201
|
Houchi S, Mahdadi R, Khenchouche A, Song J, Zhang W, Pang X, Zhang L, Sandalli C, Du G. Investigation of common chemical components and inhibitory effect on GES-type β-lactamase (GES22) in methanolic extracts of Algerian seaweeds. Microb Pathog 2019; 126:56-62. [PMID: 30393116 DOI: 10.1016/j.micpath.2018.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/24/2022]
Abstract
This study aimed to investigate the total phenolic content (TPC), the identification of the common compounds by HPLC-ESI-MS and HPLC-ESI-MS-TOF and the inhibitory effects against class A-type β-lactamase (GES-22 variant, produced recombinantly) in methanolic extracts (MEs) of four Algerian seaweeds [Ulva intestinalis, Codium tomentosum, Dictyota dichotoma and Halopteris scoparia]. The TPC varied among the four species, ranging between 0.93 ± 0.65 and 2.66 ± 1.33 mg GAEs/g DW. C.tomentosum had higher total phenol content than other seaweeds while, all of them inhibited uncompetitively GES-22 activity in a dose-dependent manner. Nitrocefin was used as chromogenic substrate to evaluate the inhibitory effect on GES-22. The methanolic extract of D.dichotoma exhibited significant inhibitory effect on GES-22 (IC50 = 13.01 ± 0.046 μg/mL) more than clavulanate, sulbactam and tazobactam (classical β-lactam inhibitors) (IC50 = 68.38 ± 0.17 μg/mL, 52.68 ± 0.64 μg/mL, and 29.94 ± 0.01 μg/mL, respectively). IC50 of the other ME of U.intestinalis, C.tomentosum, and H.scoparia were 16.87 ± 0.10 μg/mL, 16.54 ± 0.048 μg/mL, and 25.72 ± 0.15 μg/mL, respectively. Except H. scoparia, other three seaweed extracts showed almost two times or more inhibition on GES-22. Furthermore, four common compounds in these MEs were identified, α-linolenic acid (C18:3ω3), linoleic acid (C18:2ω6), oleic acid (C18:1ω9), the eicosanoid precursors ''arachidonic acid'' (C20:4ω6). Baicalein (C15H10O5) was identified in U.intestinalis and D.dichotoma seaweeds. The fact that all seaweed extracts inhibited the GES-22 better than commercial samples makes these seaweeds candidate for discovering new inhibitors against β-lactamases. Besides that, they contain important components with potential health benefits.
Collapse
Affiliation(s)
- Selma Houchi
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Life and Nature Sciences, University of Ferhat Abbas setif-1, Algeria.
| | - Rachid Mahdadi
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Life and Nature Sciences, University of Ferhat Abbas setif-1, Algeria.
| | - Abdelhalim Khenchouche
- Valorization of Natural Biological Resources Laboratory (VNBR Lab), Department of Microbiology, Faculty of Life and Nature Sciences, University of Ferhat Abbas setif-1, Algeria
| | - Junke Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaocong Pang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cemal Sandalli
- Microbiology and Molecular Biology Research Laboratory, Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
202
|
Sharma AK, Vats P. Evaluation of biochemical and molecular polymorphism in extended spectrum β-lactamases of Mycobacterium tuberculosis clinical isolates. Indian J Tuberc 2019; 66:92-98. [PMID: 30797291 DOI: 10.1016/j.ijtb.2018.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/05/2018] [Accepted: 04/23/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Tuberculosis (TB) caused 1.8 million deaths worldwide with increased multiple drug resistance (MDR) cases estimated 4.8 lakhs in the year 2015. β-Lactam antibiotics could be a hope for TB treatment. Therefore, in this study, uniformity in the biochemical and molecular nature of β-lactamases was analyzed to evaluate the potential of β-lactam antibiotics as a treatment regimen against Mycobacterium tuberculosis (MTB). MATERIALS AND METHODS β-Lactamase enzymes in 233 MTB clinical isolates along with control H37Rv strain were characterized by enzyme kinetic using nitrocefin and cefotaxime as a substrate, isoelectric points by isoelectric focusing electrophoresis (IEF) and by PCR and Southern blotting. RESULTS Enzyme kinetics showed Km and Vmax for nitrocefin in the range of 56-69μM and 7.00-11IU/lit respectively, for cefotaxime in the range of 0.35-0.59μM and 18-25IU/lit respectively. β-Lactamase showed high affinity for clavulanic acid an inhibitor of Extended-Spectrum β-lactamase enzymes (ESBLs). The pIs of 4.9 and 5.1 were observed for all the MTB clinical isolates and control H37Rv. Southern blotting confirmed the presence of blaC sequence in MTB chromosomal DNA. CONCLUSION This confirmed that MTB β-lactamase enzymes belong to the Class A, group 2be Extended Spectrum β-Lactamases with no biochemical or molecular polymorphism. ESBLs are mainly responsible for resistance against β-lactam antibiotics in MTB. Thus ESBLs could be the potential therapeutic target for TB treatment using β-lactam antibiotics in combination with β-lactamase inhibitors like sulbactam and sodium clavulanate.
Collapse
Affiliation(s)
- Asvene K Sharma
- Department of Zoology, M.S. College, (CCS University), Saharanpur 247001, India; Department of Pharmacy, Om Bio-Science & Pharma College, Haridwar 249405, India.
| | - Pratibha Vats
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India.
| |
Collapse
|
203
|
Genotypic and Phenotypic Characterization of MBL Genes in Pseudomonas aeruginosa Isolates from the Non-hospital Environment. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
204
|
Molecules that Inhibit Bacterial Resistance Enzymes. Molecules 2018; 24:molecules24010043. [PMID: 30583527 PMCID: PMC6337270 DOI: 10.3390/molecules24010043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance mediated by bacterial enzymes constitutes an unmet clinical challenge for public health, particularly for those currently used antibiotics that are recognized as "last-resort" defense against multidrug-resistant (MDR) bacteria. Inhibitors of resistance enzymes offer an alternative strategy to counter this threat. The combination of inhibitors and antibiotics could effectively prolong the lifespan of clinically relevant antibiotics and minimize the impact and emergence of resistance. In this review, we first provide a brief overview of antibiotic resistance mechanism by bacterial secreted enzymes. Furthermore, we summarize the potential inhibitors that sabotage these resistance pathways and restore the bactericidal activity of inactive antibiotics. Finally, the faced challenges and an outlook for the development of more effective and safer resistance enzyme inhibitors are discussed.
Collapse
|
205
|
Applying Rapid Whole-Genome Sequencing To Predict Phenotypic Antimicrobial Susceptibility Testing Results among Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates. Antimicrob Agents Chemother 2018; 63:AAC.01923-18. [PMID: 30373801 DOI: 10.1128/aac.01923-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/22/2018] [Indexed: 01/19/2023] Open
Abstract
Standard antimicrobial susceptibility testing (AST) approaches lead to delays in the selection of optimal antimicrobial therapy. Here, we sought to determine the accuracy of antimicrobial resistance (AMR) determinants identified by Nanopore whole-genome sequencing in predicting AST results. Using a cohort of 40 clinical isolates (21 carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae, 10 non-carbapenemase-producing carbapenem-resistant K. pneumoniae, and 9 carbapenem-susceptible K. pneumoniae isolates), three separate sequencing and analysis pipelines were performed, as follows: (i) a real-time Nanopore analysis approach identifying acquired AMR genes, (ii) an assembly-based Nanopore approach identifying acquired AMR genes and chromosomal mutations, and (iii) an approach using short-read correction of Nanopore assemblies. The short-read correction of Nanopore assemblies served as the reference standard to determine the accuracy of Nanopore sequencing results. With the real-time analysis approach, full annotation of acquired AMR genes occurred within 8 h from subcultured isolates. Assemblies sufficient for full resistance gene and single-nucleotide polymorphism annotation were available within 14 h from subcultured isolates. The overall agreement of genotypic results and anticipated AST results for the 40 K. pneumoniae isolates was 77% (range, 30% to 100%) and 92% (range, 80% to 100%) for the real-time approach and the assembly approach, respectively. Evaluating the patients contributing the 40 isolates, the real-time approach and assembly approach could shorten the median time to effective antibiotic therapy by 20 h and 26 h, respectively, compared to standard AST. Nanopore sequencing offers a rapid approach to both accurately identify resistance mechanisms and to predict AST results for K. pneumoniae isolates. Bioinformatics improvements enabling real-time alignment, coupled with rapid extraction and library preparation, will further enhance the accuracy and workflow of the Nanopore real-time approach.
Collapse
|
206
|
Lee SY, Kim OY, Yoon SY, Lee DY, Hur SJ. Changes in resistance to and antimicrobial activity of antibiotics during in vitro human digestion. J Glob Antimicrob Resist 2018; 15:277-282. [DOI: 10.1016/j.jgar.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022] Open
|
207
|
Furusawa C, Horinouchi T, Maeda T. Toward prediction and control of antibiotic-resistance evolution. Curr Opin Biotechnol 2018; 54:45-49. [DOI: 10.1016/j.copbio.2018.01.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 11/30/2022]
|
208
|
Identification, molecular characterization, and structural analysis of the bla NDM-1 gene/enzyme from NDM-1-producing Klebsiella pneumoniae isolates. J Antibiot (Tokyo) 2018; 72:155-163. [PMID: 30479395 DOI: 10.1038/s41429-018-0126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 01/26/2023]
Abstract
NDM-1 comprises a carbapenemase that was first detected in 2008 in New Delhi, India. Since then, NDM-1-producing Klebsiella pneumoniae strains have been reported in many countries and usually associated with intra and inter-hospital dissemination, along with travel-related epidemiological links. In South America, Brazil represents the largest reservoir of NMD-1-producing K. pneumoniae. Here, we focused on the detection and molecular/structural characterization of the blaNDM-1 resistance gene/enzyme from 24 K. pneumoniae clinical isolates in the Midwest region of Brazil. Antimicrobial susceptibility assays showed that all isolates are resistant to carbapenems. Molecular typing of the isolates revealed seven clonal groups among the K. pneumoniae isolates, which may indicate intra or inter-hospital dissemination. Moreover, the blaNDM-1 gene was detected in all 24 K. pneumoniae isolates and the full blaNDM-1 gene was cloned. Bioinformatics analysis showed that the NDM-1 enzyme sequence found in our isolates is highly conserved when compared to other NDM-1 enzymes. In addition, molecular docking studies indicate that the NDM-1 identified binds to different carbapenems through hydrogen and zinc coordination bonds. In summary, we present the molecular characterization of NDM-1-producing K. pneumoniae strains isolated from different hospitals, also providing atomic level insights into molecular complexes NDM-1/carbapenem antibiotics.
Collapse
|
209
|
Vázquez-López R, Solano-Gálvez S, León-Chávez BA, Thompson-Bonilla MR, Guerrero-González T, Gómez-Conde E, Martínez-Fong D, González-Barrios JA. Characterization of Gene Families Encoding Beta-Lactamases of Gram-Negative Rods Isolated from Ready-to-Eat Vegetables in Mexico City. High Throughput 2018; 7:ht7040036. [PMID: 30477153 PMCID: PMC6306796 DOI: 10.3390/ht7040036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/01/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Beta-lactam resistant bacteria, which are commonly resident in tertiary hospitals, have emerged as a worldwide health problem because of ready-to-eat vegetable intake. We aimed to characterize the genes that provide resistance to beta-lactam antibiotics in Enterobacteriaceae, isolated from five commercial salad brands for human consumption in Mexico City. In total, twenty-five samples were collected, grown in blood agar plates, and the bacteria were biochemistry identified and antimicrobial susceptibility testing was done. The carried family genes were identified by endpoint PCR and the specific genes were confirmed with whole genome sequencing (WGS) by Next Generation Sequencing (NGS). Twelve positive cultures were identified and their microbiological distribution was as follows: 8.3% for Enterobacter aerogene (n = 1), 8.3% for Serratia fonticola (n = 1), 16.7% for Serratia marcesens (n = 2), 16.7% for Klebsiella pneumoniae (n = 2), and 50% (n = 6) for Enterobacter cloacae. The endpoint PCR results showed 11 colonies positive for blaBIL (91.7%), 11 for blaSHV (91.7%), 11 for blaCTX (97.7%), 12 for blaDHA (100%), four for blaVIM (33.3%), two for blaOXA (16.7%), two for blaIMP (16.7%), one for blaKPC (8.3%), and one for blaTEM (8.3%) gen; all samples were negative for blaROB, blaCMY, blaP, blaCFX and blaLAP gene. The sequencing analysis revealed a specific genotype for Enterobacter cloacae (blaSHV-12, blaCTX-M-15, blaDHA-1, blaKPC-2); Serratia marcescens (blaSHV-1, blaCTX-M-3, blaDHA-1, blaVIM-2); Klebsiella pneumoniae (blaSHV-12, blaCTX-M-15, blaDHA-1); Serratia fonticola (blaSHV-12, blaVIM-1, blaDHA-1); and, Enterobacter aerogene (blaSHV-1, blaCTX-M-1, blaDHA-1, blaVIM-2, blaOXA-9). Our results indicate that beta-lactam-resistant bacteria have acquired integrons with a different number of genes that provide pan-resistance to beta-lactam antibiotics, including penicillins, oxacillins, cefalosporins, monobactams, carbapenems, and imipenems.
Collapse
Affiliation(s)
- Rosalino Vázquez-López
- CICSA Facultad de Ciencias de la Salud Universidad Anáhuac Mexico Campus Norte, Huixquilucan, Estado de Mexico 52786, Mexico.
| | - Sandra Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico. Coyoacán, Ciudad de Mexico 04510, Mexico.
| | - Bertha A León-Chávez
- Laboratorio de Investigaciones Químico-Clínicas, Facultad de Ciencias Químicas, Benemerita Universidad Autónoma de Puebla, San Manuel, Ciudad Universitaria, Puebla 72570, Mexico.
| | - María R Thompson-Bonilla
- Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre", ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de Mexico 07300, Mexico.
| | - Tayde Guerrero-González
- Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre", ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de Mexico 07300, Mexico.
| | - Eduardo Gómez-Conde
- División de Investigación en Salud, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades, Centro Médico Nacional General de División "Manuel Ávila Camacho", Instituto Mexicano del Seguro Social (IMSS), Puebla 72090, Mexico.
| | - Daniel Martínez-Fong
- Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de Mexico 07360, Mexico.
| | - Juan A González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre", ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de Mexico 07300, Mexico.
| |
Collapse
|
210
|
Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M, Lagacé-Wiens PRS, Walkty A, Denisuik A, Golden A, Gin AS, Hoban DJ, Lynch JP, Karlowsky JA. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018; 78:65-98. [PMID: 29230684 DOI: 10.1007/s40265-017-0851-9] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Relebactam (formerly known as MK-7655) is a non-β-lactam, bicyclic diazabicyclooctane, β-lactamase inhibitor that is structurally related to avibactam, differing by the addition of a piperidine ring to the 2-position carbonyl group. Vaborbactam (formerly known as RPX7009) is a non-β-lactam, cyclic, boronic acid-based, β-lactamase inhibitor. The structure of vaborbactam is unlike any other currently marketed β-lactamase inhibitor. Both inhibitors display activity against Ambler class A [including extended-spectrum β-lactamases (ESBLs), Klebsiella pneumoniae carbapenemases (KPCs)] and class C β-lactamases (AmpC). Little is known about the potential for relebactam or vaborbactam to select for resistance; however, inactivation of the porin protein OmpK36 in K. pneumoniae has been reported to confer resistance to both imipenem-relebactam and meropenem-vaborbactam. The addition of relebactam significantly improves the activity of imipenem against most species of Enterobacteriaceae [by lowering the minimum inhibitory concentration (MIC) by 2- to 128-fold] depending on the presence or absence of β-lactamase enzymes. Against Pseudomonas aeruginosa, the addition of relebactam also improves the activity of imipenem (MIC reduced eightfold). Based on the data available, the addition of relebactam does not improve the activity of imipenem against Acinetobacter baumannii, Stenotrophomonas maltophilia and most anaerobes. Similar to imipenem-relebactam, the addition of vaborbactam significantly (2- to > 1024-fold MIC reduction) improves the activity of meropenem against most species of Enterobacteriaceae depending on the presence or absence of β-lactamase enzymes. Limited data suggest that the addition of vaborbactam does not improve the activity of meropenem against A. baumannii, P. aeruginosa, or S. maltophilia. The pharmacokinetics of both relebactam and vaborbactam are described by a two-compartment, linear model and do not appear to be altered by the co-administration of imipenem and meropenem, respectively. Relebactam's approximate volume of distribution (V d) and elimination half-life (t ½) of ~ 18 L and 1.2-2.1 h, respectively, are similar to imipenem. Likewise, vaborbactam's V d and t½ of ~ 18 L and 1.3-2.0 h, respectively, are comparable to meropenem. Like imipenem and meropenem, relebactam and vaborbactam are both primarily renally excreted, and clearance correlates with creatinine clearance. In vitro and in vivo pharmacodynamic studies have reported bactericidal activity for imipenem-relebactam and meropenem-vaborbactam against various Gram-negative β-lactamase-producing bacilli that are not inhibited by their respective carbapenems alone. These data also suggest that pharmacokinetic-pharmacodynamic parameters correlating with efficacy include time above the MIC for the carbapenems and overall exposure for their companion β-lactamase inhibitors. Phase II clinical trials to date have reported that imipenem-relebactam is as effective as imipenem alone for treatment of complicated intra-abdominal infections and complicated urinary tract infections, including acute pyelonephritis. Imipenem-relebactam is currently in two phase III clinical trials for the treatment of imipenem-resistant bacterial infections, as well as hospital-associated bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP). A phase III clinical trial has reported superiority of meropenem-vaborbactam over piperacillin-tazobactam for the treatment of complicated urinary tract infections, including acute pyelonephritis. Meropenem-vaborbactam has recently demonstrated higher clinical cure rates versus best available therapy for the treatment of carbapenem-resistant Enterobacteriaceae (CRE), as well as for HABP and VABP. The safety and tolerability of imipenem-relebactam and meropenem-vaborbactam has been reported in various phase I pharmacokinetic studies and phase II and III clinical trials. Both combinations appear to be well tolerated in healthy subjects and hospitalized patients, with few serious drug-related treatment-emergent adverse events reported to date. In conclusion, relebactam and vaborbactam serve to broaden the spectrum of imipenem and meropenem, respectively, against β-lactamase-producing Gram-negative bacilli. The exact roles for imipenem-relebactam and meropenem-vaborbactam will be defined by efficacy and safety data from further clinical trials. Potential roles in therapy for these agents include the treatment of suspected or documented infections caused by resistant Gram-negative bacilli-producing ESBL, KPC, and/or AmpC β-lactamases. The usage of these agents in patients with CRE infections will likely become the standard of care. Finally, increased activity of imipenem-relebactam against P. aeruginosa may be of clinical benefit to patients with suspected or documented P. aeruginosa infections.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada. .,Department of Medicine, Winnipeg Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada.
| | | | - Heather Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Diagnostic Services Manitoba, Winnipeg, Canada
| | - Frank Schweizer
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Canada
| | | | - Michael Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Philippe R S Lagacé-Wiens
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Diagnostic Services Manitoba, Winnipeg, Canada
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medicine, Winnipeg Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada.,Diagnostic Services Manitoba, Winnipeg, Canada
| | - Andrew Denisuik
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Alyssa Golden
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Alfred S Gin
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,College of Pharmacy, University of Manitoba, Winnipeg, Canada.,Department of Pharmacy, Winnipeg Health Sciences Centre, Winnipeg, Canada
| | - Daryl J Hoban
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Diagnostic Services Manitoba, Winnipeg, Canada
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care, Allergy and Clinical Immunology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Diagnostic Services Manitoba, Winnipeg, Canada
| |
Collapse
|
211
|
Plazak ME, Tamma PD, Heil EL. The antibiotic arms race: current and emerging therapy for Klebsiella pneumoniae carbapenemase (KPC) - producing bacteria. Expert Opin Pharmacother 2018; 19:2019-2031. [PMID: 30346216 DOI: 10.1080/14656566.2018.1538354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: The rapid spread of Klebsiella pneumoniae Carbapenemase (KPC)-producing bacteria comprises one of the greatest challenges to global health. Historically, clinicians were limited to therapies with suboptimal efficacy and intolerable toxicity until the FDA approved ceftazidime-avibactam and meropenem-vaborbactam, adding two essential pharmacotherapies to our antibiotic armamentarium. These agents display superior efficacy and safety compared to historical treatment options; however, resistance has already been reported. Several antimicrobials currently in the drug pipeline exhibit early promise and may fill needed gaps in therapy. Areas covered: This article encompasses both the past and present treatment options for the management of KPC-producing bacterial infections via an extensive review and critical appraisal of the current literature. Expert opinion: Traditional treatment options can no longer be recommended as first-line options for the management of KPC-producing bloodstream infections. Ceftazidime-avibactam or meropenem-vaborbactam plus or minus an aminoglycoside or polymyxin should be utilized as backbone therapies given their superior efficacy and safety profiles when compared to traditional treatment options. For susceptible KPC-producing urinary tract infections, it is reasonable to consider treatment with an aminoglycoside or with fosfomycin as a monotherapy. All of these decisions should be based on patient-specific characteristics, severity of infection and source control, susceptibility patterns, and input from infectious diseases experts.
Collapse
Affiliation(s)
- Michael E Plazak
- a Department of Pharmacy , University of Maryland Medical Center , Baltimore , MD , USA
| | - Pranita D Tamma
- b Department of Pediatrics , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Emily L Heil
- c Department of Pharmacy Practice and Science , University of Maryland School of Pharmacy , Baltimore , MD , USA
| |
Collapse
|
212
|
Ain NU, Iftikhar A, Bukhari SS, Abrar S, Hussain S, Haider MH, Rasheed F, Riaz S. High frequency and molecular epidemiology of metallo-β-lactamase-producing gram-negative bacilli in a tertiary care hospital in Lahore, Pakistan. Antimicrob Resist Infect Control 2018; 7:128. [PMID: 30410749 PMCID: PMC6215680 DOI: 10.1186/s13756-018-0417-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/05/2018] [Indexed: 01/25/2023] Open
Abstract
Background Metallo-β-lactamase (MBL)-producing isolates have a strong impact on diagnostic and therapeutic decisions. A high frequency of MBL-producing gram-negative bacilli has been reported worldwide. The current study was based on determining the incidence of MBL-producing imipenem-resistant clinical isolates and investigating the β-lactamase gene variants in strains conferring resistance to a carbapenem drug (imipenem). Methods A total of 924 gram negative isolates were recovered from a tertiary care hospital in Lahore, Pakistan, during a two-year period (July 2015 to February 2017). The initial selection of bacterial isolates was based on antibiotic susceptibility testing. Strains resistant to imipenem were processed for the molecular screening of β-lactamase genes. Statistical analysis for risk factor determination was based on age, gender, clinical specimen and type of infection. Results The rate of imipenem resistance was calculated to be 56.51%. Among the 142 strains processed, the phenotypic tests revealed that the incidence of MBLs was 63.38% and 86.61% based on the combination disc test and the modified Hodge test, respectively. The frequencies of blaTEM, blaSHV,blaOXA,blaIMP-1, and blaVIM genes were calculated to be 46%, 34%, 24%, 12.5% and 7%, respectively. The co-expression of blaMBL (blaIMP and blaVIM) and blaESBL (blaTEM, blaSHV,blaOXA) was also detected through multiplex and singleplex PCR. blaOXA, blaTEM and blaSHV coexisted in 82% of the isolates. Co-expression of ESBL and MBL genes was found in 7% of the isolates. Conclusion To our knowledge, this is the first report from Pakistan presenting the concomitant expression of blaOXA, blaTEM and blaSHV with blaIMP-1 and blaVIM in MBL-producing gram-negative bacilli.
Collapse
Affiliation(s)
- Noor Ul Ain
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 5400 Pakistan
| | - Anam Iftikhar
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 5400 Pakistan
| | - Syeda Sadia Bukhari
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 5400 Pakistan
| | - Samyyia Abrar
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 5400 Pakistan
| | - Shahida Hussain
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 5400 Pakistan
| | - Muhammad Hayat Haider
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 5400 Pakistan
| | - Farhan Rasheed
- 2Department of Pathology, Allama Iqbal Medical College, Lahore, Pakistan
| | - Saba Riaz
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 5400 Pakistan.,Citilab and Research Center, Lahore, Pakistan
| |
Collapse
|
213
|
Choquet M, Guiheneuf R, Castelain S, Pluquet E, Decroix V. Prospective evaluation of a screening algorithm for carbapenemase-producing Enterobacteriaceae. J Clin Lab Anal 2018; 33:e22706. [PMID: 30390351 DOI: 10.1002/jcla.22706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacteriaceae (CPE) have become a major public health issue. The objective of the present study was to prospectively assess the analytical performance of a CPE detection algorithm based on phenotypic tests (the screening test) and MALDI-ToF hydrolysis (the confirmatory test). METHODS Over a 6-month period and based on a disk diffusion method, 74 carbapenem-resistant strains were included in this study. RESULTS Of the collected isolates, 54 turned out to be negative after phenotypic tests. Hence, 20 strains (including all of the CPEs) were checked with the confirmation test. Seven strains were positive. After molecular biology assessments in a reference center, three of the seven were found to be false positives. The algorithm had a negative predictive value and a sensitivity of 100%, a specificity of 77%, and a positive predictive value of 20%. CONCLUSION The algorithm has a 24-hour turnaround time and helps to avoid using expensive molecular biology tests; we consider that it can be used on a routine basis for screening clinical strains.
Collapse
Affiliation(s)
- Morgane Choquet
- Department of Bacteriology, Amiens University Hospital, Amiens, France.,Microbiology Research Unit, AGIR EA4294, Jules Verne University of Picardie, Amiens, France
| | - Raphaël Guiheneuf
- Department of Bacteriology, Amiens University Hospital, Amiens, France.,Microbiology Research Unit, AGIR EA4294, Jules Verne University of Picardie, Amiens, France
| | - Sandrine Castelain
- Department of Bacteriology, Amiens University Hospital, Amiens, France.,Microbiology Research Unit, AGIR EA4294, Jules Verne University of Picardie, Amiens, France
| | - Emilie Pluquet
- Department of Bacteriology, Amiens University Hospital, Amiens, France.,Microbiology Research Unit, AGIR EA4294, Jules Verne University of Picardie, Amiens, France
| | - Véronique Decroix
- Department of Bacteriology, Amiens University Hospital, Amiens, France.,Microbiology Research Unit, AGIR EA4294, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
214
|
Mohammadpour B, Rouhi S, Moradi M, Ramazanzadeh R, Saniyi E, Zandi S, Salimizand H. Prevalence of Metallo-β-Lactamases in Acinetobacter Baumannii in Iran: A Review and Meta-Analysis. Infect Disord Drug Targets 2018; 19:350-361. [PMID: 30324896 DOI: 10.2174/1871526518666181016101430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/29/2018] [Accepted: 10/05/2018] [Indexed: 01/26/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is an important opportunistic pathogen that causes major public health concerns, especially in hospitalized patients due to acquisition of resistant genes. The aim of this study was to systematically review the published data on the prevalence and dispersion of metallo-β-lactamases (MBLs) genes in A. baumannii in different provinces of Iran and provide an overall prevalence rate using meta-analysis. All available national and international databanks from 2011 to 2017 were searched to find published studies. Quality of studies was assessed by STROBE. Due to the fact that a significant heterogeneity was observed, the random effects model was used to combine the results. Statistical analysis was performed by comprehensive meta-analysis (CMA) V2 software. Out of 78 articles, 28 were extracted based on certain inclusion and exclusion criteria. Most of the A. baumannii isolates were obtained from intensive care unit (ICU) ward of hospitals. Based on phenotypic and molecular detection tests, pooled prevalence of all MBLs was 58%, and blaVIM, blaIMP, and blaSPM-1 genes were estimated to be at 10.5, 6, and 5%, respectively. Based on the results, further attention should be given to report MBL genes in A. baumannii based on molecular detection rather than the phenotypic one. Furthermore, more effort should be focused on ICU sections in order to avoid the distribution of resistant genes.
Collapse
Affiliation(s)
- Bashir Mohammadpour
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samaneh Rouhi
- Lung Diseases and Allergy Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Moradi
- Vice Chancellor for Research and Technology, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rashid Ramazanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ebrahim Saniyi
- Watershed Management, Gorgan University of Agricultural Science and Natural Resource, Gorgan, Iran
| | - Sairan Zandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Himen Salimizand
- Liver and Digestive Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
215
|
V T Nair D, Venkitanarayanan K, Kollanoor Johny A. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018; 7:E167. [PMID: 30314348 PMCID: PMC6210005 DOI: 10.3390/foods7100167] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
Salmonella enterica is one of the most ubiquitous enteropathogenic bacterial species on earth, and comprises more than 2500 serovars. Widely known for causing non-typhoidal foodborne infections (95%), and enteric (typhoid) fever in humans, Salmonella colonizes almost all warm- and cold-blooded animals, in addition to its extra-animal environmental strongholds. The last few decades have witnessed the emergence of highly virulent and antibiotic-resistant Salmonella, causing greater morbidity and mortality in humans. The emergence of several Salmonella serotypes resistant to multiple antibiotics in food animals underscores a significant food safety hazard. In this review, we discuss the various antibiotic-resistant Salmonella serotypes in food animals and the food supply, factors that contributed to their emergence, their antibiotic resistance mechanisms, the public health implications of their spread through the food supply, and the potential antibiotic alternatives for controlling them.
Collapse
Affiliation(s)
- Divek V T Nair
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108 USA.
| | | | - Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108 USA.
| |
Collapse
|
216
|
Elmowalid GA, Ahmad AAM, Hassan MN, Abd El-Aziz NK, Abdelwahab AM, Elwan SI. Molecular Detection of New SHV β-lactamase Variants in Clinical Escherichia coli and Klebsiella pneumoniae Isolates from Egypt. Comp Immunol Microbiol Infect Dis 2018; 60:35-41. [PMID: 30396428 DOI: 10.1016/j.cimid.2018.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/23/2018] [Accepted: 09/29/2018] [Indexed: 11/17/2022]
Abstract
The emergence of multidrug-resistant (MDR) pathogens was reported worldwide. Herein, SHV extended-spectrum β-lactamase (SHV-ESBL) variants detection was investigated in MDR E. coli and K. pneumoniae isolates recovered from human subjects (n = 144), one day-old chicks (n = 36) and broiler clinical samples (n = 90). All examined samples were positive for E. coli (n = 246/270; 91.11%) and Klebsiella pneumoniae (n = 24/270; 8.89%). Antimicrobial susceptibility testing was performed on E. coli and K. pneumoniae. SHV-ESBL producing isolates were defined followed by SHV-ESBL amino acids sequence and proteins structure-function analyses. Phylogenetic analysis of 11 MDR isolates resistant to at least 6 β-lactams was designed to determine their genetic relationship with those previously identified in Egypt. SHV-ESBL variants were detected in 28% and 16% of E. coli and K. pneumoniae isolates, respectively. Among the 11 SHV-ESBL producing isolates, one isolate displayed 100% blaSHV-12 similarity with three point mutations, while the other 10 isolates displayed amino acid substitutions at previously non-reported sites. Amino acid sequence analyses of these 10 isolates displayed 96-100% identity to blaSHV-10 (2 isolates with 3-6 point mutations), blaSHV-18 (one isolate with 4 point mutations), blaSHV-58 (4 isolates with 4-5 point mutations), and blaSHV-91 (3 isolates with 3-7 point mutations). These mutations altered SHV-enzyme pocket dimensions and its binding sites chargeability. The blaSHV phylogeny analysis revealed occurrence of variants in closely related lineages with blaSHV-5 and blaSHV-12 with possibility of blaSHV gene transfer between human and birds. The occurrence of these variants in Egypt could help in epidemiological studies and could explain the emergent resistance to β-lactams.
Collapse
Affiliation(s)
- Gamal A Elmowalid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharkia, Egypt.
| | - Adel Attia M Ahmad
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharkia, Egypt
| | - Muhammad N Hassan
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharkia, Egypt
| | - Norhan K Abd El-Aziz
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharkia, Egypt
| | - Ashraf M Abdelwahab
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharkia, Egypt
| | - Shymaa I Elwan
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharkia, Egypt
| |
Collapse
|
217
|
Verdino A, Zollo F, De Rosa M, Soriente A, Hernández-Martínez MÁ, Marabotti A. Computational analysis of the interactions of a novel cephalosporin derivative with β-lactamases. BMC STRUCTURAL BIOLOGY 2018; 18:13. [PMID: 30286754 PMCID: PMC6389238 DOI: 10.1186/s12900-018-0092-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 11/30/2022]
Abstract
Background One of the main concerns of the modern medicine is the frightening spread of antimicrobial resistance caused mainly by the misuse of antibiotics. The researchers worldwide are actively involved in the search for new classes of antibiotics, and for the modification of known molecules in order to face this threatening problem. We have applied a computational approach to predict the interactions between a new cephalosporin derivative containing an additional β-lactam ring with different substituents, and several serine β-lactamases representative of the different classes of this family of enzymes. Results The results of the simulations, performed by using a covalent docking approach, has shown that this compound, although able to bind the selected β-lactamases, has a different predicted binding score for the two β-lactam rings, suggesting that one of them could be more resistant to the attack of these enzymes and stay available to perform its bactericidal activity. Conclusions The detailed analysis of the complexes obtained by these simulations suggests possible hints to modulate the affinity of this compound towards these enzymes, in order to develop new derivatives with improved features to escape to degradation. Electronic supplementary material The online version of this article (10.1186/s12900-018-0092-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Verdino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Felicia Zollo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Margherita De Rosa
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Annunziata Soriente
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | | | - Anna Marabotti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
218
|
Park KS, Hong MK, Jeon JW, Kim JH, Jeon JH, Lee JH, Kim TY, Karim AM, Malik SK, Kang LW, Lee SH. The novel metallo-β-lactamase PNGM-1 from a deep-sea sediment metagenome: crystallization and X-ray crystallographic analysis. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2018; 74:644-649. [PMID: 30279316 DOI: 10.1107/s2053230x18012268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 11/10/2022]
Abstract
Metallo-β-lactamases (MBLs) are present in major Gram-negative pathogens and environmental species, and pose great health risks because of their ability to hydrolyze the β-lactam rings of antibiotics such as carbapenems. PNGM-1 was the first reported case of a subclass B3 MBL protein that was identified from a metagenomic library from deep-sea sediments that predate the antibiotic era. In this study, PNGM-1 was overexpressed, purified and crystallized. Crystals of native and selenomethionine-substituted PNGM-1 diffracted to 2.10 and 2.30 Å resolution, respectively. Both the native and the selenomethionine-labelled PNGM-1 crystals belonged to the monoclinic space group P21, with unit-cell parameters a = 122, b = 83, c = 163 Å, β = 110°. Matthews coefficient (VM) calculations suggested the presence of 6-10 molecules in the asymmetric unit, corresponding to a solvent content of ∼31-58%. Structure determination is currently in progress.
Collapse
Affiliation(s)
- Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Myoung Ki Hong
- Department of Biological Sciences, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Wan Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Ji Hwan Kim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Tae Yeong Kim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Asad Mustafa Karim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Sumera Kausar Malik
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Lin Woo Kang
- Department of Biological Sciences, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| |
Collapse
|
219
|
Abstract
β-Lactamases, the major resistance determinant for β-lactam antibiotics in Gram-negative bacteria, are ancient enzymes whose origins can be traced back millions of years ago. These well-studied enzymes, currently numbering almost 2,800 unique proteins, initially emerged from environmental sources, most likely to protect a producing bacterium from attack by naturally occurring β-lactams. Their ancestors were presumably penicillin-binding proteins that share sequence homology with β-lactamases possessing an active-site serine. Metallo-β-lactamases also exist, with one or two catalytically functional zinc ions. Although penicillinases in Gram-positive bacteria were reported shortly after penicillin was introduced clinically, transmissible β-lactamases that could hydrolyze recently approved cephalosporins, monobactams, and carbapenems later became important in Gram-negative pathogens. Nomenclature is based on one of two major systems. Originally, functional classifications were used, based on substrate and inhibitor profiles. A later scheme classifies β-lactamases according to amino acid sequences, resulting in class A, B, C, and D enzymes. A more recent nomenclature combines the molecular and biochemical classifications into 17 functional groups that describe most β-lactamases. Some of the most problematic enzymes in the clinical community include extended-spectrum β-lactamases (ESBLs) and the serine and metallo-carbapenemases, all of which are at least partially addressed with new β-lactamase inhibitor combinations. New enzyme variants continue to be described, partly because of the ease of obtaining sequence data from whole-genome sequencing studies. Often, these new enzymes are devoid of any phenotypic descriptions, making it more difficult for clinicians and antibiotic researchers to address new challenges that may be posed by unusual β-lactamases.
Collapse
Affiliation(s)
- Karen Bush
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
220
|
Schnaars C, Kildahl-Andersen G, Prandina A, Popal R, Radix S, Le Borgne M, Gjøen T, Andresen AMS, Heikal A, Økstad OA, Fröhlich C, Samuelsen Ø, Lauksund S, Jordheim LP, Rongved P, Åstrand OAH. Synthesis and Preclinical Evaluation of TPA-Based Zinc Chelators as Metallo-β-lactamase Inhibitors. ACS Infect Dis 2018; 4:1407-1422. [PMID: 30022668 DOI: 10.1021/acsinfecdis.8b00137] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rise of antimicrobial resistance (AMR) worldwide and the increasing spread of multi-drug-resistant organisms expressing metallo-β-lactamases (MBL) require the development of efficient and clinically available MBL inhibitors. At present, no such inhibitor is available, and research is urgently needed to advance this field. We report herein the development, synthesis, and biological evaluation of chemical compounds based on the selective zinc chelator tris-picolylamine (TPA) that can restore the bactericidal activity of Meropenem (MEM) against Pseudomonas aeruginosa and Klebsiella pneumoniae expressing carbapenemases Verona integron-encoded metallo-β-lactamase (VIM-2) and New Delhi metallo-β-lactamase 1 (NDM-1), respectively. These adjuvants were prepared via standard chemical methods and evaluated in biological assays for potentiation of MEM against bacteria and toxicity (IC50) against HepG2 human liver carcinoma cells. One of the best compounds, 15, lowered the minimum inhibitory concentration (MIC) of MEM by a factor of 32-256 at 50 μM within all tested MBL-expressing clinical isolates and showed no activity toward serine carbapenemase expressing isolates. Biochemical assays with purified VIM-2 and NDM-1 and 15 resulted in inhibition kinetics with kinact/ KI of 12.5 min-1 mM-1 and 0.500 min-1 mM-1, respectively. The resistance frequency of 15 at 50 μM was in the range of 10-7 to 10-9. 15 showed good tolerance in HepG2 cells with an IC50 well above 100 μM, and an in vivo study in mice showed no acute toxic effects even at a dose of 128 mg/kg.
Collapse
Affiliation(s)
| | | | - Anthony Prandina
- Université de Lyon, Université Lyon 1, Faculté de
Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry,
SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 69373 Lyon Cedex 8, France
| | | | - Sylvie Radix
- Université de Lyon, Université Lyon 1, Faculté de
Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry,
SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 69373 Lyon Cedex 8, France
| | - Marc Le Borgne
- Université de Lyon, Université Lyon 1, Faculté de
Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry,
SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 69373 Lyon Cedex 8, France
| | | | | | - Adam Heikal
- Centre for Integrative
Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Ole Andreas Økstad
- Centre for Integrative
Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Christopher Fröhlich
- Norwegian National
Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- NorStruct, Department of Chemistry, Faculty of Science and Technology,
SIVA Innovation Centre, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National
Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Pharmacy, UiT − The Arctic University of Norway, 9037 Tromsø, Norway
| | - Silje Lauksund
- Norwegian National
Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Lars Petter Jordheim
- Université Lyon, Université Claude Bernard Lyon 1, INSERM
1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche
en Cancérologie de Lyon, Lyon 69008, France
| | | | | |
Collapse
|
221
|
Silveira MC, Azevedo da Silva R, Faria da Mota F, Catanho M, Jardim R, R Guimarães AC, de Miranda AB. Systematic Identification and Classification of β-Lactamases Based on Sequence Similarity Criteria: β-Lactamase Annotation. Evol Bioinform Online 2018; 14:1176934318797351. [PMID: 30210232 PMCID: PMC6131288 DOI: 10.1177/1176934318797351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
β-lactamases, the enzymes responsible for resistance to β-lactam antibiotics, are
widespread among prokaryotic genera. However, current β-lactamase classification
schemes do not represent their present diversity. Here, we propose a workflow to
identify and classify β-lactamases. Initially, a set of curated sequences was
used as a model for the construction of profiles Hidden Markov Models (HMM),
specific for each β-lactamase class. An extensive, nonredundant set of
β-lactamase sequences was constructed from 7 different resistance proteins
databases to test the methodology. The profiles HMM were improved for their
specificity and sensitivity and then applied to fully assembled genomes. Five
hierarchical classification levels are described, and a new class of
β-lactamases with fused domains is proposed. Our profiles HMM provide a better
annotation of β-lactamases, with classes and subclasses defined by objective
criteria such as sequence similarity. This classification offers a solid base to
the elaboration of studies on the diversity, dispersion, prevalence, and
evolution of the different classes and subclasses of this critical enzymatic
activity.
Collapse
Affiliation(s)
- Melise Chaves Silveira
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rangeline Azevedo da Silva
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fábio Faria da Mota
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marcos Catanho
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Carolina R Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Antonio B de Miranda
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
222
|
Tehrani KHME, Martin NI. β-lactam/β-lactamase inhibitor combinations: an update. MEDCHEMCOMM 2018; 9:1439-1456. [PMID: 30288219 PMCID: PMC6151480 DOI: 10.1039/c8md00342d] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance caused by β-lactamase production continues to present a growing challenge to the efficacy of β-lactams and their role as the most important class of clinically used antibiotics. In response to this threat however, only a handful of β-lactamase inhibitors have been introduced to the market over the past thirty years. The first-generation β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) are all β-lactam derivatives and work primarily by inactivating class A and some class C serine β-lactamases. The newer generations of β-lactamase inhibitors including avibactam and vaborbactam are based on non-β-lactam structures and their spectrum of inhibition is extended to KPC as an important class A carbapenemase. Despite these advances several class D and virtually all important class B β-lactamases are resistant to existing inhibitors. The present review provides an overview of recent FDA-approved β-lactam/β-lactamase inhibitor combinations as well as an update on research efforts aimed at the discovery and development of novel β-lactamase inhibitors.
Collapse
Affiliation(s)
- Kamaleddin H M E Tehrani
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
- Biological Chemistry Group , Institute of Biology Leiden , Leiden University , Sylvius Laboratories, Sylviusweg 72 , 2333 BE Leiden , The Netherlands . ; Tel: +31 (0)6 1878 5274
| |
Collapse
|
223
|
Jiang L, Lin J, Taggart CC, Bengoechea JA, Scott CJ. Nanodelivery strategies for the treatment of multidrug-resistant bacterial infections. JOURNAL OF INTERDISCIPLINARY NANOMEDICINE 2018; 3:111-121. [PMID: 30443410 PMCID: PMC6220773 DOI: 10.1002/jin2.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
One of the most important health concerns in society is the development of nosocomial infections caused by multidrug-resistant pathogens. The purpose of this review is to discuss the issues in current antibiotic therapies and the ongoing progress of developing new strategies for the treatment of ESKAPE pathogen infections, which is acronymized for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. We not only examine the current issues caused by multidrug resistance but we also examine the barrier effects such as biofilm and intracellular localization exploited by these pathogens to avoid antibiotic exposure. Recent innovations in nanomedicine approaches and antibody antibiotic conjugates are reviewed as potential novel approaches for the treatment of bacterial infection, which ultimately may expand the useful life span of current antibiotics.
Collapse
Affiliation(s)
- Lai Jiang
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Jia Lin
- School of PharmacyQueen's University BelfastBelfastUK
| | - Clifford C. Taggart
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - José A. Bengoechea
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Christopher J. Scott
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
224
|
Pereira JL, Volcão LM, Klafke GB, Vieira RS, Gonçalves CV, Ramis IB, da Silva PEA, von Groll A. Antimicrobial Resistance and Molecular Characterization of Extended-Spectrum β-Lactamases of Escherichia coli and Klebsiella spp. Isolates from Urinary Tract Infections in Southern Brazil. Microb Drug Resist 2018; 25:173-181. [PMID: 30133334 DOI: 10.1089/mdr.2018.0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to evaluate the frequency of different extended-spectrum β-lactamases (ESBL) as well as to associate these ESBL with antimicrobial (ATM) resistance in Escherichia coli and Klebsiella spp. isolates from outpatients and inpatients with urinary tract infections. The study included 435 consecutive nonduplicate clinical isolates, including 362 E. coli isolates, 62 Klebsiella pneumoniae isolates, and 11 K. oxytoca isolates. Isolates were obtained from patients who were treated in a University Hospital between August 2012 and July 2013. Three multiplex PCR were performed to identify the ESBL groups. A total of 48 (11%) ESBL-producing isolates were found. The risk for the ESBL presence was significantly higher in males (26.4%) than females (8%), from hospital-acquired infections (29.1%) than community-acquired infections (7.0%) and in Klebsiella spp. (27.4%) than in E. coli (7.7%). ESBL-producing isolates presented a significantly higher percentage of resistance in 21 of the 23 ATMs analyzed. The CTX-M-1 group was the most predominant ESBL identified. The blaCTX-M-1-group gene was found in 56% of the total ESBL producers from community and in 42.4% from hospital origins; it was followed in frequency by the blaCTX-M-8/25-group, also found in both environments. Klebsiella spp. presented the largest variety of β-lactamase enzyme combinations and a higher level of resistance to cefotaxime. These findings contribute to better knowledge of the epidemiology of ESBL enzymes and are alarming for the reduced therapeutic options available for the risk groups identified in the studied populations.
Collapse
Affiliation(s)
- Juliano Lacava Pereira
- 1 Faculdade de Medicina, Medical Microbiology Research Center (NUPEMM), Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| | - Lisiane Martins Volcão
- 1 Faculdade de Medicina, Medical Microbiology Research Center (NUPEMM), Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| | - Gabriel Baracy Klafke
- 2 Faculdade de Medicina, Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| | - Roseli Stone Vieira
- 3 Hospital Universitário Dr. Miguel Riet Correa , Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | | | - Ivy Bastos Ramis
- 1 Faculdade de Medicina, Medical Microbiology Research Center (NUPEMM), Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| | - Pedro Eduardo Almeida da Silva
- 1 Faculdade de Medicina, Medical Microbiology Research Center (NUPEMM), Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| | - Andrea von Groll
- 1 Faculdade de Medicina, Medical Microbiology Research Center (NUPEMM), Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| |
Collapse
|
225
|
Srivastava A, Kumar R, Kumar M. BlaPred: Predicting and classifying β-lactamase using a 3-tier prediction system via Chou's general PseAAC. J Theor Biol 2018; 457:29-36. [PMID: 30138632 DOI: 10.1016/j.jtbi.2018.08.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/11/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
Antibiotics of β-lactam class account for nearly half of the global antibiotic use. The β-lactamase enzyme is a major element of the bacterial arsenals to escape the lethal effect of β-lactam antibiotics. Different variants of β-lactamases have evolved to counter the different types of β-lactam antibiotics. Extensive research has been done to isolate and characterize different variants of β-lactamases. Unfortunately, identification and classification of the β-lactamase enzyme are purely based on experiments, which is both time- and resource-consuming. Thus, there is a need for fast and accurate computational methods to identify and classify new β-lactamase enzymes from the avalanche of sequence data generated in the post-genomic era. Based on these considerations, we have developed a support vector machine based three-tier prediction system, BlaPred, to predict and classify (as per Ambler classification) β-lactamases solely from their protein sequences. The input features used were amino acid composition, classic and amphiphilic pseudo amino acid compositions. The results show that the classic pseudo amino acid composition-based models performed better than the other models. Following a leave-one-out cross-validation procedure, the accuracy to discriminate β-lactamases from non-β-lactamases was 93.57% (tier-I); accuracies for prediction of class A β-lactamases was 93.27%, 95.52% for class B, 96.86% for class C and 97.31% for class D (tier-II); and at tier-III the accuracies for prediction were 84.78%, 95.65% and 89.13% for subclasses B1, B2 and B3, respectively. The comparative results on an independent dataset suggests that our method works efficiently to distinguish β-lactamases from non-β-lactamases, with an overall accuracy of 93.09%, and is further able to classify β-lactamase sequences into their respective Ambler classes and subclasses with accuracy higher than 92% and 87%, respectively. Comparative performance of BlaPred on an independent benchmark dataset also shows a significant improvement over other existing methods. Finally, BlaPred is available as a webserver, as well as standalone software, which can be accessed at http://proteininformatics.org/mkumar/blapred.
Collapse
Affiliation(s)
| | - Ravindra Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
226
|
Ahmad K, Khattak F, Ali A, Rahat S, Noor S, Mahsood N, Somayya R. Carbapenemases and Extended-Spectrum β-Lactamase-Producing Multidrug-Resistant Escherichia coli Isolated from Retail Chicken in Peshawar: First Report from Pakistan. J Food Prot 2018; 81:1339-1345. [PMID: 30019956 DOI: 10.4315/0362-028x.jfp-18-045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report the prevalence of extended-spectrum β-lactamases and carbapenemases in Escherichia coli isolated from retail chicken in Peshawar, Pakistan. One hundred E. coli isolates were recovered from retail chicken. Antibiotic susceptibility testing was carried out against ampicillin, chloramphenicol, kanamycin, nalidixic acid, cephalothin, gentamicin, sulfamethoxazole-trimethoprim, and streptomycin. Phenotypic detection of β-lactamase production was analyzed through double disc synergy test using the antibiotics amoxicillin-clavulanate, cefotaxime, ceftazidime, cefepime, and aztreonam. Fifty multidrug-resistant isolates were screened for detection of sul1, aadA, cmlA, int, blaTEM, blaSHV, blaCTX-M, blaOXA-10, blaVIM, blaIMP, and blaNDM-1 genes. Resistance to ampicillin, nalidixic acid, kanamycin, streptomycin, cephalothin, sulfamethoxazole-trimethoprim, gentamicin, cefotaxime, ceftazidime, aztreonam, cefepime, amoxicillin-clavulanate, and chloramphenicol was 92, 91, 84, 73, 70, 67, 53, 48, 40, 39, 37, 36, and 23% respectively. Prevalence of sul1, aadA, cmlA, int, blaTEM, blaCTX-M, blaIMP, and blaNDM-1 was 78% ( n = 39), 76% ( n = 38), 20% ( n = 10), 90% ( n = 45), 74% ( n = 37), 94% ( n = 47), 22% ( n = 11), and 4% ( n = 2), respectively. blaSHV, blaOXA-10, and blaVIM were not detected. The coexistence of multiple antibiotic resistance genes in multidrug-resistant strains of E. coli is alarming. Hence, robust surveillance strategies should be developed with a focus on controlling the spread of antibiotic resistance genes via the food chain.
Collapse
Affiliation(s)
| | - Faryal Khattak
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| | - Amjad Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| | - Shaista Rahat
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| | - Shazia Noor
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| | - Nargas Mahsood
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| | - Ramla Somayya
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| |
Collapse
|
227
|
Tackling the Antibiotic Resistance Caused by Class A β-Lactamases through the Use of β-Lactamase Inhibitory Protein. Int J Mol Sci 2018; 19:ijms19082222. [PMID: 30061509 PMCID: PMC6121496 DOI: 10.3390/ijms19082222] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022] Open
Abstract
β-Lactams are the most widely used and effective antibiotics for the treatment of infectious diseases. Unfortunately, bacteria have developed several mechanisms to combat these therapeutic agents. One of the major resistance mechanisms involves the production of β-lactamase that hydrolyzes the β-lactam ring thereby inactivating the drug. To overcome this threat, the small molecule β-lactamase inhibitors (e.g., clavulanic acid, sulbactam and tazobactam) have been used in combination with β-lactams for treatment. However, the bacterial resistance to this kind of combination therapy has evolved recently. Therefore, multiple attempts have been made to discover and develop novel broad-spectrum β-lactamase inhibitors that sufficiently work against β-lactamase producing bacteria. β-lactamase inhibitory proteins (BLIPs) (e.g., BLIP, BLIP-I and BLIP-II) are potential inhibitors that have been found from soil bacterium Streptomyces spp. BLIPs bind and inhibit a wide range of class A β-lactamases from a diverse set of Gram-positive and Gram-negative bacteria, including TEM-1, PC1, SME-1, SHV-1 and KPC-2. To the best of our knowledge, this article represents the first systematic review on β-lactamase inhibitors with a particular focus on BLIPs and their inherent properties that favorably position them as a source of biologically-inspired drugs to combat antimicrobial resistance. Furthermore, an extensive compilation of binding data from β-lactamase–BLIP interaction studies is presented herein. Such information help to provide key insights into the origin of interaction that may be useful for rationally guiding future drug design efforts.
Collapse
|
228
|
Viana Marques DDA, Machado SEF, Ebinuma VCS, Duarte CDAL, Converti A, Porto ALF. Production of β-Lactamase Inhibitors by Streptomyces Species. Antibiotics (Basel) 2018; 7:E61. [PMID: 30018235 PMCID: PMC6163296 DOI: 10.3390/antibiotics7030061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
β-Lactamase inhibitors have emerged as an effective alternative to reduce the effects of resistance against β-lactam antibiotics. The Streptomyces genus is known for being an exceptional natural source of antimicrobials and β-lactamase inhibitors such as clavulanic acid, which is largely applied in clinical practice. To protect against the increasing prevalence of multidrug-resistant bacterial strains, new antibiotics and β-lactamase inhibitors need to be discovered and developed. This review will cover an update about the main β-lactamase inhibitors producers belonging to the Streptomyces genus; advanced methods, such as genetic and metabolic engineering, to enhance inhibitor production compared with wild-type strains; and fermentation and purification processes. Moreover, clinical practice and commercial issues are discussed. The commitment of companies and governments to develop innovative strategies and methods to improve the access to new, efficient, and potentially cost-effective microbial products to combat the antimicrobial resistance is also highlighted.
Collapse
Affiliation(s)
- Daniela de Araújo Viana Marques
- Campus Serra Talhada, University of Pernambuco, Avenida Custódio Conrado, 600, AABB, Serra Talhada, Pernambuco 56912-550, Brazil.
| | - Suellen Emilliany Feitosa Machado
- Department of Antibiotics, Federal University of Pernambuco, Avenida da Engenharia, 2° andar, Cidade Universitária, Recife, Pernambuco 50740-600, Brazil.
| | - Valéria Carvalho Santos Ebinuma
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Araraquara 14800-903, Brazil.
| | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Chemical Pole, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy.
| | - Ana Lúcia Figueiredo Porto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, Recife, Pernambuco 52171-900, Brazil.
| |
Collapse
|
229
|
Betelli L, Neuwirth C, Solanas S, Chantemesse B, Vienney F, Hartmann A, Rochelet M. A voltammetric test for the rapid discrimination of β-lactamase-producing Enterobacteriaceae in blood cultures. Talanta 2018; 184:210-218. [DOI: 10.1016/j.talanta.2018.02.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 01/22/2023]
|
230
|
Pozzi C, Di Pisa F, De Luca F, Benvenuti M, Docquier JD, Mangani S. Atomic-Resolution Structure of a Class C β-Lactamase and Its Complex with Avibactam. ChemMedChem 2018; 13:1437-1446. [PMID: 29786960 DOI: 10.1002/cmdc.201800213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Indexed: 11/12/2022]
Abstract
β-Lactamases (BLs) are important antibiotic-resistance determinants that significantly compromise the efficacy of valuable β-lactam antibacterial drugs. Thus, combinations with BL inhibitor were developed. Avibactam is the first non-β-lactam BL inhibitor introduced into clinical practice. Ceftazidime-avibactam represents one of the few last-resort antibiotics available for the treatment of infections caused by near-pandrug-resistant bacteria. TRU-1 is a chromosomally encoded AmpC-type BL of Aeromonas enteropelogenes, related to the FOX-type BLs and constitutes a good model for class C BLs. TRU-1 crystals provided ultrahigh-resolution diffraction data for the native enzyme and for its complex with avibactam. A comparison of the native and avibactam-bound structures revealed new details in the conformations of residues relevant for substrate and/or inhibitor binding. Furthermore, a comparison of the TRU-1 and Pseudomonas aeruginosa AmpC avibactam-bound structures revealed two inhibitor conformations that were likely to correspond to two different states occurring during inhibitor carbamylation/recyclization.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Flavio Di Pisa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Filomena De Luca
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Manuela Benvenuti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Jean Denis Docquier
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
231
|
Sanchez DG, de Melo FM, Savazzi EA, Stehling EG. Detection of different β-lactamases encoding genes, including bla NDM, and plasmid-mediated quinolone resistance genes in different water sources from Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:407. [PMID: 29909525 DOI: 10.1007/s10661-018-6801-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Bacterial resistance occurs by spontaneous mutations or horizontal gene transfer mediated by mobile genetic elements, which represents a great concern. Resistance to β-lactam antibiotics is mainly due to the production of β-lactamases, and an important mechanism of fluoroquinolone resistance is the acquisition plasmid determinants. The aim of this study was to verify the presence of β-lactamase-encoding genes and plasmid-mediated quinolone resistance genes in different water samples obtained from São Paulo state, Brazil. A high level of these resistance genes was detected, being the blaSHV, blaGES, and qnr the most prevalent. Besides that, the blaNDM gene, which codify an important and hazardous metallo-β-lactamase, was detected.
Collapse
Affiliation(s)
- Danilo Garcia Sanchez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fernanda Maciel de Melo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
232
|
Dhawde R, Macaden R, Saranath D, Nilgiriwala K, Ghadge A, Birdi T. Antibiotic Resistance Characterization of Environmental E. coli Isolated from River Mula-Mutha, Pune District, India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061247. [PMID: 29895787 PMCID: PMC6025386 DOI: 10.3390/ijerph15061247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022]
Abstract
In the current study, ceftazidime- and ciprofloxacin-resistant—or dual drug-resistant (DDR)—E. coli were isolated from river Mula-Mutha, which flows through rural Pune district and Pune city. The DDR E. coli were further examined for antibiotic resistance to six additional antibiotics. The study also included detection of genes responsible for ceftazidime and ciprofloxacin resistance and vectors for horizontal gene transfer. Twenty-eight percent of the identified DDR E. coli were resistant to more than six antibiotics, with 12% being resistant to all eight antibiotics tested. Quinolone resistance was determined through the detection of qnrA, qnrB, qnrS and oqxA genes, whereas cephalosporin resistance was confirmed through detection of TEM, CTX-M-15, CTX-M-27 and SHV genes. Out of 219 DDR E. coli, 8.2% were qnrS positive and 0.4% were qnrB positive. Percentage of isolates positive for the TEM, CTX-M-15 and CTX-M-27 genes were 32%, 46% and 0.9%, respectively. None of the DDR E. coli tested carried the qnrA, SHV and oqxA genes. Percentage of DDR E. coli carrying Class 1 and 2 integrons (mobile genetic elements) were 47% and 8%, respectively. The results showed that antibiotic resistance genes (ARGs) and integrons were present in the E. coli isolated from the river at points adjoining and downstream of Pune city.
Collapse
Affiliation(s)
- Rutuja Dhawde
- The Foundation for Medical Research, 84A, R.G. Thadani Marg, Worli, Mumbai 400 018, India.
| | - Ragini Macaden
- St Johns Research Institute, 100 Feet Rd, John Nagar, Koramangala, Bangalore 560 034, India.
| | - Dhananjaya Saranath
- Cancer Patients Aid Association (CPAA), Sumer Kendra, Mumbai 400 0018, India.
| | - Kayzad Nilgiriwala
- The Foundation for Medical Research, 84A, R.G. Thadani Marg, Worli, Mumbai 400 018, India.
| | - Appasaheb Ghadge
- The Foundation for Research in Community Health, Pune 411007, India.
| | - Tannaz Birdi
- The Foundation for Medical Research, 84A, R.G. Thadani Marg, Worli, Mumbai 400 018, India.
| |
Collapse
|
233
|
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018; 7:212527. [PMID: 29872449 PMCID: PMC5978525 DOI: 10.7573/dic.212527] [Citation(s) in RCA: 442] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Infections with Pseudomonas aeruginosa have become a real concern in hospital-acquired infections, especially in critically ill and immunocompromised patients. The major problem leading to high mortality lies in the appearance of drug-resistant strains. Therefore, a vast number of approaches to develop novel anti-infectives is currently pursued. Diverse strategies range from killing (new antibiotics) to disarming (antivirulence) the pathogen. In this review, selected aspects of P. aeruginosa antimicrobial resistance and infection management will be addressed. Many studies have been performed to evaluate the risk factors for resistance and the potential consequences on mortality and attributable mortality. The review also looks at the mechanisms associated with resistance – P. aeruginosa is a pathogen presenting a large genome, and it can develop a large number of factors associated with antibiotic resistance involving almost all classes of antibiotics. Clinical approaches to patients with bacteremia, ventilator-associated pneumonia, urinary tract infections and skin soft tissue infections are discussed. Antibiotic combinations are reviewed as well as an analysis of pharmacokinetic and pharmacodynamic parameters to optimize P. aeruginosa treatment. Limitations of current therapies, the potential for alternative drugs and new therapeutic options are also discussed.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Clinic, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Antonio Vena
- Infectious Diseases Clinic, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Antony Croxatto
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Elda Righi
- Infectious Diseases Clinic, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Benoit Guery
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
234
|
Chika E, Charles E, Ifeanyichukwu I, Michael A. First Detection of FOX-1 AmpC β-lactamase Gene Expression Among Escherichia coli Isolated from Abattoir Samples in Abakaliki, Nigeria. Oman Med J 2018; 33:243-249. [PMID: 29896333 DOI: 10.5001/omj.2018.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objectives Gram-negative bacteria represent the most relevant reservoir of resistance to antibiotics in the environment. The natural selection of resistant clones of bacteria in the environment by antimicrobial selective pressure is a relevant mechanism for spreading antibiotic resistance traits in both the community and hospital environment. This is in scenarios where antimicrobials are used irrationally, and even in the propagation of livestock, poultry birds, and for other veterinary purposes. This study sought to detect the prevalence of FOX-1 AmpC β-lactamase genes from abattoir samples. Methods The isolation of Escherichia coli, antimicrobial susceptibility testing, and β-lactamase characterization was carried out using standard microbiology techniques. The production of AmpC β-lactamase was phenotypically carried out using the cefoxitin-cloxacillin double-disk synergy test (CC-DDST), and FOX-1 AmpC genes was detected in the E. coli isolates using multiplex polymerase chain reaction. Results Forty-eight E. coli isolates were recovered from the anal swabs of cows and 35 (72.9%) isolates were positive for the production of β-lactamase. Notably, high percentages of resistance to cefoxitin (91.7%), ceftriaxone (83.3%), imipenem (85.4%), ceftazidime (87.5%), ofloxacin (81.3%), and gentamicin (85.4%) were found. FOX-1 genes were detected in three (6.3%) of the 48 E. coli isolates phenotypically screened for AmpC enzyme production. Conclusions Abattoirs could represent a major reservoir of resistance genes especially AmpC β-lactamase, and this could serve as a route for the dissemination of multidrug-resistant bacteria in the community. Thus, the molecular identification of drug-resistant genes is vital for a reliable epidemiological investigation and the forestalling of the emergence and spread of these organisms through the food chain in this region.
Collapse
Affiliation(s)
- Ejikeugwu Chika
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Esimone Charles
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Iroha Ifeanyichukwu
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Adikwu Michael
- Department of Pharmaceutics, University of Nigeria Nsukka, Nsukka, Nigeria
| |
Collapse
|
235
|
El-Shazly DA, Nasef SA, Mahmoud FF, Jonas D. Expanded spectrum β-lactamase producing Escherichia coli isolated from chickens with colibacillosis in Egypt. Poult Sci 2018; 96:2375-2384. [PMID: 28339845 DOI: 10.3382/ps/pew493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/13/2016] [Indexed: 11/20/2022] Open
Abstract
Throughout the world, expanded spectrum β-lactamases (ESBL) are increasing among clinical isolates of Enterobacteriaceae, both in humans and animals. Unfortunately, there is a paucity of data on ESBL or Ampicillin class C β-lactamase (AmpC) in Egypt, although antimicrobial consumption is high in this developing country. This study aims to characterize the resistance mechanisms to expanded spectrum cephalosporins among resistant veterinary Escherichia coli isolates in Egypt. We investigated 50 clinical multi-resistant E. coli strains isolated from 20 chicken farms for production of ESBL or AmpC. Antibiotic susceptibility was tested by Clinical and Laboratory Standards Institute (CLSI) disk diffusion and ESBL confirmatory tests. PCR and sequencing were performed to screen for plasmid mediated ESBL genes and genes encoding AmpC β-lactamases. All the isolates were phylogentically classified, investigated for harboring class 1 integrons, and genotyped by amplified fragment length polymorphism (AFLP). Three strains showed ESBL and 6 strains AmpC phenotypic patterns, respectively, with confirmed ESBL genes of blaTEM-57, blaSHV-12, blaCTX-M-14, and blaCMY-2 for AmpC producing strains. All ESBL strains belonged to phylogroup D with different clones isolated from different flocks, while most of the AmpC strains belonged to phylogroup B1 (4/6) and were assigned to the same genotype distributed in 2 different farms. Class 1 integrons were disseminated in 60% of all tested strains and in 100% of ESBL and AmpC strains. These results highlight the antimicrobial resistance problem in Egypt, caused in all probability by unwise use of antimicrobials in animal husbandry. The results call for a nationwide surveillance program to monitor antimicrobial resistance.
Collapse
Affiliation(s)
- D A El-Shazly
- Department of Pharmacology, National Laboratory for Quality Control on Poultry Production (NLQP), Animal Health Research Institute (AHRI), Ismailia, Egypt.,Medical Center - University of Freiburg, Institute for Environmental Health Sciences and Hospital Infection Control, Freiburg, Germany
| | - S A Nasef
- Department of Poultry Diseases, National Laboratory for Quality Control on Poultry Production (NLQP), Animal Health Research Institute (AHRI), Dokki, Giza, Egypt
| | - F F Mahmoud
- Department of Food Hygiene, National Laboratory for Quality Control on Poultry Production (NLQP), Animal Health Research Institute (AHRI), Ismailia, Egypt
| | - Daniel Jonas
- Department of Food Hygiene, National Laboratory for Quality Control on Poultry Production (NLQP), Animal Health Research Institute (AHRI), Ismailia, Egypt
| |
Collapse
|
236
|
Benameur Q, Gervasi T, Pellizzeri V, Pľuchtová M, Tali-Maama H, Assaous F, Guettou B, Rahal K, Gruľová D, Dugo G, Marino A, Ben-Mahdi MH. Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Nat Prod Res 2018; 33:2647-2654. [PMID: 29726697 DOI: 10.1080/14786419.2018.1466124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim was to evaluate the susceptibility of blaESBL producing Enterobacteriaceae to Slovakian Thymus vulgaris essential oil (TVEO) alone and in combination with cefotaxime (CTX). TVEO composition was determined by gas chromatograph-mass spectrometer (GC/MS). Susceptibility to 21 antibiotics was determined by disc diffusion assay. Genes characterization for resistance to β-lactams was accomplished by polymerase chain reaction (PCR). The antibacterial activity was investigated by standard methods. The synergistic interaction was determined by checkerboard test. Thymol (34.5%), p-cymene (22.27%) and linalool (5.35%) were the major components present in the TVEO. The identified strains were multi-drug resistant (MDR). TVEO showed high activity against all MDR strains, including blaESBL producing isolates, with inhibition zones and MIC values in the range of 24-40 mm/10μL and 2.87-11.5 μg/mL, respectively. TVEO in combination with CTX showed a synergistic action against blaSHV-12 producing Escherichia coli (FICI 0.28) and an additive effect vs ESBL producing Enterobacter cloacae (FICI 0.987).
Collapse
Affiliation(s)
- Qada Benameur
- a Faculty of Natural Sciences and Life, Nursing Department , University of Abdelhamid Ibn Badis of Mostaganem , Mostaganem , Algeria.,b Laboratoire de Recherche «Santé et Production Animale» , Ecole Nationale Supérieure Vétérinaire d'El-Harrach , Algiers , Algeria
| | - Teresa Gervasi
- c Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Vito Pellizzeri
- c Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Mária Pľuchtová
- d Faculty of Humanities and Natural Sciences, Department of Ecology , University of Prešov , Prešov , Slovakia
| | - Hassiba Tali-Maama
- e Laboratoire de Bactériologie Médicale , Institut Pasteur d'Algérie , Algiers , Algeria
| | - Farida Assaous
- e Laboratoire de Bactériologie Médicale , Institut Pasteur d'Algérie , Algiers , Algeria
| | - Badia Guettou
- e Laboratoire de Bactériologie Médicale , Institut Pasteur d'Algérie , Algiers , Algeria
| | - Kheira Rahal
- e Laboratoire de Bactériologie Médicale , Institut Pasteur d'Algérie , Algiers , Algeria
| | - Daniela Gruľová
- d Faculty of Humanities and Natural Sciences, Department of Ecology , University of Prešov , Prešov , Slovakia
| | - Giacomo Dugo
- c Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy.,f Science4Life, Spin Off Company , University of Messina , Messina , Italy
| | - Andreana Marino
- g Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Meriem-Hind Ben-Mahdi
- b Laboratoire de Recherche «Santé et Production Animale» , Ecole Nationale Supérieure Vétérinaire d'El-Harrach , Algiers , Algeria.,h Ecole Supérieure des Sciences des Aliments et des Industries Agroalimentaires , Algiers , Algeria
| |
Collapse
|
237
|
Coertze RD, Bezuidenhout CC. The prevalence and diversity of AmpC β-lactamase genes in plasmids from aquatic systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 2017:603-611. [PMID: 29851413 DOI: 10.2166/wst.2018.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the presence and diversity of AmpC β-lactamase and integrase genes among DNA (genomic and plasmid) from bacterial populations in selected aquatic systems. Following an enrichment step, DNA was isolated and subjected to polymerase chain reaction (PCR) and digital droplet PCR. The intI1 gene and AmpC β-lactamase genes were present in genomic and plasmid DNA from all sites in the Mooi, Crocodile and Marico Rivers, with the exception of intI1 in the Marico River. Digital droplet PCR demonstrated that copy numbers varied considerably (0.0 to 29.38 copies per picogram of DNA). Some samples in which ampC was not detected, intI1 was present. Amplicons of ampC genes were subjected to restriction digest using HindIII. Samples where the restriction markers were absent were purified by cloning followed by plasmid extraction, PCR amplification, and sequencing of individual AmpC gene fragments. Phylogenetic analysis identified all positive AmpC genes as Class C β-lactamases, comprising of ampC, CMY- and ACT-families. Detecting AmpC and intl1 genes on plasmids suggests a high risk of horizontal gene transfer and potential dissemination of these and other antibiotic resistance genes surrounding immediate aquatic environments. Consequences of β-lactamase diversity in aquatic ecosystems are relatively unexplored in South African aquatic ecosystems.
Collapse
Affiliation(s)
- Roelof Dirk Coertze
- Unit for Environmental Science and Management: Microbiology, North-West University: Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| | - Cornelius Carlos Bezuidenhout
- Unit for Environmental Science and Management: Microbiology, North-West University: Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| |
Collapse
|
238
|
Michael GB, Bossé JT, Schwarz S. Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0022-2017. [PMID: 29916344 PMCID: PMC11633590 DOI: 10.1128/microbiolspec.arba-0022-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Members of the highly heterogeneous family Pasteurellaceae cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family Pasteurellaceae in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (Pasteurella, Mannheimia, Actinobacillus, Haemophilus, and Histophilus). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected Pasteurellaceae members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms.
Collapse
Affiliation(s)
- Geovana B Michael
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany
| | - Janine T Bossé
- Section of Pediatrics, Department of Medicine London, Imperial College London, London W2 1PG, United Kingdom
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany
| |
Collapse
|
239
|
Discovery of a Novel Metallo-β-Lactamase Inhibitor That Potentiates Meropenem Activity against Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 2018. [PMID: 29530861 DOI: 10.1128/aac.00074-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Infections caused by carbapenem-resistant Enterobacteriaceae (CRE) are increasingly prevalent and have become a major worldwide threat to human health. Carbapenem resistance is driven primarily by the acquisition of β-lactamase enzymes, which are able to degrade carbapenem antibiotics (hence termed carbapenemases) and result in high levels of resistance and treatment failure. Clinically relevant carbapenemases include both serine β-lactamases (SBLs; e.g., KPC-2 and OXA-48) and metallo-β-lactamases (MBLs), such as NDM-1. MBL-producing strains are endemic within the community in many Asian countries, have successfully spread worldwide, and account for many significant CRE outbreaks. Recently approved combinations of β-lactam antibiotics with β-lactamase inhibitors are active only against SBL-producing pathogens. Therefore, new drugs that specifically target MBLs and which restore carbapenem efficacy against MBL-producing CRE pathogens are urgently needed. Here we report the discovery of a novel MBL inhibitor, ANT431, that can potentiate the activity of meropenem (MEM) against a broad range of MBL-producing CRE and restore its efficacy against an Escherichia coli NDM-1-producing strain in a murine thigh infection model. This is a strong starting point for a chemistry lead optimization program that could deliver a first-in-class MBL inhibitor-carbapenem combination. This would complement the existing weaponry against CRE and address an important and growing unmet medical need.
Collapse
|
240
|
Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli. mBio 2018; 9:mBio.00583-18. [PMID: 29691340 PMCID: PMC5915731 DOI: 10.1128/mbio.00583-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although the TEM-1 β-lactamase (BlaTEM-1) hydrolyzes penicillins and narrow-spectrum cephalosporins, organisms expressing this enzyme are typically susceptible to β-lactam/β-lactamase inhibitor combinations such as piperacillin-tazobactam (TZP). However, our previous work led to the discovery of 28 clinical isolates of Escherichia coli resistant to TZP that contained only blaTEM-1 One of these isolates, E. coli 907355, was investigated further in this study. E. coli 907355 exhibited significantly higher β-lactamase activity and BlaTEM-1 protein levels when grown in the presence of subinhibitory concentrations of TZP. A corresponding TZP-dependent increase in blaTEM-1 copy number was also observed, with as many as 113 copies of the gene detected per cell. These results suggest that TZP treatment promotes an increase in blaTEM-1 gene dosage, allowing BlaTEM-1 to reach high enough levels to overcome inactivation by the available tazobactam in the culture. To better understand the nature of the blaTEM-1 copy number proliferation, whole-genome sequence (WGS) analysis was performed on E. coli 907355 in the absence and presence of TZP. The WGS data revealed that the blaTEM-1 gene is located in a 10-kb genomic resistance module (GRM) that contains multiple resistance genes and mobile genetic elements. The GRM was found to be tandemly repeated at least 5 times within a p1ESCUM/p1ECUMN-like plasmid when bacteria were grown in the presence of TZP.IMPORTANCE Understanding how bacteria acquire resistance to antibiotics is essential for treating infected patients effectively, as well as preventing the spread of resistant organisms. In this study, a clinical isolate of E. coli was identified that dedicated more than 15% of its genome toward tandem amplification of a ~10-kb resistance module, allowing it to escape antibiotic-mediated killing. Our research is significant in that it provides one possible explanation for clinical isolates that exhibit discordant behavior when tested for antibiotic resistance by different phenotypic methods. Our research also shows that GRM amplification is difficult to detect by short-read WGS technologies. Analysis of raw long-read sequence data was required to confirm GRM amplification as a mechanism of antibiotic resistance.
Collapse
|
241
|
Hennequin C, Ravet V, Robin F. Plasmids carrying DHA-1 β-lactamases. Eur J Clin Microbiol Infect Dis 2018; 37:1197-1209. [PMID: 29663096 DOI: 10.1007/s10096-018-3231-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/12/2018] [Indexed: 01/22/2023]
Abstract
The aim of this review is to provide an update on the plasmids mediating DHA-1 cephalosporinase in Klebsiella pneumoniae. These plasmids have been mainly found in this bacterium but not only. The first was isolated from Salmonella sp. in France in the early 1990s. They are currently reported worldwide. BlaDHA-1 beta-lactamase gene is usually co-expressed with many other antibiotic resistance genes such as extended-spectrum β-lactamases (blaCTX-M-, bla SHV -types), oxacillinases (blaOXA-1, blaOXA-30), penicillinases (bla TEM -type), carbapenemases (bla OXA48 , blaKPC-2), aminoglycosides (aacA, aadA, armA), fluoroquinolones (qnrB4, aac6'-1b-cr), and sulfonamide (sul1) resistance genes. Plasmids carrying DHA-1 cephalosporinase have different sizes (22 to 313 kb), belong to diverse groups of incompatibility (R, L/M, FII(k), FIB, A/C2, HI2, HIB), and are self-transferable or not. The multidrug resistance region consists of a mosaic structure composed of resistance genes, insertion sequences, composite transposon, and integrons.
Collapse
Affiliation(s)
- Claire Hennequin
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France. .,Laboratoire de Bactériologie, CHU Clermont-Ferrand, 58, rue Montalembert, 63003, Clermont-Ferrand, France.
| | - Viviane Ravet
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
| | - Frédéric Robin
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, 58, rue Montalembert, 63003, Clermont-Ferrand, France.,Université Clermont Auvergne, UMR INSERM 1071, USC INRA2018, Clermont-Ferrand, France.,Laboratoire associé Résistance des Entérobactéries BLSE/Céphalosporinases, Centre National de Référence Résistance aux Antibiotiques, Clermont-Ferrand, France
| |
Collapse
|
242
|
Sotgiu G, Are BM, Pesapane L, Palmieri A, Muresu N, Cossu A, Dettori M, Azara A, Mura II, Cocuzza C, Aliberti S, Piana A. Nosocomial transmission of carbapenem-resistant Klebsiella pneumoniae in an Italian university hospital: a molecular epidemiological study. J Hosp Infect 2018; 99:413-418. [PMID: 29621600 DOI: 10.1016/j.jhin.2018.03.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
AIM To describe the phenotypic and genotypic profiles of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) strains isolated from patients with invasive infections at an Italian university hospital in order to assess the epidemiological trend. METHODS An observational prospective study was undertaken at the University Hospital of Sassari, Italy to detect KPC-Kp strains in patients with invasive bacteraemia. Isolates were identified phenotypically; carbapenemase production was assessed using phenotypic and genotypic methods. Sequencing of blaKPC genes, pulsed-field gel electrophoresis and multi-locus sequence typing were performed. RESULTS During the period 2015-2017, 46 cases of invasive infection with K. pneumoniae were recorded. Two-thirds (67.4%) of the patients were male, and the mean age was 69.4 years. Most patients had at least one comorbidity (56.5%) and/or had been hospitalized previously (70.5%), 81.8% had current or recent medical device use, and 85.4% had recent antibiotic exposure. The mortality rate was 52.3%. A multi-drug-resistant pattern (including carbapenems, fluoroquinolones, third-/fourth-generation cephalosporins) was shown for all K. pneumoniae isolates. KPC-3 and -2 were produced by all strains. The most common sequence types were 512 (91.3%) and 101 (8.7%), grouped into three clusters (A, A1 and B). CONCLUSIONS A high incidence of KPC-Kp in patients with invasive infections was recorded at an Italian university hospital compared with the incidence measured before 2015. This study confirmed the importance of the KPC-3 carbapenemase variant, as reported by other Italian studies. High mortality and comorbidity rates appear to be associated with KPC-Kp infection.
Collapse
Affiliation(s)
- G Sotgiu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy; Hygiene and Preventive Medicine Unit, AOU Sassari, Sassari, Italy.
| | - B M Are
- Hygiene and Preventive Medicine Unit, AOU Sassari, Sassari, Italy
| | - L Pesapane
- Hygiene and Preventive Medicine Unit, AOU Sassari, Sassari, Italy
| | - A Palmieri
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy; Hygiene and Preventive Medicine Unit, AOU Sassari, Sassari, Italy
| | - N Muresu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - A Cossu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - M Dettori
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - A Azara
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy; Hygiene and Preventive Medicine Unit, AOU Sassari, Sassari, Italy
| | - I I Mura
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy; Hygiene and Preventive Medicine Unit, AOU Sassari, Sassari, Italy
| | - C Cocuzza
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Milan, Italy
| | - S Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Piana
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy; Hygiene and Preventive Medicine Unit, AOU Sassari, Sassari, Italy
| |
Collapse
|
243
|
|
244
|
Keshri V, Panda A, Levasseur A, Rolain JM, Pontarotti P, Raoult D. Phylogenomic Analysis of β-Lactamase in Archaea and Bacteria Enables the Identification of Putative New Members. Genome Biol Evol 2018; 10:1106-1114. [PMID: 29672703 PMCID: PMC5905574 DOI: 10.1093/gbe/evy028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 01/09/2023] Open
Abstract
β-lactamases are enzymes which are commonly produced by bacteria and which degrade the β-lactam ring of β-lactam antibiotics, namely penicillins, cephalosporins, carbapenems, and monobactams, and inactivate these antibiotics. We performed a rational and comprehensive investigation of β-lactamases in different biological databases. In this study, we constructed hidden Markov model profiles as well as the ancestral sequence of four classes of β-lactamases (A, B, C, and D), which were used to identify potential β-lactamases from environmental metagenomic (1206), human microbiome metagenomic (6417), human microbiome reference genome (1310), and NCBI's nonredundant databases (44101). Our analysis revealed the existence of putative β-lactamases in the metagenomic databases, which appeared to be similar to the four different molecular classes (A-D). This is the first report on the large-scale phylogenetic diversity of new members of β-lactamases, and our results revealed that metagenomic database dark-matter contains β-lactamase-like antibiotic resistance genes.
Collapse
Affiliation(s)
- Vivek Keshri
- Evolution Biologique et Modélisation, I2M, UMR-CNRS 7373, Aix-Marseille Université, France
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, France
| | - Arup Panda
- Evolution Biologique et Modélisation, I2M, UMR-CNRS 7373, Aix-Marseille Université, France
| | - Anthony Levasseur
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, France
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, France
| | - Pierre Pontarotti
- Evolution Biologique et Modélisation, I2M, UMR-CNRS 7373, Aix-Marseille Université, France
- CNRS, IRD, APHM, MEPHI, IHU Méditerranée Infection (Evolutionary Biology Team), Aix-Marseille Université, France
| | - Didier Raoult
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille Université, France
| |
Collapse
|
245
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
246
|
Antimicrobial susceptibility and characterization of metallo-β-lactamases, extended-spectrum β-lactamases, and carbapenemases of Bacillus cereus isolates. Microb Pathog 2018; 118:140-145. [PMID: 29551437 DOI: 10.1016/j.micpath.2018.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/06/2018] [Accepted: 03/15/2018] [Indexed: 11/22/2022]
Abstract
The susceptibility of 66 clinical and environmental B. cereus isolates were tested to selected antimicrobials by a broth microdilution method. All strains were resistant to β-lactams and susceptible to gentamicin and imipenem. Sixty-five (98.5%) isolates were susceptible to meropenem and ciprofloxacin and 74.2% to azithromycin. Significant differences in MIC values between environmental and clinical isolates were not demonstrated (p > 0.05). According to the disc diffusion method, 80.3%-98.5% of the strains were resistant to one or more of four cephalosporins. The presence of genes for B. cereus β-lactamases BCI, BCII, BCIII, extended-spectrum β-lactamases from the CTX and TEM family and the carbapenemases belonging to IMP and VIM family was studied. BlaII genes were expressed in all isolates; the PCR products for blaIII were also detected in two strains, but none of them was positive for blaI. The amplicon of the family blaCTX-M, mostly M-1 and M-15, was confirmed among 68.2% of the isolates, while were blaVIM-like genes determined in 21.2% of the samples.
Collapse
|
247
|
Screening of medium constituents for clavulanic acid production by Streptomyces clavuligerus. Braz J Microbiol 2018; 49:832-839. [PMID: 29588197 PMCID: PMC6175696 DOI: 10.1016/j.bjm.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 11/22/2022] Open
Abstract
Clavulanic acid is a β-lactam compound with potent inhibitory activity against β-lactamases. Studies have shown that certain amino acids play essential roles in CA biosynthesis. However, quantitative evaluations of the effects of these amino acids are still needed in order to improve CA production. Here, we report a study of the nutritional requirements of Streptomyces clavuligerus for CA production. Firstly, the influence of the primary nitrogen source and the salts composition was investigated. Subsequently, soybean protein isolate was supplemented with arginine (0.0-3.20gL-1), threonine (0.0-1.44gL-1), ornithine (0.0-4.08gL-1), and glutamate (0.0-8.16gL-1), according to a two-level central composite rotatable design. A medium containing ferrous sulfate yielded CA production of 437mgL-1, while a formulation without this salt produced only 41mgL-1 of CA. This substantial difference suggested that Fe2+ is important for CA biosynthesis. The experimental design showed that glutamate and ornithine negatively influenced CA production while arginine and threonine had no influence. The soybean protein isolate provided sufficient C5 precursor for CA biosynthesis, so that supplementation was unnecessary. Screening of medium components, together with experimental design tools, could be a valuable way of enhancing CA titers and reducing the process costs.
Collapse
|
248
|
Ibrahim Y, Sani Y, Saleh Q, Saleh A, Hakeem G. Phenotypic Detection of Extended Spectrum Beta lactamase and Carbapenemase Co-producing Clinical Isolates from Two Tertiary Hospitals in Kano, North West Nigeria. Ethiop J Health Sci 2018; 27:3-10. [PMID: 28458485 PMCID: PMC5390223 DOI: 10.4314/ejhs.v27i1.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Continue rise in unprofessional use of antibiotics in our hospitals and communities is worrisome. A research study was therefore conducted to detect extended spectrum beta-lactamase (ESBL), carbapenemase, metallobeta lactamase and their co-production phenotypically from isolates obtained from patients admitted to or attending two tertiary hospitals in Kano, Nigeria. METHOD A total of 248 isolates of Escherichia coli and Klebsiella pneumoniaewere screened phenotypically for ESBL production and carbapenemase production according to CLS1 2012 breakpoints using double disk synergy test and modified Hodge test (MHT) respectively. Antibiotic susceptibility of the organisms was tested against colistin, tigecycline and 3 flouroquinolones. RESULTS The result shows that 58.0% of the isolates were ESBL producers with higher percentage in K. pneumoniae (62.9%). Further, about 40.3% and 36.6% of the isolates were resistant to meropenem and imipenem respectively. However, E. coli showed higher resistance to meropenem (47.1%) while K. pneumoniae showed higher resistance to imipenem (44.4%). Co-productions of carbapenemase and ESBL were observed in both E. coli and K. pneumoniae. Carbapenemase producing isolates were more obtained from uro-pathogens and wound isolates, with almost all the cases of co-production of the β lactamases occurring in urine and cathertips isolates. Overall susceptibilities of the isolates to colistin and tigecycline were 64.6and70.0% respectively, but isolates were less susceptible to flouroquinolones. CONCLUSION The finding of the study therefore indicates that carbapenem resistance is mediated by carbapenemase production and or overproduction of ESBL coupled with reduced porins. Co-production of carbapenemase, MBLs and ESBLs by some of the isolates is worrisome. Susceptibility to colistin and tigecycline was still promising, but increasing resistance to flouroquinolones has been observed.
Collapse
Affiliation(s)
- Yusuf Ibrahim
- Department of Microbiology, Faculty of Science, Bayero University, Kano, Nigeria
| | - Yahaya Sani
- Department of Microbiology, Faculty of Science, Bayero University, Kano, Nigeria
| | - Qabli Saleh
- Department of Microbiology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Algarni Saleh
- Department of Microbiology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
249
|
Liakopoulos A, van den Bunt G, Geurts Y, Bootsma MCJ, Toleman M, Ceccarelli D, van Pelt W, Mevius DJ. High Prevalence of Intra-Familial Co-colonization by Extended-Spectrum Cephalosporin Resistant Enterobacteriaceae in Preschool Children and Their Parents in Dutch Households. Front Microbiol 2018. [PMID: 29515562 PMCID: PMC5826366 DOI: 10.3389/fmicb.2018.00293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Extended-spectrum cephalosporin-resistant (ESCR) Enterobacteriaceae pose a serious infection control challenge for public health. The emergence of the ESCR phenotype is mostly facilitated by plasmid-mediated horizontal extended-spectrum β-lactamases (ESBLs) and AmpC gene transfer within Enterobacteriaceae. Current data regarding the plasmid contribution to this emergence within the Dutch human population is limited. Hence, the aim of this study was to gain insight into the role of plasmids in the dissemination of ESBL/AmpC genes inside Dutch households with preschool children and precisely delineate co-colonization. In 87 ESCREnterobacteriaceae from fecal samples of parents and preschool children within 66 Dutch households, genomic localization, plasmid type and insertion sequences linked to ESBL/AmpC genes were determined. Chromosomal location of ESBL/AmpC genes was confirmed when needed. An epidemiologically relevant subset of the isolates based on household co-carriage was assessed by Multilocus Sequence Typing and Pulsed-Field Gel Electrophoresis for genetic relatedness. The narrow-host range I1α and F plasmids were the major facilitators of ESBL/AmpC-gene dissemination. Interestingly, we documented a relatively high occurrence of chromosomal integration of typically plasmid-encoded ESBL/AmpC-genes. A high diversity of non-epidemic Escherichia coli sequence types (STs) was revealed; the predominant STs belonged to the pandemic lineages of extraintestinal pathogenic E. coli ST131 and ST69. Intra-familiar co-carriage by identical ESCREnterobacteriaceae was documented in 7 households compared to 14 based on sole gene typing, as previously reported. Co-carriage was more frequent than expected based on pure chance, suggesting clonal transmission between children and parents within the household.
Collapse
Affiliation(s)
- Apostolos Liakopoulos
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Gerrita van den Bunt
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Yvon Geurts
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Martin C J Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Mathematics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mark Toleman
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Wilfrid van Pelt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Dik J Mevius
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
250
|
Langan PS, Vandavasi VG, Cooper CJ, Weiss KL, Ginell SL, Parks JM, Coates L. Substrate Binding Induces Conformational Changes in a Class A β-lactamase That Prime It for Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Venu Gopal Vandavasi
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Connor J. Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephan L. Ginell
- Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jerry M. Parks
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|