201
|
Helinska A, Krupa M, Archacka K, Czerwinska AM, Streminska W, Janczyk-Ilach K, Ciemerych MA, Grabowska I. Myogenic potential of mouse embryonic stem cells lacking functional Pax7 tested in vitro by 5-azacitidine treatment and in vivo in regenerating skeletal muscle. Eur J Cell Biol 2016; 96:47-60. [PMID: 28017376 DOI: 10.1016/j.ejcb.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
Regeneration of skeletal muscle relies on the presence of satellite cells. Satellite cells deficiency accompanying some degenerative diseases is the reason for the search for the "replacement cells" that can be used in the muscle therapies. Due to their unique properties embryonic stem cells (ESCs), as well as myogenic cells derived from them, are considered as a promising source of therapeutic cells. Among the factors crucial for the specification of myogenic precursor cells is Pax7 that sustains proper function of satellite cells. In our previous studies we showed that ESCs lacking functional Pax7 are able to form myoblasts in vitro when differentiated within embryoid bodies and their outgrowths. In the current study we showed that ESCs lacking functional Pax7, cultured in vitro in monolayer in the medium supplemented with horse serum and 5azaC, expressed higher levels of factors associated with myogenesis, such as Pdgfra, Pax3, Myf5, and MyoD. Importantly, skeletal myosin immunolocalization confirmed that myogenic differentiation of ESCs was more effective in case of cells lacking Pax7. Our in vivo studies showed that ESCs transplanted into regenerating skeletal muscles were detectable at day 7 of regeneration and the number of Pax7-/- ESCs detected was significantly higher than of control cells. Our results support the concept that lack of functional Pax7 promotes proliferation of differentiating ESCs and for this reason more of them can turn into myogenic lineage.
Collapse
Affiliation(s)
- Anita Helinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Maciej Krupa
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Areta M Czerwinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|
202
|
Kawano F, Ono Y, Fujita R, Watanabe A, Masuzawa R, Shibata K, Hasegawa S, Nakata K, Nakai N. Prenatal myonuclei play a crucial role in skeletal muscle hypertrophy in rodents. Am J Physiol Cell Physiol 2016; 312:C233-C243. [PMID: 27927611 DOI: 10.1152/ajpcell.00151.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/21/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022]
Abstract
Multinucleated muscle fibers are formed by the fusion of myogenic progenitor cells during embryonic and fetal myogenesis. However, the role of prenatally incorporated myonuclei in the skeletal muscle fibers of adult animals is poorly understood. We demonstrated, using muscle-specific reporter mice, that the prenatal myonuclei remained in the adult soleus muscle, although cardiotoxin injection caused the loss of prenatal myonuclei. Overloading by the tendon transection of synergists failed to induce compensatory hypertrophy in regenerated soleus muscle fibers of adult rats, whereas unloading by tail suspension normally induced the fiber atrophy. Loss of hypertrophying function correlated with the lowered histone acetylation at the transcription start site of Igf1r gene, which was one of the genes that did not respond to the overloading. These parameters were improved by the transplantation of cells harvested from the juvenile soleus muscles of neonatal rats in association with enhanced histone acetylation of Igf1r gene. These results indicated that the presence of prenatal myonuclei was closely related to the status of histone acetylation, which could regulate the responsiveness of muscle fibers to physiological stimuli.
Collapse
Affiliation(s)
- Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Japan;
| | - Yusuke Ono
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Ryo Fujita
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Atsuya Watanabe
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Japan
| | - Ryo Masuzawa
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Japan
| | - Kazuhiro Shibata
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Japan
| | | | - Ken Nakata
- Graduate School of Medicine, Osaka University, Suita, Japan; and
| | - Naoya Nakai
- School of Human Cultures, University of Shiga Prefecture, Hikone, Japan
| |
Collapse
|
203
|
Liu Y, Jiang B, Fu C, Hao R. Cloning and characterization of adipogenin and its overexpression enhances fat accumulation of bovine myosatellite cells. Gene 2016; 601:27-35. [PMID: 27914980 DOI: 10.1016/j.gene.2016.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022]
Abstract
Adipogenin (ADIG) is an adipocyte-specific membrane protein highly expressed in adipose tissues and is increased during the adipocyte differentiation. However, the roles and mechanisms of ADIG on fat accumulation and adipocyte differentiation in ex vivo still largely unknown. In this study, we isolated bovine myosatellite cells based on adhesion characteristics to investigate whether ADIG overexpression could promote trans-differentiation and increase fat accumulation in myosatellite cells. Immunofluorescence labeling was then used for the phenotypic characteristics of myosatellite. Our results showed that, after induction of differentiation, adenovirus mediated ADIG overexpression could upregulate expression level of PPARγ, and Oil Red O staining showed larger lipid drops compared to control groups. In consistent, key components of Hh signaling pathway were down regulated when infected with ADIG adenovirus, even though treated with inhibitor of Hh signaling pathway together could not induce further decrease. In addition, bioinformatics analysis of ADIG was also performed for its structure and function.
Collapse
Affiliation(s)
- Yang Liu
- Henan Collaborative Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China; Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Bijie Jiang
- Henan Collaborative Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China.
| | - Changzhen Fu
- College of Life Science and Technology, Dalian University, Dalian, Liaoning, 116622, China
| | - Ruijie Hao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, 464000, China
| |
Collapse
|
204
|
Scicchitano BM, Sica G, Musarò A. Stem Cells and Tissue Niche: Two Faces of the Same Coin of Muscle Regeneration. Eur J Transl Myol 2016; 26:6125. [PMID: 28078070 PMCID: PMC5220217 DOI: 10.4081/ejtm.2016.6125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Capacity of adult muscle to regenerate in response to injury stimuli represents an important homeostatic process. Regeneration is a highly coordinated program that partially recapitulates the embryonic developmental program. However, muscle regeneration is severely compromised in several pathological conditions. It is likely that the restricted tissue repair program under pathological conditions is due to either progressive loss of stem cell populations or to missing signals that limit the damaged tissues to efficiently activate a regenerative program. It is therefore plausible that loss of control over these cell fates might lead to a pathological cell transdifferentiation, limiting the ability of a pathological muscle to sustain an efficient regenerative process. The critical role of microenvironment on stem cells activity and muscle regeneration is discussed.
Collapse
Affiliation(s)
| | - Gigliola Sica
- Institute of Histology and Embryology, Catholic University School of Medicine , Rome, Italy
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti; DAHFMO-Unit of Histology and Medical Embryology, IIM; Sapienza University of Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Italy
| |
Collapse
|
205
|
Bazgir B, Fathi R, Rezazadeh Valojerdi M, Mozdziak P, Asgari A. Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair. CELL JOURNAL 2016; 18:473-484. [PMID: 28042532 PMCID: PMC5086326 DOI: 10.22074/cellj.2016.4714] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
Abstract
Satellite cells (SCs) are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cells are good candidates for cell therapy due to their self-renewal capabilities and presence in an undifferentiated form. Presently, a significant gap exists between our knowledge of SCs behavior and their application as a means for human skeletal muscle tissue repair and regeneration. Both physiological and pathological stimuli potentially affect SCs activation, proliferation, and terminal differentiation the former category being the focus of this article. Activation of SCs occurs following exercise, post-training micro-injuries, and electrical stimulation. Exercise, as a potent and natural stimulus, is at the center of numerous studies on SC activation and relevant fields. According to research, different exercise modalities end with various effects. This review article attempts to picture the state of the art of the SCs life span and their engagement in muscle regeneration and hypertrophy in exercise.
Collapse
Affiliation(s)
- Behzad Bazgir
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Alireza Asgari
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Aerospace and Subaquatic Medicine Faculty, Aerospace Medicine Research Center, AJA Medical Sciences
University, Tehran, Iran
| |
Collapse
|
206
|
Czerwinska AM, Nowacka J, Aszer M, Gawrzak S, Archacka K, Fogtman A, Iwanicka-Nowicka R, Jańczyk-Ilach K, Koblowska M, Ciemerych MA, Grabowska I. Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7. Cell Cycle 2016; 15:2931-2942. [PMID: 27610933 PMCID: PMC5105925 DOI: 10.1080/15384101.2016.1231260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor Pax7 plays a key role during embryonic myogenesis and in adult organisms in that it sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Recently we have shown that lack of Pax7 does not prevent the myogenic differentiation of pluripotent stem cells. In the current work we show that the absence of functional Pax7 in differentiating embryonic stem cells modulates cell cycle facilitating their proliferation. Surprisingly, deregulation of Pax7 function also positively impacts at the proliferation of mouse embryonic fibroblasts. Such phenotypes seem to be executed by modulating the expression of positive cell cycle regulators, such as cyclin E.
Collapse
Affiliation(s)
- Areta M Czerwinska
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Joanna Nowacka
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Magdalena Aszer
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Sylwia Gawrzak
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Karolina Archacka
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Anna Fogtman
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Roksana Iwanicka-Nowicka
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland.,c Department of Systems Biology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Katarzyna Jańczyk-Ilach
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Marta Koblowska
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland.,c Department of Systems Biology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Maria A Ciemerych
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Iwona Grabowska
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| |
Collapse
|
207
|
Kowalski K, Archacki R, Archacka K, Stremińska W, Paciorek A, Gołąbek M, Ciemerych MA, Brzoska E. Stromal derived factor-1 and granulocyte-colony stimulating factor treatment improves regeneration of Pax7-/- mice skeletal muscles. J Cachexia Sarcopenia Muscle 2016; 7:483-96. [PMID: 27239402 PMCID: PMC4863826 DOI: 10.1002/jcsm.12092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/03/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The skeletal muscle has the ability to regenerate after injury. This process is mediated mainly by the muscle specific stem cells, that is, satellite cells. In case of extensive damage or under pathological conditions, such as muscular dystrophy, the process of muscle reconstruction does not occur properly. The aim of our study was to test whether mobilized stem cells, other than satellite cells, could participate in skeletal muscle reconstruction. METHODS Experiments were performed on wild-type mice and mice lacking the functional Pax7 gene, that is, characterized by the very limited satellite cell population. Gastrocnemius mice muscles were injured by cardiotoxin injection, and then the animals were treated by stromal derived factor-1 (Sdf-1) with or without granulocyte-colony stimulating factor (G-CSF) for 4 days. The muscles were subjected to thorough assessment of the tissue regeneration process using histological and in vitro methods, as well as evaluation of myogenic factors' expression at the transcript and protein levels. RESULTS Stromal derived factor-1 alone and Sdf-1 in combination with G-CSF significantly improved the regeneration of Pax7-/- skeletal muscles. The Sdf-1 and G-CSF treatment caused an increase in the number of mononucleated cells associated with muscle fibres. Further analysis showed that Sdf-1 and G-CSF treatment led to the rise in the number of CD34+ and Cxcr4+ cells and expression of Cxcr7. CONCLUSIONS Stromal derived factor-1 and G-CSF stimulated regeneration of the skeletal muscles deficient in satellite cells. We suggest that mobilized CD34+, Cxcr4+, and Cxcr7+ cells can efficiently participate in the skeletal muscle reconstruction and compensate for the lack of satellite cells.
Collapse
Affiliation(s)
- Kamil Kowalski
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Rafał Archacki
- Laboratory of Systems Biology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | | | - Anna Paciorek
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Magdalena Gołąbek
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| |
Collapse
|
208
|
Costamagna D, Mommaerts H, Sampaolesi M, Tylzanowski P. Noggin inactivation affects the number and differentiation potential of muscle progenitor cells in vivo. Sci Rep 2016; 6:31949. [PMID: 27573479 PMCID: PMC5004166 DOI: 10.1038/srep31949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/28/2016] [Indexed: 10/25/2022] Open
Abstract
Inactivation of Noggin, a secreted antagonist of Bone Morphogenetic Proteins (BMPs), in mice leads, among others, to severe malformations of the appendicular skeleton and defective skeletal muscle fibers. To determine the molecular basis of the phenotype, we carried out a histomorphological and molecular analysis of developing muscles Noggin(-/-) mice. We show that in 18.5 dpc embryos there is a marked reduction in muscle fiber size and a failure of nuclei migration towards the cell membrane. Molecularly, the absence of Noggin results in an increased BMP signaling in muscle tissue as shown by the increase in SMAD1/5/8 phosphorylation, concomitant with the induction of BMP target genes such as Id1, 2, 3 as well as Msx1. Finally, upon removal of Noggin, the number of mesenchymal Pax7(+) muscle precursor cells is reduced and they are more prone to differentiate into adipocytes in vitro. Thus, our results highlight the importance of Noggin/BMP balance for myogenic commitment of early fetal progenitor cells.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology Lab, Stem Cell Biology and Embryology, Dept. Development and Regeneration, KU Leuven, Belgium.,Laboratory of Experimental Medicine and Clinical Pathology, Dept. Clinical and Biological Sciences, University of Turin, Italy
| | - Hendrik Mommaerts
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, KU Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Stem Cell Biology and Embryology, Dept. Development and Regeneration, KU Leuven, Belgium.,Division of Human Anatomy, Dept. of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Przemko Tylzanowski
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, KU Leuven, Belgium.,Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
| |
Collapse
|
209
|
Colasanto MP, Eyal S, Mohassel P, Bamshad M, Bonnemann CG, Zelzer E, Moon AM, Kardon G. Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3. Dis Model Mech 2016; 9:1257-1269. [PMID: 27491074 PMCID: PMC5117227 DOI: 10.1242/dmm.025874] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/28/2016] [Indexed: 01/02/2023] Open
Abstract
In the vertebrate limb over 40 muscles are arranged in a precise pattern of attachment via muscle connective tissue and tendon to bone and provide an extensive range of motion. How the development of somite-derived muscle is coordinated with the development of lateral plate-derived muscle connective tissue, tendon and bone to assemble a functional limb musculoskeletal system is a long-standing question. Mutations in the T-box transcription factor, TBX3, have previously been identified as the genetic cause of ulnar-mammary syndrome (UMS), characterized by distinctive defects in posterior forelimb bones. Using conditional mutagenesis in mice, we now show that TBX3 has a broader role in limb musculoskeletal development. TBX3 is not only required for development of posterior forelimb bones (ulna and digits 4 and 5), but also for a subset of posterior muscles (lateral triceps and brachialis) and their bone eminence attachment sites. TBX3 specification of origin and insertion sites appears to be tightly linked with whether these particular muscles develop and may represent a newly discovered mechanism for specification of anatomical muscles. Re-examination of an individual with UMS reveals similar previously unrecognized muscle and bone eminence defects and indicates a conserved role for TBX3 in regulating musculoskeletal development. Summary: The ulnar-mammary syndrome (UMS) gene, Tbx3, is required for development of posterior forelimb bones, muscles and their attachment sites. This broadens the UMS phenotype and suggests a new muscle-specification model.
Collapse
Affiliation(s)
- Mary P Colasanto
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Shai Eyal
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Building 35, Room 2A-116, MSC 3705, 35 Convent Drive, Bethesda, MD 20892-3705, USA
| | - Michael Bamshad
- University of Washington School of Medicine, Department of Pediatrics, Division of Genetic Medicine, 1959 NE Pacific Street HSB I-607-F, Seattle, WA 98195-7371, USA
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Building 35, Room 2A-116, MSC 3705, 35 Convent Drive, Bethesda, MD 20892-3705, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Anne M Moon
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
210
|
Regenerative decline of stem cells in sarcopenia. Mol Aspects Med 2016; 50:109-17. [DOI: 10.1016/j.mam.2016.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 01/27/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
|
211
|
Zhu H, Xiao F, Wang G, Wei X, Jiang L, Chen Y, Zhu L, Wang H, Diao Y, Wang H, Ip N, Cheung T, Wu Z. STAT3 Regulates Self-Renewal of Adult Muscle Satellite Cells during Injury-Induced Muscle Regeneration. Cell Rep 2016; 16:2102-2115. [DOI: 10.1016/j.celrep.2016.07.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/07/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
|
212
|
Shibaguchi T, Sugiura T, Fujitsu T, Nomura T, Yoshihara T, Naito H, Yoshioka T, Ogura A, Ohira Y. Effects of icing or heat stress on the induction of fibrosis and/or regeneration of injured rat soleus muscle. J Physiol Sci 2016; 66:345-57. [PMID: 26759024 PMCID: PMC10717209 DOI: 10.1007/s12576-015-0433-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/18/2015] [Indexed: 11/24/2022]
Abstract
The effects of icing or heat stress on the regeneration of injured soleus muscle were investigated in male Wistar rats. Bupivacaine was injected into soleus muscles bilaterally to induce muscle injury. Icing (0 °C, 20 min) was carried out immediately after the injury. Heat stress (42 °C, 30 min) was applied every other day during 2-14 days after the bupivacaine injection. Injury-related increase in collagen deposition was promoted by icing. However, the level of collagen deposition in heat-stressed animals was maintained at control levels throughout the experimental period and was significantly lower than that in icing-treated animals at 15 and 28 days after bupivacaine injection. Furthermore, the recovery of muscle mass, protein content, and muscle fiber size of injured soleus toward control levels was partially facilitated by heat stress. These results suggest that, compared with icing, heat stress may be a beneficial treatment for successful muscle regeneration at least by reducing fibrosis.
Collapse
Affiliation(s)
- Tsubasa Shibaguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-17 Machikaneyama-cho, Toyonaka City, Osaka, 560-0043, Japan.
| | - Takao Sugiura
- Department of Exercise and Health Sciences, Faculty of Education, Yamaguchi University, Yamaguchi City, Yamaguchi, Japan
| | - Takanori Fujitsu
- Department of Exercise and Health Sciences, Faculty of Education, Yamaguchi University, Yamaguchi City, Yamaguchi, Japan
| | - Takumi Nomura
- Department of Exercise and Health Sciences, Faculty of Education, Yamaguchi University, Yamaguchi City, Yamaguchi, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai City, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Inzai City, Chiba, Japan
| | | | - Akihiko Ogura
- Graduate School of Frontier Biosciences, Osaka University, 1-17 Machikaneyama-cho, Toyonaka City, Osaka, 560-0043, Japan
| | - Yoshinobu Ohira
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Kyoto, Japan
| |
Collapse
|
213
|
Pasut A, Chang NC, Gurriaran-Rodriguez U, Faulkes S, Yin H, Lacaria M, Ming H, Rudnicki MA. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation. Cell Rep 2016; 16:333-343. [PMID: 27346341 DOI: 10.1016/j.celrep.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 04/22/2016] [Accepted: 05/21/2016] [Indexed: 12/22/2022] Open
Abstract
Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here, we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7(-/-) satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall, these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle.
Collapse
Affiliation(s)
- Alessandra Pasut
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Natasha C Chang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Uxia Gurriaran-Rodriguez
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Sharlene Faulkes
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Hang Yin
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Melanie Lacaria
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Hong Ming
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
214
|
Alonso-Martin S, Rochat A, Mademtzoglou D, Morais J, de Reyniès A, Auradé F, Chang THT, Zammit PS, Relaix F. Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis. Front Cell Dev Biol 2016; 4:58. [PMID: 27446912 PMCID: PMC4914952 DOI: 10.3389/fcell.2016.00058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/02/2016] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscle growth and regeneration require a population of muscle stem cells, the satellite cells, located in close contact to the myofiber. These cells are specified during fetal and early postnatal development in mice from a Pax3/7 population of embryonic progenitor cells. As little is known about the genetic control of their formation and maintenance, we performed a genome-wide chronological expression profile identifying the dynamic transcriptomic changes involved in establishment of muscle stem cells through life, and acquisition of muscle stem cell properties. We have identified multiple genes and pathways associated with satellite cell formation, including set of genes specifically induced (EphA1, EphA2, EfnA1, EphB1, Zbtb4, Zbtb20) or inhibited (EphA3, EphA4, EphA7, EfnA2, EfnA3, EfnA4, EfnA5, EphB2, EphB3, EphB4, EfnBs, Zfp354c, Zcchc5, Hmga2) in adult stem cells. Ephrin receptors and ephrins ligands have been implicated in cell migration and guidance in many tissues including skeletal muscle. Here we show that Ephrin receptors and ephrins ligands are also involved in regulating the adult myogenic program. Strikingly, impairment of EPHB1 function in satellite cells leads to increased differentiation at the expense of self-renewal in isolated myofiber cultures. In addition, we identified new transcription factors, including several zinc finger proteins. ZFP354C and ZCCHC5 decreased self-renewal capacity when overexpressed, whereas ZBTB4 increased it, and ZBTB20 induced myogenic progression. The architectural and transcriptional regulator HMGA2 was involved in satellite cell activation. Together, our study shows that transcriptome profiling coupled with myofiber culture analysis, provides an efficient system to identify and validate candidate genes implicated in establishment/maintenance of muscle stem cells. Furthermore, tour de force transcriptomic profiling provides a wealth of data to inform for future stem cell-based muscle therapies.
Collapse
Affiliation(s)
- Sonia Alonso-Martin
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Anne Rochat
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Despoina Mademtzoglou
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Jessica Morais
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer Paris, France
| | - Frédéric Auradé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, Center for Research in Myology Paris, France
| | - Ted Hung-Tse Chang
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK
| | - Frédéric Relaix
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France; Etablissement Français du SangCréteil, France; APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy and Centre de Référence des Maladies Neuromusculaires GNMHCréteil, France
| |
Collapse
|
215
|
Yang Q, Yu J, Yu B, Huang Z, Zhang K, Wu D, He J, Mao X, Zheng P, Chen D. PAX3 + skeletal muscle satellite cells retain long-term self-renewal and proliferation. Muscle Nerve 2016; 54:943-951. [PMID: 27014961 DOI: 10.1002/mus.25117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Different populations of satellite cells (SCs) have been identified, but their functional difference remains unclear. METHODS We used cell-surface markers and paired box transcription factor 3 (Pax3)/paired box transcription factor 7 (Pax7) expression to separate SC populations. In addition, self-renewal, proliferation, and differentiation abilities of each population were analyzed. RESULTS Pax3+ /Pax7- SCs exhibited higher proliferation ability characterized by forming clusters of myogenic colonies with more self-renewing cells after several passages, while Pax3- /Pax7+ SCs had faster differentiation. The myotubes derived from Pax3+ /Pax7- SCs tended to express slow-myosin heavy chain and exhibited rhythmic contraction, while myotubes originating from Pax3- /Pax7+ SCs primarily formed fast-myosin heavy chains characterized by transitory contraction. CONCLUSIONS Pax3+ /Pax7- SCs exhibited the ability of long-term self-renewal and proliferation, whereas Pax3- /Pax7+ SCs demonstrated faster differentiation. Muscle Nerve 54: 943-951, 2016.
Collapse
Affiliation(s)
- Qiumei Yang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Zhiqing Huang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
216
|
Qahar M, Takuma Y, Mizunoya W, Tatsumi R, Ikeuchi Y, Nakamura M. Semaphorin 3A promotes activation of Pax7, Myf5, and MyoD through inhibition of emerin expression in activated satellite cells. FEBS Open Bio 2016; 6:529-39. [PMID: 27239431 PMCID: PMC4880721 DOI: 10.1002/2211-5463.12050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 02/20/2016] [Indexed: 01/07/2023] Open
Abstract
We previously showed that Semaphorin 3A (Sema3A) expression was induced when quiescent muscle satellite cells were stimulated by hepatocyte growth factor and became activated satellite cells (ASCs). However, how Sema3A regulates genes in the early phase of ASCs remains unclear. In this study, we investigated whether Sema3A signaling can regulate the early phase of ASCs, an important satellite cell stage for postnatal growth, repair, and maintenance of skeletal muscle. We showed that expression of the myogenic proliferation regulatory factors Pax7 and Myf5 was decreased in myoblasts transfected with Sema3A siRNA. These cells failed to activate expression MyoD, another myogenic proliferation regulatory factor, during differentiation. Interestingly, some of the Sema3A-depleted cells did not express Pax7 and MyoD and had enlarged nuclei and very large cytoplasmic areas. We also observed that Pax7 and Myf5 expression was increased in Myc-Sema3A overexpressing myoblasts. BrdU analysis indicated that Sema3A regulated proliferation of ASCs. These findings suggest that Sema3A signaling can modulate expression of Pax7, Myf5, and MyoD. Moreover, we found that expression of emerin, an inner nuclear membrane protein, was regulated by Sema3A signaling. Emerin was identified by positional cloning as the gene responsible for the X-linked form of Emery-Dreifuss muscular dystrophy (X-EDMD). In conclusion, our results support a role for Sema3A in maintaining ASCs through regulation, via emerin, of Pax7, Myf5, and MyoD expression.
Collapse
Affiliation(s)
- Mulan Qahar
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Yuko Takuma
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| |
Collapse
|
217
|
|
218
|
González N, Moresco JJ, Cabezas F, de la Vega E, Bustos F, Yates JR, Olguín HC. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors. PLoS One 2016; 11:e0154919. [PMID: 27144531 PMCID: PMC4856311 DOI: 10.1371/journal.pone.0154919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (re)acquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate.
Collapse
Affiliation(s)
- Natalia González
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - James J. Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, United States of America
| | - Felipe Cabezas
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Eduardo de la Vega
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Francisco Bustos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, United States of America
| | - Hugo C. Olguín
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- * E-mail:
| |
Collapse
|
219
|
Putarjunan A, Torii KU. Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cell-type differentiation in plants and animals. Dev Growth Differ 2016; 58:341-54. [PMID: 27125444 PMCID: PMC11520973 DOI: 10.1111/dgd.12282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/01/2024]
Abstract
Although the last common unicellular ancestor of plants and animals diverged several billion years ago, and while having developed unique developmental programs that facilitate differentiation and proliferation specific to plant and animal systems, there still exists a high degree of conservation in the logic regulating these developmental processes within these two seemingly diverse kingdoms. Stomatal differentiation in plants involves a series of orchestrated cell division events mediated by a family of closely related bHLH transcription factors (TFs) to create a pair of mature guard cells. These TFs are in turn regulated by a number of upstream signaling components that ultimately function to achieve lineage specific differentiation and organized tissue patterning on the plant epidermis. The logic involved in the specification of the myogenic differentiation program in animals is intriguingly similar to stomatal differentiation in plants: Closely-related myogenic bHLHs, known as MRFs (Myogenic Regulatory Factors) provide lineage specificity essential for cell-fate determination. These MRFs, similar to the bHLHs in plants, are regulated by several upstream signaling cascades that succinctly regulate each differentiation step, leading to the production of mature muscle fibers. This review aims at providing a perspective on the emerging parallels in the logic employed by key bHLH transcription factors and their upstream signaling components that function to precisely regulate key cell-state transition events in the stomatal as well as myogenic cell lineages.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
220
|
Shan T, Zhang P, Xiong Y, Wang Y, Kuang S. Lkb1 deletion upregulates Pax7 expression through activating Notch signaling pathway in myoblasts. Int J Biochem Cell Biol 2016; 76:31-8. [PMID: 27131604 DOI: 10.1016/j.biocel.2016.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/19/2016] [Accepted: 04/26/2016] [Indexed: 11/28/2022]
Abstract
Satellite cells play crucial roles in mediating the growth, maintenance, and repair of postnatal skeletal muscle. Activated satellite cells (myoblasts) can divide symmetrically or asymmetrically to generate progenies that self-renewal, proliferate or differentiate. Pax7 is a defining marker of quiescent and activated satellite cells, but not differentiated myoblast. We demonstrate here that deletion of Lkb1 upregulates Pax7 expression in myoblasts and inhibits asymmetric divisions that generate differentiating progenies. Furthermore, we find that Lkb1 activates the Notch signaling pathway, which subsequently increases Pax7 expression and promotes self-renewal and proliferation while inhibiting differentiation. Mechanistic studies reveal that Lkb1 regulates Notch activation through AMPK-mTOR pathway in myoblasts. Together, these results establish a key role of Lkb1 in regulating myoblast division and cell fates choices.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Pengpeng Zhang
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yan Xiong
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yizhen Wang
- Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shihuan Kuang
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
221
|
Berti F, Nogueira JM, Wöhrle S, Sobreira DR, Hawrot K, Dietrich S. Time course and side-by-side analysis of mesodermal, pre-myogenic, myogenic and differentiated cell markers in the chicken model for skeletal muscle formation. J Anat 2016; 227:361-82. [PMID: 26278933 PMCID: PMC4560570 DOI: 10.1111/joa.12353] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2015] [Indexed: 12/11/2022] Open
Abstract
The chicken is a well-established model for amniote (including human) skeletal muscle formation because the developmental anatomy of chicken skeletal muscle matches that of mammals. The accessibility of the chicken in the egg as well as the sequencing of its genome and novel molecular techniques have raised the profile of this model. Over the years, a number of regulatory and marker genes have been identified that are suited to monitor the progress of skeletal myogenesis both in wildtype and in experimental embryos. However, in the various studies, differing markers at different stages of development have been used. Moreover, contradictory results on the hierarchy of regulatory factors are now emerging, and clearly, factors need to be able to cooperate. Thus, a reference paper describing in detail and side-by-side the time course of marker gene expression during avian myogenesis is needed. We comparatively analysed onset and expression patterns of the key markers for the chicken immature paraxial mesoderm, for muscle-competent cells, for cells committed to myogenesis and for cells entering terminal differentiation. We performed this analysis from stages when the first paraxial mesoderm is being laid down to the stage when mesoderm formation comes to a conclusion. Our data show that, although the sequence of marker gene expression is the same at the various stages of development, the timing of the expression onset is quite different. Moreover, marker gene expression in myogenic cells being deployed from the dorsomedial and ventrolateral lips of the dermomyotome is different from those being deployed from the rostrocaudal lips, suggesting different molecular programs. Furthermore, expression of Myosin Heavy Chain genes is overlapping but different along the length of a myotube. Finally, Mef2c is the most likely partner of Mrf proteins, and, in contrast to the mouse and more alike frog and zebrafish fish, chicken Mrf4 is co-expressed with MyoG as cells enter terminal differentiation.
Collapse
Affiliation(s)
- Federica Berti
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Júlia Meireles Nogueira
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Instituto de Ciências Biológicas, Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Svenja Wöhrle
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Débora Rodrigues Sobreira
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Katarzyna Hawrot
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Susanne Dietrich
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
222
|
Gan W, He H, Li L. Molecular cloning, characterisation and functional analysis of the duck Forkhead box O3 (FOXO3) gene. Br Poult Sci 2016; 57:143-50. [DOI: 10.1080/00071668.2015.1135503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
223
|
Jin W, Peng J, Jiang S. The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification. Biochem Biophys Rep 2016; 6:209-219. [PMID: 28955879 PMCID: PMC5600456 DOI: 10.1016/j.bbrep.2016.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle formation in vertebrates is derived from the paraxial mesoderm, which develops into myogenic precursor cells and finally differentiates into mature myofibers. This myogenic program involves temporal-spatial molecular events performed by transcription regulators (such as members of the Pax, MRFs and Six families) and signaling pathways (such as Wnts, BMP and Shh signaling). Epigenetic regulation, including histone post-translational modifications is crucial for controlling gene expression through recruitment of various chromatin-modifying enzymes that alter chromatin dynamics during myogenesis. The chromatin modifying enzymes are also recruited at regions of muscle gene regulation, coordinating transcription regulators to influence gene expression. In particular, the reversible methylation status of histone N-terminal tails provides the important regulatory mechanisms in either activation or repression of muscle genes. In this report, we review the recent literatures to deduce mechanisms underlying the epigenetic regulation of gene expression with a focus on histone methylation modification during embryo myogenesis and adult muscle regeneration. Recent results from different histone methylation/demethylation modifications have increased our understanding about the highly intricate layers of epigenetic regulations involved in myogenesis and cross-talk of histone enzymes with the muscle-specific transcriptional machinery. Myogenesis is influenced by regulation of transcription factors, signal pathways and post-transcriptional modifications. Histone methylation modifications as “on/off” switches regulated myogenic lineage commitment and differentiation. The myogenic regulatory factors and histone methylation modifications established dynamic regulatory mechanism.
Collapse
Key Words
- BMP4, bone morphogenic protein 4
- ChIP, chromatin immunoprecipitation
- Epigenetic
- H3K27, methylation of histone H3 lysine 27
- H3K4, methylation of histone H3 lysine 4
- H3K9, methylation of histone H3 lysine 9
- Histone methylation/demethylation modification
- KDMs, lysine demethyltransferases
- LSD1, lysine specific demethyltransferase 1
- MEF2, myocyte enhancer factor 2
- MRFs, myogenic regulatory factors
- Muscle differentiation
- Muscle progenitor cells
- Muscle regeneration
- Myogenesis
- PRC2, polycomb repressive complex 2
- SCs, satellite cells
- Shh, sonic hedgehog
- TSS, transcription start sites
- UTX, ubiquitously transcribed tetratricopeptide repeat, X chromosome
- bHLH, basic helix-loop-helix
- p38 MAPK, p38 mitogen-activated protein kinase
Collapse
Affiliation(s)
- Wei Jin
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Siwen Jiang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Projects in the Cooperative Innovation Center for Sustainable Pig Production of Wuhan, PR China
| |
Collapse
|
224
|
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2016; 5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Citation(s) in RCA: 479] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Florian Bentzinger
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
225
|
Tierney MT, Sacco A. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis. Trends Cell Biol 2016; 26:434-444. [PMID: 26948993 DOI: 10.1016/j.tcb.2016.02.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 12/12/2022]
Abstract
The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity.
Collapse
Affiliation(s)
- Matthew T Tierney
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
226
|
Lala-Tabbert N, Fu D, Wiper-Bergeron N. Induction of CCAAT/Enhancer-Binding Protein β Expression With the Phosphodiesterase Inhibitor Isobutylmethylxanthine Improves Myoblast Engraftment Into Dystrophic Muscle. Stem Cells Transl Med 2016; 5:500-10. [PMID: 26941360 DOI: 10.5966/sctm.2015-0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is the most common muscular dystrophy. Characterized by rounds of muscle degeneration and regeneration, DMD features progressive muscle wasting and is fatal. One approach for treatment is transplantation of muscle progenitor cells to repair and restore dystrophin expression to damaged muscle. However, the success of this approach has been limited by difficulties in isolating large numbers of myogenic progenitors with strong regenerative potential, poor engraftment, poor survival of donor cells, and limited migration in the diseased muscle. We demonstrate that induction of the transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) using the cyclic adenosine monophosphate phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) results in enhanced myoblast expansion in culture and increased satellite cell marker expression. When equal numbers of IBMX-treated cells were transplanted into dystrophic muscle, they contributed to muscle repair more efficiently than did vehicle-treated cells and engrafted into the satellite cell niche in higher numbers, demonstrating improved cell migration from the site of injury and enhanced survival after transplantation. Thus, pharmacologic stimulation of C/EBPβ expression reprograms myoblasts to a more stem cell-like state, promotes expansion in culture, and improves engraftment such that better transplantation outcomes are achieved. SIGNIFICANCE Duchenne muscular dystrophy is a genetic disorder for which no cure exists. One therapeutic approach is transplantation of myogenic progenitors to restore dystrophin to damaged muscle, but this approach is limited by poor engraftment of cultured myoblasts. Transient upregulation of CCAAT/enhancer-binding protein β in primary myoblasts using the phosphodiesterase isobutylmethylxanthine (IBMX) increases satellite cell marker expression in cultured myoblasts, improves their migration, and increases their survival after transplantation. When transplanted into C57BL/10ScSn-mdx/J mice , IBMX-treated myoblasts restored dystrophin expression and were able to occupy the satellite cell niche more efficiently than controls. A myoblast culture approach that reprograms myoblasts to a more primitive state, resulting in improved transplantation outcomes and reinvigorating research into myoblast transplantation as a viable therapeutic approach, is described.
Collapse
Affiliation(s)
- Neena Lala-Tabbert
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dechen Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
227
|
Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int 2016; 2016:1078686. [PMID: 27042182 PMCID: PMC4794588 DOI: 10.1155/2016/1078686] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.
Collapse
|
228
|
Marchildon F, Fu D, Lala-Tabbert N, Wiper-Bergeron N. CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia. Cell Death Dis 2016; 7:e2109. [PMID: 26913600 PMCID: PMC4849162 DOI: 10.1038/cddis.2016.4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 12/28/2022]
Abstract
CCAAT/enhancer binding protein beta (C/EBPβ), a transcription factor expressed in muscle satellite cells (SCs), inhibits the myogenic program and is downregulated early in differentiation. In a conditional null model in which C/EBPβ expression is knocked down in paired box protein 7+ (Pax7+) SCs, cardiotoxin (CTX) injury is poorly repaired, although muscle regeneration is efficient in control littermates. While myoblasts lacking C/EBPβ can differentiate efficiently in culture, after CTX injury poor regeneration was attributed to a smaller than normal Pax7+ population, which was not due to a failure of SCs to proliferate. Rather, the percentage of apoptotic SCs was increased in muscle lacking C/EBPβ. Given that an injury induced by BaCl2 is repaired with greater efficiency than controls in the absence of C/EBPβ, we investigated the inflammatory response following BaCl2 and CTX injury and found that the levels of interleukin-1β (IL-1β), a proinflammatory cytokine, were robustly elevated following CTX injury and could induce C/EBPβ expression in myoblasts. High levels of C/EBPβ expression in myoblasts correlated with resistance to apoptotic stimuli, while its loss increased sensitivity to thapsigargin-induced cell death. Using cancer cachexia as a model for chronic inflammation, we found that C/EBPβ expression was increased in SCs and myoblasts of tumor-bearing cachectic animals. Further, in cachectic conditional knockout animals lacking C/EBPβ in Pax7+ cells, the SC compartment was reduced because of increased apoptosis, and regeneration was impaired. Our findings indicate that the stimulation of C/EBPβ expression by IL-1β following muscle injury and in cancer cachexia acts to promote SC survival, and is therefore a protective mechanism for SCs and myoblasts in the face of inflammation.
Collapse
Affiliation(s)
- F Marchildon
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - D Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - N Lala-Tabbert
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - N Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
229
|
Tierney MT, Gromova A, Sesillo FB, Sala D, Spenlé C, Orend G, Sacco A. Autonomous Extracellular Matrix Remodeling Controls a Progressive Adaptation in Muscle Stem Cell Regenerative Capacity during Development. Cell Rep 2016; 14:1940-52. [PMID: 26904948 PMCID: PMC4778082 DOI: 10.1016/j.celrep.2016.01.072] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/22/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Muscle stem cells (MuSCs) exhibit distinct behavior during successive phases of developmental myogenesis. However, how their transition to adulthood is regulated is poorly understood. Here, we show that fetal MuSCs resist progenitor specification and exhibit altered division dynamics, intrinsic features that are progressively lost postnatally. After transplantation, fetal MuSCs expand more efficiently and contribute to muscle repair. Conversely, niche colonization efficiency increases in adulthood, indicating a balance between muscle growth and stem cell pool repopulation. Gene expression profiling identified several extracellular matrix (ECM) molecules preferentially expressed in fetal MuSCs, including tenascin-C, fibronectin, and collagen VI. Loss-of-function experiments confirmed their essential and stagespecific role in regulating MuSC function. Finally, fetal-derived paracrine factors were able to enhance adult MuSC regenerative potential. Together, these findings demonstrate that MuSCs change the way in which they remodel their microenvironment to direct stem cell behavior and support the unique demands of muscle development or repair.
Collapse
Affiliation(s)
- Matthew Timothy Tierney
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anastasia Gromova
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0685, USA
| | - Francesca Boscolo Sesillo
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Sala
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Caroline Spenlé
- Inserm U1109, MN3T Team, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, 3 Avenue Molière, 67200 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; LabEx Medalis, Université de Strasbourg, 67000 Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Gertraud Orend
- Inserm U1109, MN3T Team, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, 3 Avenue Molière, 67200 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; LabEx Medalis, Université de Strasbourg, 67000 Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
230
|
Sabillo A, Ramirez J, Domingo CR. Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis. Semin Cell Dev Biol 2016; 51:80-91. [PMID: 26853935 DOI: 10.1016/j.semcdb.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Xenopus laevis offers unprecedented access to the intricacies of muscle development. The large, robust embryos make it ideal for manipulations at both the tissue and molecular level. In particular, this model system can be used to fate map early muscle progenitors, visualize cell behaviors associated with somitogenesis, and examine the role of signaling pathways that underlie induction, specification, and differentiation of muscle. Several characteristics that are unique to X. laevis include myogenic waves with distinct gene expression profiles and the late formation of dermomyotome and sclerotome. Furthermore, myogenesis in the metamorphosing frog is biphasic, facilitating regeneration studies. In this review, we describe the morphogenetic movements that shape the somites and discuss signaling and transcriptional regulation during muscle development and regeneration. With recent advances in gene editing tools, X. laevis remains a premier model organism for dissecting the complex mechanisms underlying the specification, cell behaviors, and formation of the musculature system.
Collapse
Affiliation(s)
- Armbien Sabillo
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Julio Ramirez
- Department of Biology, San Francisco State University, CA 94132, USA
| | - Carmen R Domingo
- Department of Biology, San Francisco State University, CA 94132, USA.
| |
Collapse
|
231
|
Czerwinska AM, Grabowska I, Archacka K, Bem J, Swierczek B, Helinska A, Streminska W, Fogtman A, Iwanicka-Nowicka R, Koblowska M, Ciemerych MA. Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene. Stem Cells Dev 2016; 25:285-300. [PMID: 26649785 PMCID: PMC4761802 DOI: 10.1089/scd.2015.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription factor Pax7 plays a key role during embryonic myogenesis and sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Overexpression of Pax7 has been shown to promote the myogenic differentiation of pluripotent stem cells. However, the effects of the absence of functional Pax7 in differentiating embryonic stem cells (ESCs) have not yet been directly tested. Herein, we studied mouse stem cells that lacked a functional Pax7 gene and characterized the differentiation of these stem cells under conditions that promoted the derivation of myoblasts in vitro. We analyzed the expression of myogenic factors, such as myogenic regulatory factors and muscle-specific microRNAs, in wild-type and mutant cells. Finally, we compared the transcriptome of both types of cells and did not find substantial differences in the expression of genes related to the regulation of myogenesis. As a result, we showed that the absence of functional Pax7 does not prevent the in vitro myogenic differentiation of ESCs.
Collapse
Affiliation(s)
- Areta M Czerwinska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Iwona Grabowska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Karolina Archacka
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Joanna Bem
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Barbara Swierczek
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Anita Helinska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Wladyslawa Streminska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Anna Fogtman
- 2 Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics , Polish Academy of Sciences, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- 2 Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics , Polish Academy of Sciences, Warsaw, Poland .,3 Department of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Marta Koblowska
- 2 Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics , Polish Academy of Sciences, Warsaw, Poland .,3 Department of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Maria A Ciemerych
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| |
Collapse
|
232
|
Wu J, Hunt SD, Xue H, Liu Y, Darabi R. Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology. Stem Cell Res 2016; 16:220-8. [PMID: 26826926 DOI: 10.1016/j.scr.2016.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/10/2015] [Accepted: 01/12/2016] [Indexed: 12/24/2022] Open
Abstract
Directed differentiation of iPS cells toward various tissue progenitors has been the focus of recent research. Therefore, generation of tissue-specific reporter iPS cell lines provides better understanding of developmental stages in iPS cells. This technical report describes an efficient strategy for generation and validation of knock-in reporter lines in human iPS cells using the Cas9-nickase system. Here, we have generated a knock-in human iPS cell line for the early myogenic lineage specification gene of PAX7. By introduction of site-specific double-stranded breaks (DSB) in the genomic locus of PAX7 using CRISPR/Cas9 nickase pairs, a 2A-GFP reporter with selection markers has been incorporated before the stop codon of the PAX7 gene at the last exon. After positive and negative selection, single cell-derived human iPS clones have been isolated and sequenced for in-frame positioning of the reporter construct. Finally, by using a nuclease-dead Cas9 activator (dCas9-VP160) system, the promoter region of PAX7 has been targeted for transient gene induction to validate the GFP reporter activity. This was confirmed by flow cytometry analysis and immunostaining for PAX7 and GFP. This technical report provides a practical guideline for generation and validation of knock-in reporters using CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Jianbo Wu
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samuel D Hunt
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haipeng Xue
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ying Liu
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
233
|
Zismanov V, Chichkov V, Colangelo V, Jamet S, Wang S, Syme A, Koromilas A, Crist C. Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal. Cell Stem Cell 2016; 18:79-90. [DOI: 10.1016/j.stem.2015.09.020] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/21/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
|
234
|
Dey D, Goldhamer DJ, Yu PB. Contributions of muscle-resident progenitor cells to homeostasis and disease. CURRENT MOLECULAR BIOLOGY REPORTS 2015; 1:175-188. [PMID: 29075589 PMCID: PMC5654566 DOI: 10.1007/s40610-015-0025-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult skeletal muscle maintains a homeostatic state with modest levels of cellular turnover, unlike the skin or blood. However, the muscle is highly sensitive to tissue injury, which unleashes a cascade of regenerative and inflammatory processes. Muscle regeneration involves cross-talk between numerous cytokine signaling axes, and the coordinated activity of multiple muscle-resident and circulating progenitor populations. Satellite cells, closely associated with myofibers, are established as the canonical muscle stem cell, with self-renewal and myofiber-regenerating capacity. However, a heterogeneous group of mesenchymal progenitor cells residing within the muscle interstitium are also highly responsive to muscle injury and exhibit varying degrees of regenerative potential. These cells interact with satellite cells via direct and indirect mechanisms to regulate regeneration or repair. We describe the known phylogenetic and functional relationships of the multiple progenitor populations residing within skeletal muscle, their putative roles in the coordination of injury repair, and their possible contributions to health and disease.
Collapse
Affiliation(s)
- Devaveena Dey
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115-6119, USA
| | - David J. Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Paul B. Yu
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115-6119, USA
| |
Collapse
|
235
|
Ceramic-on-ceramic THA associated with fewer dislocations and less muscle degeneration by preserving muscle progenitors. Clin Orthop Relat Res 2015; 473:3762-9. [PMID: 26054482 PMCID: PMC4626505 DOI: 10.1007/s11999-015-4378-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Dislocation is a common complication after total hip arthroplasty (THA). Although the etiology of dislocation is multifactorial, longer-term changes in muscle such as atrophy may influence the risk of prosthetic dislocation. Biological differences in wear products generated by different bearing surfaces may influence differences in the appearance of periarticular muscle after THA; however, such bearing-associated differences to our knowledge have not been studied in vivo, and few studies have evaluated bearing-associated differences in dislocation risk. QUESTIONS/PURPOSES (1) Is there a correlation between the postoperative risk of dislocation at revision and the bearing surfaces of the primary arthroplasty? (2) Is there a higher extent of fatty muscle atrophy on CT scan in hips with osteolysis (polyethylene hips) as compared with hips without osteolysis (ceramic-on-ceramic hips)? (3) Are these two abnormalities (bone osteolysis and fatty atrophy) associated with a decrease of mesenchymal stem cells (MSCs) in bone and in muscle? METHODS We retrospectively evaluated 240 patients (240 hips) who had a THA revision (98% of which, 235 of the 240, were isolated acetabular revisions) and a normal contralateral hip. All patients had received the same implants for the primary arthroplasty (32-mm head) except for bearing surfaces (80 hips with ceramic-on-ceramic, 160 with polyethylene). No differences were noted between the groups in terms of age, sex, body mass index, proportion of patients who had a dislocation after the index arthroplasty but before the revision, and proportion of the patients with stem loosening in addition to acetabular loosening. Indications for revision generally were cup loosening. The revisions in the hips with polyethylene bearings generally had more acetabular bone loss, but the position of the center of the cup and the orientation of the cup were similar after reconstruction in the two groups. Before revision, osteolysis, muscle atrophy, and fatty degeneration were evaluated on CT scan and compared with the contralateral side. Bone muscle progenitors were evaluated by bone marrow MSCs and satellite cells for muscle. At revision, all the hips received the same implants with the same head diameter (32 mm) and a standard liner. Revisions were performed between 1995 and 2005. The followup after revision was at a mean of 14 years (range, 10-20 years) for ceramic revision and 12 years (range, 10-20 years) for polyethylene hips, and there was no differential loss to followup between the groups. RESULTS More hips with polyethylene liners at the time of index arthroplasty dislocated after revision than did hips with ceramic liners (18% [29 of 160] compared with 1% [one of 80]; odds ratio, 17.5; 95% confidence interval, 2.3363-130.9100; p = 0.005). For the 80 hips with ceramic-on-ceramic, no osteolysis was detected before revision; there was no muscle fatty degeneration of the gluteus muscles on CT scan or histology. For the 160 hips with polyethylene liners, osteolytic lesions on the acetabulum and femur were observed in 100% of the hips. The increased atrophy of the gluteus muscles observed on CT scan correlated with the increase of osteolysis (r = 0.62; p = 0.012). The surgical limbs in the patients with polyethylene hips as compared with ceramic-on-ceramic hips demonstrated a greater reduction in cross-sectional area (respectively, 11.6% compared with 3%; odds ratio, 3.82; p < 0.001) and radiological density (41% [14.1/34.1] compared with 9%; odds ratio, 6.8; p = 0.006) of gluteus muscles when compared with the contralateral normal side. (41% compared with 9%; odds ratio, 6.8; p = 0.006). CONCLUSIONS Ceramic bearing surfaces were associated with fewer dislocations after revision than polyethylene bearing surfaces. The reasons of the lower rate of dislocation with ceramic-on-ceramic bearings may be related to observed differences in the periarticular muscles (fat atrophy or not) with the two bearing surfaces. LEVEL OF EVIDENCE Level III, therapeutic study.
Collapse
|
236
|
Padilla-Benavides T, Nasipak BT, Imbalzano AN. Brg1 Controls the Expression of Pax7 to Promote Viability and Proliferation of Mouse Primary Myoblasts. J Cell Physiol 2015; 230:2990-7. [PMID: 26036967 DOI: 10.1002/jcp.25031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/29/2022]
Abstract
Brg1 (Brahma-related gene 1) is a catalytic component of the evolutionarily conserved mammalian SWI/SNF ATP-dependent chromatin remodeling enzymes that disrupt histone-DNA contacts on the nucleosome. While the requirement for the SWI/SNF enzymes in cell differentiation has been extensively studied, its role in precursor cell proliferation and survival is not as well defined. Muscle satellite cells constitute the stem cell pool that sustains and regenerates myofibers in adult skeletal muscle. Here, we show that deletion of Brg1 in primary mouse myoblasts derived from muscle satellite cells cultured ex vivo leads to a cell proliferation defect and apoptosis. We determined that Brg1 regulates cell proliferation and survival by controlling chromatin remodeling and activating transcription at the Pax7 promoter, which is expressed during somite development and is required for controlling viability of the satellite cell population. Reintroduction of catalytically active Brg1 or of Pax7 into Brg1-deficient satellite cells rescued the apoptotic phenotype and restored proliferation. These data demonstrate that Brg1 functions as a positive regulator for cellular proliferation and survival of primary myoblasts. Therefore, the regulation of gene expression through Brg1-mediated chromatin remodeling is critical not just for skeletal muscle differentiation but for maintaining the myoblast population as well.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Brian T Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
237
|
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. [PMID: 26453493 DOI: 10.1016/j.bone.2015.02.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
Abstract
Both skeletal muscle and bone are of mesodermal origin and derived from somites during embryonic development. Somites differentiate into the dorsal dermomyotome and the ventral sclerotome, which give rise to skeletal muscle and bone, respectively. Extracellular signaling molecules, such as Wnt and Shh, secreted from the surrounding environment, determine the developmental fate of skeletal muscle. Dermomyotome cells are specified as trunk muscle progenitor cells by transcription factor networks involving Pax3. These progenitor cells delaminate and migrate to form the myotome, where they are determined as myoblasts that differentiate into myotubes or myofibers. The MyoD family of transcription factors plays pivotal roles in myogenic determination and differentiation. Adult skeletal muscle regenerates upon exercise, muscle injury, or degeneration. Satellite cells are muscle-resident stem cells and play essential roles in muscle growth and regeneration. Muscle regeneration recapitulates the process of muscle development in many aspects. In certain muscle diseases, ectopic calcification or heterotopic ossification, as well as fibrosis and adipogenesis, occurs in skeletal muscle. Muscle-resident mesenchymal progenitor cells, which may be derived from vascular endothelial cells, are responsible for the ectopic osteogenesis, fibrogenesis, and adipogenesis. The small GTPase M-Ras is likely to participate in the ectopic calcification and ossification, as well as in osteogenesis during development. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
238
|
Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJC, Parise G. Satellite cells in human skeletal muscle plasticity. Front Physiol 2015; 6:283. [PMID: 26557092 PMCID: PMC4617172 DOI: 10.3389/fphys.2015.00283] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada ; Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Maastricht, Netherlands
| | - Joshua P Nederveen
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Bryon R McKay
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Sophie Joanisse
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Maastricht, Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Maastricht, Netherlands
| | - Gianni Parise
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| |
Collapse
|
239
|
Randolph ME, Pavlath GK. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups. Front Aging Neurosci 2015; 7:190. [PMID: 26500547 PMCID: PMC4595652 DOI: 10.3389/fnagi.2015.00190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.
Collapse
|
240
|
Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, Guo H. The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol Anim 2015; 52:27-34. [DOI: 10.1007/s11626-015-9953-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
|
241
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
242
|
Sousa-Victor P, Perdiguero E, Muñoz-Cánoves P. Geroconversion of aged muscle stem cells under regenerative pressure. Cell Cycle 2015; 13:3183-90. [PMID: 25485497 DOI: 10.4161/15384101.2014.965072] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regeneration of skeletal muscle relies on a population of quiescent stem cells (satellite cells) and is impaired in very old (geriatric) individuals undergoing sarcopenia. Stem cell function is essential for organismal homeostasis, providing a renewable source of cells to repair damaged tissues. In adult organisms, age-dependent loss-of-function of tissue-specific stem cells is causally related with a decline in regenerative potential. Although environmental manipulations have shown good promise in the reversal of these conditions, recently we demonstrated that muscle stem cell aging is, in fact, a progressive process that results in persistent and irreversible changes in stem cell intrinsic properties. Global gene expression analyses uncovered an induction of p16(INK4a) in satellite cells of physiologically aged geriatric and progeric mice that inhibits satellite cell-dependent muscle regeneration. Aged satellite cells lose the repression of the INK4a locus, which switches stem cell reversible quiescence into a pre-senescent state; upon regenerative or proliferative pressure, these cells undergo accelerated senescence (geroconversion), through Rb-mediated repression of E2F target genes. p16(INK4a) silencing rejuvenated satellite cells, restoring regeneration in geriatric and progeric muscles. Thus, p16(INK4a)/Rb-driven stem cell senescence is causally implicated in the intrinsic defective regeneration of sarcopenic muscle. Here we discuss on how cellular senescence may be a common mechanism of stem cell aging at the organism level and show that induction of p16(INK4a) in young muscle stem cells through deletion of the Polycomb complex protein Bmi1 recapitulates the geriatric phenotype.
Collapse
|
243
|
Lin J, Wang C, Yang C, Fu S, Redies C. Pax3 and Pax7 interact reciprocally and regulate the expression of cadherin-7 through inducing neuron differentiation in the developing chicken spinal cord. J Comp Neurol 2015; 524:940-62. [PMID: 26287727 DOI: 10.1002/cne.23885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/12/2023]
Abstract
Pax3 and Pax7 are closely related transcription factors that are widely expressed in the developing nervous system and somites. In the CNS, both genes are expressed in the dorsal part of the neural tube during development. Pax3 and Pax7 are involved in the sonic hedgehog (Shh) signaling pathway and are inhibited by Shh overexpression. The present study confirms in vivo that Pax3 overexpression represses the expression of Pax7, whereas Pax7 overexpression endogenously enhances and ectopically induces the expression of Pax3 in the developing chicken spinal cord. Overexpression of Pax3 and Pax7 represses the endogenous expression of cadherin-7, a member of the cadherin family of morphogenetic genes, and induces its ectopic expression. The present study also shows that overexpression of Pax3 and Pax7 changes the fate and morphology of cells in the neuroepithelial layer and induces the expression of postmitotic neuronal markers. We show that both Pax3 and Pax7 promote the differentiation of neural progenitor cells into neurons. Furthermore, the downregulation of Pax3 and Pax7 with specific shRNAs results in apoptosis in the developing spinal cord. Collectively, these results suggest that the transcription factors Pax3 and Pax7 play important roles in regulating morphogenesis and cell differentiation in the developing spinal cord.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, D-07743, Jena, Germany.,College of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Congrui Wang
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, D-07743, Jena, Germany.,College of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Ciqing Yang
- College of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Sulei Fu
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, D-07743, Jena, Germany
| | - Christoph Redies
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, D-07743, Jena, Germany
| |
Collapse
|
244
|
Heher P, Maleiner B, Prüller J, Teuschl AH, Kollmitzer J, Monforte X, Wolbank S, Redl H, Rünzler D, Fuchs C. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater 2015; 24:251-65. [PMID: 26141153 DOI: 10.1016/j.actbio.2015.06.033] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/10/2015] [Accepted: 06/29/2015] [Indexed: 01/31/2023]
Abstract
The generation of functional biomimetic skeletal muscle constructs is still one of the fundamental challenges in skeletal muscle tissue engineering. With the notion that structure strongly dictates functional capabilities, a myriad of cell types, scaffold materials and stimulation strategies have been combined. To further optimize muscle engineered constructs, we have developed a novel bioreactor system (MagneTissue) for rapid engineering of skeletal muscle-like constructs with the aim to resemble native muscle in terms of structure, gene expression profile and maturity. Myoblasts embedded in fibrin, a natural hydrogel that serves as extracellular matrix, are subjected to mechanical stimulation via magnetic force transmission. We identify static mechanical strain as a trigger for cellular alignment concomitant with the orientation of the scaffold into highly organized fibrin fibrils. This ultimately yields myotubes with a more mature phenotype in terms of sarcomeric patterning, diameter and length. On the molecular level, a faster progression of the myogenic gene expression program is evident as myogenic determination markers MyoD and Myogenin as well as the Ca(2+) dependent contractile structural marker TnnT1 are significantly upregulated when strain is applied. The major advantage of the MagneTissue bioreactor system is that the generated tension is not exclusively relying on the strain generated by the cells themselves in response to scaffold anchoring but its ability to subject the constructs to individually adjustable strain protocols. In future work, this will allow applying mechanical stimulation with different strain regimes in the maturation process of tissue engineered constructs and elucidating the role of mechanotransduction in myogenesis. STATEMENT OF SIGNIFICANCE Mechanical stimulation of tissue engineered skeletal muscle constructs is a promising approach to increase tissue functionality. We have developed a novel bioreactor-based 3D culture system, giving the user the possibility to apply different strain regimes like static, cyclic or ramp strain to myogenic precursor cells embedded in a fibrin scaffold. Application of static mechanical strain leads to alignment of fibrin fibrils along the axis of strain and concomitantly to highly aligned myotube formation. Additionally, the pattern of myogenic gene expression follows the temporal progression observed in vivo with a more thorough induction of the myogenic program when static strain is applied. Ultimately, the strain protocol used in this study results in a higher degree of muscle maturity demonstrated by enhanced sarcomeric patterning and increased myotube diameter and length. The introduced bioreactor system enables new possibilities in muscle tissue engineering as longer cultivation periods and different strain applications will yield tissue engineered muscle-like constructs with improved characteristics in regard to functionality and biomimicry.
Collapse
|
245
|
Lozano-Velasco E, Vallejo D, Esteban FJ, Doherty C, Hernández-Torres F, Franco D, Aránega AE. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate. Mol Cell Biol 2015; 35:2892-909. [PMID: 26055324 PMCID: PMC4525317 DOI: 10.1128/mcb.00536-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/21/2023] Open
Abstract
The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5(+) satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Daniel Vallejo
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Francisco J Esteban
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Chris Doherty
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Francisco Hernández-Torres
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Amelia Eva Aránega
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| |
Collapse
|
246
|
Shi L, Zhou B, Li P, Schinckel AP, Liang T, Wang H, Li H, Fu L, Chu Q, Huang R. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development. Cell Signal 2015; 27:1895-904. [DOI: 10.1016/j.cellsig.2015.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/01/2015] [Accepted: 05/01/2015] [Indexed: 12/25/2022]
|
247
|
Bustos F, de la Vega E, Cabezas F, Thompson J, Cornelison DDW, Olwin BB, Yates JR, Olguín HC. NEDD4 Regulates PAX7 Levels Promoting Activation of the Differentiation Program in Skeletal Muscle Precursors. Stem Cells 2015; 33:3138-51. [PMID: 26304770 DOI: 10.1002/stem.2125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Abstract
The transcription factor Pax7 regulates skeletal muscle stem cell (satellite cells) specification and maintenance through various mechanisms, including repressing the activity of the muscle regulatory factor MyoD. Hence, Pax7-to-MyoD protein ratios can determine maintenance of the committed-undifferentiated state or activation of the differentiation program. Pax7 expression decreases sharply in differentiating myoblasts but is maintained in cells (re)acquiring quiescence, yet the mechanisms regulating Pax7 levels based on differentiation status are not well understood. Here we show that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4. Our results indicate that Nedd4 is expressed in quiescent and activated satellite cells, that Nedd4 and Pax7 physically interact during early muscle differentiation-correlating with Pax7 ubiquitination and decline-and that Nedd4 loss of function prevented this effect. Furthermore, even transient nuclear accumulation of Nedd4 induced a drop in Pax7 levels and precocious muscle differentiation. Consequently, we propose that Nedd4 functions as a novel Pax7 regulator, which activity is temporally and spatially controlled to modulate the Pax7 protein levels and therefore satellite cell fate.
Collapse
Affiliation(s)
- Francisco Bustos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo de la Vega
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Cabezas
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - James Thompson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - D D W Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Bradley B Olwin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Hugo C Olguín
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
248
|
Characterization of Pax3 and Pax7 genes and their expression patterns during different development and growth stages of Japanese pufferfish Takifugu rubripes. Gene 2015; 575:21-8. [PMID: 26297555 DOI: 10.1016/j.gene.2015.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/19/2015] [Accepted: 08/14/2015] [Indexed: 11/23/2022]
Abstract
Pax3 and Pax7 are the regulators and markers of muscle progenitors and satellite cells that contribute to the embryonic development and postembryonic growth of skeletal muscle in vertebrates, as well as to its repair and regeneration. However, information regarding them in vertebrate genome model, torafugu Takifugu rubripes, has remained unknown. Therefore, as an initial step, here we characterized Pax3 and Pax7 from torafugu and investigated their expression patterns during different developmental stages by RT-PCR. In silico analysis with the Fugu genome database (ver. 4.0) yielded two distinct genes each for Pax3 (Pax3a and Pax3b) and Pax7 (Pax7a and Pax7b). The 75th amino acid, glutamine (Gln75), from the N-terminus was replaced by proline in the paired box domain (PD) of Pax3a. One single cDNA clone encoding Pax3a had deletion of Gln75 in PD, suggesting the presence of alternatively spliced variants (Q+/Q-). This was further supported by identification of two adjacent alternative 3' splice acceptor sites which produce Pax3b Q+ (aagCAGGGA) and Q- (aagcagGGA) variants. Interestingly, torafugu Pax7a, but not Pax7b, had an insert encoding five amino acid residues (SGEAS) in a C-terminal region of PD in two out of three cDNA clones. Genomic analysis showed two alternate splice donor sites at exon 4 of Pax7a. In synteny analysis, torafugu Pax3a showed syntenic relationship with the corresponding regions in other teleosts only, whereas Pax3b and Pax7b showed high syntenic relationship with the corresponding regions of both mammals and other teleosts. RT-PCR revealed that expression of Pax3a and Pax3b transcripts was restricted to embryonic stages only, whereas those of Pax7a and Pax7b was continued to be expressed in larvae and importantly those of Pax7a were found in adult skeletal muscles. Therefore, Pax3 appears to be most important for primary myogenesis and Pax7 for secondary myogenesis and growth by hyperplasia in fish. In this regard, the transcripts of torafugu Pax3 and Pax7 genes might be used for further investigation as a marker for identification of muscle precursor cells during different phases of growth, and this ambiguity is the next target of our research.
Collapse
|
249
|
Dodd RD, Sachdeva M, Mito JK, Eward WC, Brigman BE, Ma Y, Dodd L, Kim Y, Lev D, Kirsch DG. Myogenic transcription factors regulate pro-metastatic miR-182. Oncogene 2015; 35:1868-75. [PMID: 26234681 PMCID: PMC4523886 DOI: 10.1038/onc.2015.252] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/29/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023]
Abstract
Approximately thirty percent of patients with soft-tissue sarcoma die from pulmonary metastases. The mechanisms that drive sarcoma metastasis are not well understood. Recently, we identified miR-182 as a driver of sarcoma metastasis in a primary mouse model of soft-tissue sarcoma. We also observed elevated miR-182 in a subset of primary human sarcomas that metastasized to the lungs. Here, we show that myogenic differentiation factors regulate miR-182 levels to contribute to metastasis in mouse models. We find that MyoD directly binds the miR-182 promoter to increase miR-182 expression. Furthermore, mechanistic studies revealed that Pax7 can promote sarcoma metastasis in vivo through MyoD-dependent regulation of pro-metastatic miR-182. Taken together, these results suggest that sarcoma metastasis can be partially controlled through Pax7/MyoD-dependent activation of miR-182 and provide insight into the role that myogenic transcription factors play in sarcoma progression.
Collapse
Affiliation(s)
- R D Dodd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - M Sachdeva
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - J K Mito
- Department Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - W C Eward
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - B E Brigman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Y Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - L Dodd
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Y Kim
- Department of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - D Lev
- The Sarcoma Research Center at The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.,Department Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
250
|
Abstract
Skeletal muscle development has been the focus of intensive study for many decades. Recent advances in genetic manipulation of the mouse have increased our understanding of the cell signalling involved in the development of muscle progenitors which give rise to adult skeletal muscles and their stem cell populations. However, the influence of a vital tissue type – the peripheral nerve—has largely been ignored since its earliest descriptions. Here we carefully describe the timing in which myogenic progenitors expressing Pax3 and Pax7 (the earliest markers of myogenic cells) enter the limb buds of rat and mouse embryos, as well as the spatiotemporal relationship between these progenitors and the ingrowing peripheral nerve. We show that progenitors expressing Pax3 enter the limb bud one full day ahead of the first neurites and that Pax7-expressing progenitors (associated with secondary myogenesis in the limb) are first seen in the limb bud at the time of nerve entry and in close proximity to the nerve. The initial entry of the nerve also coincides with the first expression of myosin heavy chain showing that the first contact between nerves and myogenic cells correlates with the onset of myogenic differentiation. Furthermore, as the nerve grows into the limb, Pax3 expression is progressively replaced by Pax7 expression in myogenic progenitors. These findings indicate that the ingrowing nerve enters the limb presumptive muscle masses earlier than what was generally described and raises the possibility that nerve may influence the differentiation of muscle progenitors in rodent limbs.
Collapse
|