential-based molecular dynamics study. J Chem Phys 2019;151:114101. [DOI: 10.1063/1.5114652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
227
Löpez CA, Vesselinov VV, Gnanakaran S, Alexandrov BS. Unsupervised Machine Learning for Analysis of Phase Separation in Ternary Lipid Mixture. J Chem Theory Comput 2019;15:6343-6357. [PMID: 31476122 DOI: 10.1021/acs.jctc.9b00074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
228
Herr JE, Koh K, Yao K, Parkhill J. Compressing physics with an autoencoder: Creating an atomic species representation to improve machine learning models in the chemical sciences. J Chem Phys 2019;151:084103. [DOI: 10.1063/1.5108803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]  Open
229
Soorkia S, Jouvet C, Grégoire G. UV Photoinduced Dynamics of Conformer-Resolved Aromatic Peptides. Chem Rev 2019;120:3296-3327. [DOI: 10.1021/acs.chemrev.9b00316] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
230
Feng Q, Lee SS, Kornmann B. A Toolbox for Organelle Mechanobiology Research-Current Needs and Challenges. MICROMACHINES 2019;10:E538. [PMID: 31426349 PMCID: PMC6723503 DOI: 10.3390/mi10080538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
231
Jonas E, Kuhn S. Rapid prediction of NMR spectral properties with quantified uncertainty. J Cheminform 2019;11:50. [PMID: 31388784 PMCID: PMC6684566 DOI: 10.1186/s13321-019-0374-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/29/2019] [Indexed: 11/26/2022]  Open
232
Kulik HJ. Making machine learning a useful tool in the accelerated discovery of transition metal complexes. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1439] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
233
Zubatyuk R, Smith JS, Leszczynski J, Isayev O. Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network. SCIENCE ADVANCES 2019;5:eaav6490. [PMID: 31448325 PMCID: PMC6688864 DOI: 10.1126/sciadv.aav6490] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 06/27/2019] [Indexed: 05/06/2023]
234
Smith JS, Nebgen BT, Zubatyuk R, Lubbers N, Devereux C, Barros K, Tretiak S, Isayev O, Roitberg AE. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nat Commun 2019;10:2903. [PMID: 31263102 PMCID: PMC6602931 DOI: 10.1038/s41467-019-10827-4] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/29/2019] [Indexed: 01/01/2023]  Open
235
Singh SK, Bejagam KK, An Y, Deshmukh SA. Machine-Learning Based Stacked Ensemble Model for Accurate Analysis of Molecular Dynamics Simulations. J Phys Chem A 2019;123:5190-5198. [DOI: 10.1021/acs.jpca.9b03420] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
236
Eckhoff M, Behler J. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5. J Chem Theory Comput 2019;15:3793-3809. [PMID: 31091097 DOI: 10.1021/acs.jctc.8b01288] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
237
Brorsen KR. Reproducing global potential energy surfaces with continuous-filter convolutional neural networks. J Chem Phys 2019;150:204104. [DOI: 10.1063/1.5093908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
238
Grazioli G, Roy S, Butts CT. Predicting Reaction Products and Automating Reactive Trajectory Characterization in Molecular Simulations with Support Vector Machines. J Chem Inf Model 2019;59:2753-2764. [DOI: 10.1021/acs.jcim.9b00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
239
Unke OT, Meuwly M. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges. J Chem Theory Comput 2019;15:3678-3693. [DOI: 10.1021/acs.jctc.9b00181] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
240
Willatt MJ, Musil F, Ceriotti M. Atom-density representations for machine learning. J Chem Phys 2019;150:154110. [DOI: 10.1063/1.5090481] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
241
Sauceda HE, Chmiela S, Poltavsky I, Müller KR, Tkatchenko A. Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces. J Chem Phys 2019;150:114102. [DOI: 10.1063/1.5078687] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
242
Häse F, Fdez Galván I, Aspuru-Guzik A, Lindh R, Vacher M. How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry. Chem Sci 2019;10:2298-2307. [PMID: 30881655 PMCID: PMC6385677 DOI: 10.1039/c8sc04516j] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 01/11/2023]  Open
243
Tao Y, Zou W, Sethio D, Verma N, Qiu Y, Tian C, Cremer D, Kraka E. In Situ Measure of Intrinsic Bond Strength in Crystalline Structures: Local Vibrational Mode Theory for Periodic Systems. J Chem Theory Comput 2019;15:1761-1776. [DOI: 10.1021/acs.jctc.8b01279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
244
Christensen AS, Faber FA, von Lilienfeld OA. Operators in quantum machine learning: Response properties in chemical space. J Chem Phys 2019;150:064105. [DOI: 10.1063/1.5053562] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
245
Wang H, Yang W. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network. J Chem Theory Comput 2019;15:1409-1417. [PMID: 30550274 DOI: 10.1021/acs.jctc.8b00895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
246
Quantum-Chemical Insights from Interpretable Atomistic Neural Networks. EXPLAINABLE AI: INTERPRETING, EXPLAINING AND VISUALIZING DEEP LEARNING 2019. [DOI: 10.1007/978-3-030-28954-6_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
247
Dinh VP, Huynh TDT, Le HM, Nguyen VD, Dao VA, Hung NQ, Tuyen LA, Lee S, Yi J, Nguyen TD, Tan LV. Insight into the adsorption mechanisms of methylene blue and chromium(iii) from aqueous solution onto pomelo fruit peel. RSC Adv 2019;9:25847-25860. [PMID: 35530102 PMCID: PMC9070119 DOI: 10.1039/c9ra04296b] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 12/07/2022]  Open
248
Plasser F, Gómez S, Menger MFSJ, Mai S, González L. Highly efficient surface hopping dynamics using a linear vibronic coupling model. Phys Chem Chem Phys 2018;21:57-69. [PMID: 30306987 DOI: 10.1039/c8cp05662e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
249
Schütt KT, Kessel P, Gastegger M, Nicoli KA, Tkatchenko A, Müller KR. SchNetPack: A Deep Learning Toolbox For Atomistic Systems. J Chem Theory Comput 2018;15:448-455. [PMID: 30481453 DOI: 10.1021/acs.jctc.8b00908] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
250
Zaspel P, Huang B, Harbrecht H, von Lilienfeld OA. Boosting Quantum Machine Learning Models with a Multilevel Combination Technique: Pople Diagrams Revisited. J Chem Theory Comput 2018;15:1546-1559. [DOI: 10.1021/acs.jctc.8b00832] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
PrevPage 5 of 6 123456Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA