301
|
Lv Y, Zhao X, Liu L, Du G, Zhou J, Chen J. A simple procedure for protein ubiquitination detection in Saccharomyces cerevisiae: Gap1p as an example. J Microbiol Methods 2013; 94:25-9. [PMID: 23611841 DOI: 10.1016/j.mimet.2013.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/14/2013] [Accepted: 04/14/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Yongkun Lv
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | | | | | | | | | | |
Collapse
|
302
|
Murozuka E, Hanisch S, Pomorski TG, Jahn TP, Schjoerring JK. Bimolecular fluorescence complementation and interaction of various Arabidopsis major intrinsic proteins expressed in yeast. PHYSIOLOGIA PLANTARUM 2013; 148:422-31. [PMID: 23163742 DOI: 10.1111/ppl.12000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 05/11/2023]
Abstract
Tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) form subgroups of plant major intrinsic proteins (MIPs) that channel water as well as various small neutral molecules across the tonoplast and plasma membrane. Most MIPs are believed to form homotetramers, while some plant PIPs have been shown to form heterotetramers composed of different isoforms. This study investigated in vivo molecular interactions between different Arabidopsis TIP isoforms and between TIPs and a PIP member. The interactions were assayed by bimolecular fluorescence complementation optimized for use in Saccharomyces cerevisiae as a heterologous expression system. Fluorescence of re-assembled Venus yellow fluorescent protein was monitored by fluorescence microscopy and flow cytometry. The results showed strong interactions between TIP1;2, TIP2;1 and TIP3;1. Surprisingly, the three TIP isoforms also interacted with PIP2;1. The potassium channel AKT1 was used as a negative control and exhibited no interaction with any of the MIPs. The observed interactions may play a role in targeting and regulation of MIPs in plants.
Collapse
Affiliation(s)
- Emiko Murozuka
- Department of Plant and Environmental Sciences, Plant and Soil Science Section, Faculty of Science, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| | | | | | | | | |
Collapse
|
303
|
PACAP induces the dimerization of PAC1 on the nucleus associated with the cAMP increase in the nucleus. Neurosci Lett 2013; 549:92-6. [PMID: 23792266 DOI: 10.1016/j.neulet.2013.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/26/2013] [Accepted: 06/11/2013] [Indexed: 11/23/2022]
Abstract
PAC1 is PACAP (pituitary adenylate cyclase-activating polypeptide) preferring receptor belonging to class B G protein couple receptor (GPCR) mediating the most effects of PACAP. The dimerization of PAC1 has been proven by our previous research. The bimolecular fluorescence complementation (BiFC) combined with fluorescence confocal microscope image was used in this research to explore the profiles of PAC1 dimers during the activation by PACAP. Fluorescence metry and cAMP assays were both used to detect the functions of the dimerization of PAC1 on the nucleus induced by PACAP. It was found that PACAP in concentration lower than 10nM induced the de-dimerization of PAC1 on the plasma membranes and the re-dimerization of PAC1 on the nucleus. While PACAP in concentration higher than 10nM, the nuclear localized PAC1 dimers were further translocated from outside/on the nucleus into the nucleus. In addition, it was also found that the more PAC1 dimers on the nucleus produced the higher cAMP level in the nucleus, and the levels of cAMP in the nucleus varied synchronously with functions of PACAP on the proliferation of PAC1-CHO cells. These results indicated the dimerization of PAC1 on the nucleus may be involved in the cell signals produced by PACAP. The finding and the research on the dimerization of PAC1 on the nucleus will help us to step forward to clarify the physiological and pharmacological role of PAC1.
Collapse
|
304
|
Zych C, Domling A, Ayyavoo V. Development of a robust cell-based high-throughput screening assay to identify targets of HIV-1 viral protein R dimerization. Drug Des Devel Ther 2013; 7:403-12. [PMID: 23737660 PMCID: PMC3668091 DOI: 10.2147/dddt.s44139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Targeting protein-protein interactions (PPI) is an emerging field in drug discovery. Dimerization and PPI are essential properties of human immunodeficiency virus (HIV)-1 proteins, their mediated functions, and virus biology. Additionally, dimerization is required for the functional interaction of HIV-1 proteins with many host cellular components. In this study, a bimolecular fluorescence complementation (BiFC)-based screening assay was developed that can quantify changes in dimerization, using HIV-1 viral protein R (Vpr) dimerization as a "proof of concept." Results demonstrated that Venus Vpr (generated by BiFC Vpr constructs) could be competed off in a dose-dependent manner using untagged, full-length Vpr as a competitor molecule. The change in signal intensity was measured quantitatively through flow cytometry and fluorescence microscopy in a high content screening assay. High content imaging was used to screen a library of small molecules for an effect on Vpr dimerization. Among the tested molecules, a few of the small molecules demonstrate an effect on Vpr dimerization in a dose-dependent manner.
Collapse
Affiliation(s)
- Courtney Zych
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
305
|
Piatkevich KD, Subach FV, Verkhusha VV. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem Soc Rev 2013; 42:3441-52. [PMID: 23361376 PMCID: PMC3618476 DOI: 10.1039/c3cs35458j] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Near-infrared light is favourable for imaging in mammalian tissues due to low absorbance of hemoglobin, melanin, and water. Therefore, fluorescent proteins, biosensors and optogenetic constructs for optimal imaging, optical readout and light manipulation in mammals should have fluorescence and action spectra within the near-infrared window. Interestingly, natural Bacterial Phytochrome Photoreceptors (BphPs) utilize the low molecular weight biliverdin, found in most mammalian tissues, as a photoreactive chromophore. Due to their near-infrared absorbance BphPs are preferred templates for designing optical molecular tools for applications in mammals. Moreover, BphPs spectrally complement existing genetically-encoded probes. Several BphPs were already developed into the near-infrared fluorescent variants. Based on the analysis of the photochemistry and structure of BphPs we suggest a variety of possible BphP-based fluorescent proteins, biosensors, and optogenetic tools. Putative design strategies and experimental considerations for such probes are discussed.
Collapse
Affiliation(s)
- Kiryl D. Piatkevich
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| | - Fedor V. Subach
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| | - Vladislav V. Verkhusha
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| |
Collapse
|
306
|
Luitweiler EM, Henson BW, Pryce EN, Patel V, Coombs G, McCaffery JM, Desai PJ. Interactions of the Kaposi's Sarcoma-associated herpesvirus nuclear egress complex: ORF69 is a potent factor for remodeling cellular membranes. J Virol 2013; 87:3915-29. [PMID: 23365436 PMCID: PMC3624222 DOI: 10.1128/jvi.03418-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/18/2013] [Indexed: 12/17/2022] Open
Abstract
All herpesviruses encode a complex of two proteins, referred to as the nuclear egress complex (NEC), which together facilitate the exit of assembled capsids from the nucleus. Previously, we showed that the Kaposi's sarcoma-associated herpesvirus (KSHV) NEC specified by the ORF67 and ORF69 genes when expressed in insect cells using baculoviruses for protein expression forms a complex at the nuclear membrane and remodels these membranes to generate nuclear membrane-derived vesicles. In this study, we have analyzed the functional domains of the KSHV NEC proteins and their interactions. Site-directed mutagenesis of gammaherpesvirus conserved residues revealed functional domains of these two proteins, which in many cases abolish the formation of the NEC and remodeling of nuclear membranes. Small in-frame deletions within ORF67 in all cases result in loss of the ability of the mutant protein to induce cellular membrane proliferation as well as to interact with ORF69. Truncation of the C terminus of ORF67 that resides in the perinuclear space does not impair the functions of ORF67; however, deletion of the transmembrane domain of ORF67 produces a protein that cannot induce membrane proliferation but can still interact with ORF69 in the nucleus and can be tethered to the nuclear membrane by virtue of its interaction with the wild-type-membrane-anchored ORF67. In-frame deletions in ORF69 have varied effects on NEC formation, but all abolish remodeling of nuclear membranes into circular structures. One mutant interacts with ORF67 as well as the wild-type protein but cannot function in membrane curvature and fission events that generate circular vesicles. These studies genetically confirm that ORF67 is required for cellular membrane proliferation and that ORF69 is the factor required to remodel these duplicated membranes into circular-virion-size vesicles. Furthermore, we also investigated the NEC encoded by Epstein-Barr virus (EBV). The EBV complex comprised of BFRF1 and BFLF2 was visualized at the nuclear membrane using autofluorescent protein fusions. BFRF1 is a potent inducer of membrane proliferation; however, BFLF2 cannot remodel these membranes into circular structures. What was evident is the superior remodeling activity of ORF69, which could convert the host membrane proliferations induced by BFRF1 into circular structures.
Collapse
Affiliation(s)
- Eric M. Luitweiler
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Brandon W. Henson
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Erin N. Pryce
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Varun Patel
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Gavin Coombs
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - J. Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Prashant J. Desai
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| |
Collapse
|
307
|
Kodama Y, Hu CD. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques 2013; 53:285-98. [PMID: 23148879 DOI: 10.2144/000113943] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/28/2012] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, bimolecular fluorescence complementation (BiFC) has emerged as a key technique to visualize protein-protein interactions in a variety of model organisms. The BiFC assay is based on reconstitution of an intact fluorescent protein when two complementary non-fluorescent fragments are brought together by a pair of interacting proteins. While the originally reported BiFC method has enabled the study of many protein-protein interactions, increasing demands to visualize protein-protein interactions under various physiological conditions have not only prompted a series of recent BiFC technology improvements, but also stimulated interest in developing completely new approaches. Here we review current BiFC technology, focusing on the development and improvement of BiFC systems, the understanding of split sites in fluorescent proteins, and enhancements in the signal-to-noise ratio. In addition, we provide perspectives on possible future improvements of the technique.
Collapse
Affiliation(s)
- Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan.
| | | |
Collapse
|
308
|
Yamakawa D, Kidoya H, Sakimoto S, Jia W, Naito H, Takakura N. Ligand-independent Tie2 dimers mediate kinase activity stimulated by high dose angiopoietin-1. J Biol Chem 2013; 288:12469-77. [PMID: 23504320 DOI: 10.1074/jbc.m112.433979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tie2 is a receptor tyrosine kinase expressed on vascular endothelial cells (ECs). It has dual roles in promoting angiogenesis and stabilizing blood vessels, and it has been suggested that Tie2 forms dimers and/or oligomers in the absence of angiopoietin-1 (Ang1); however, the mechanism of ligand-independent dimerization of Tie2 and its biological significance have not been clarified. Using a bimolecular fluorescence complementation assay and a kinase-inactive Tie2 mutant, we show here that ligand-independent Tie2 dimerization is induced without Tie2 phosphorylation. Moreover, based on the fact that Tie1 never forms heterodimers with Tie2 in the absence of Ang1 despite having high amino acid sequence homology with Tie2, we searched for ligand-independent dimerization domains of Tie2 by reference to the difference with Tie1. We found that the YIA sequence of the intracellular domain of Tie2 corresponding to the LAS sequence in Tie1 is essential for this dimerization. When the YIA sequence was replaced by LAS in Tie2 (Tie2YIA/LAS), ligand-independent dimer was not formed in the absence of Ang1. When activation of Tie2YIA/LAS was induced by a high dose of Ang1, phosphorylation of Tie2 was limited compared with wild-type Tie2, resulting in retardation of activation of Erk downstream of Tie2. Therefore, these data suggest that ligand-independent dimerization of Tie2 is essential for a strong response upon stimulation with high dose Ang1.
Collapse
Affiliation(s)
- Daishi Yamakawa
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
309
|
So PP, Khodr CE, Chen CD, Abraham CR. Comparable dimerization found in wildtype and familial Alzheimer's disease amyloid precursor protein mutants. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2013; 2:15-28. [PMID: 23515184 PMCID: PMC3601467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/06/2013] [Indexed: 06/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disorder marked by memory impairment and cognitive deficits. A major component of AD pathology is the accumulation of amyloid plaques in the brain, which are comprised of amyloid beta (Aβ) peptides derived from the amyloidogenic processing of the amyloid precursor protein (AβPP) by β- and γ-secretases. In a subset of patients, inheritance of mutations in the AβPP gene is responsible for altering Aβ production, leading to early onset disease. Interestingly, many of these familial mutations lie within the transmembrane domain of the protein near the GxxxG and GxxxA dimerization motifs that are important for transmembrane interactions. As AβPP dimerization has been linked to changes in Aβ production, it is of interest to know whether familial AβPP mutations affect full-length APP dimerization. Using bimolecular fluorescence complementation (BiFC), blue native gel electrophoresis, and live cell chemical cross-linking, we found that familial Alzheimer's disease (FAD) mutations do not affect full-length AβPP dimerization in transfected HEK293 and COS7 cells. It follows that changes in AβPP dimerization are not necessary for altered Aβ production, and in FAD mutations, changes in Aβ levels are more likely a result of alternative proteolytic processing.
Collapse
Affiliation(s)
- Pauline Pl So
- Department of Medicine Graduate Program in Molecular Medicine, Boston University School of Medicine 72 East Concord Street, K-304, Boston, MA, 02118, USA
| | | | | | | |
Collapse
|
310
|
Lee JS, Yoo SJ. C-terminus of Hsc70-interacting protein regulates C-terminal binding protein 2 and the expression of its target genes. Biochem Biophys Res Commun 2013; 432:418-24. [DOI: 10.1016/j.bbrc.2013.01.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/28/2013] [Indexed: 01/27/2023]
|
311
|
Deng Y, Matsui Y, Zhang Y, Lai ZC. Hippo activation through homodimerization and membrane association for growth inhibition and organ size control. Dev Biol 2013; 375:152-9. [PMID: 23298890 DOI: 10.1016/j.ydbio.2012.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/28/2022]
Abstract
Hippo (Hpo) signaling plays a critical role in restricting tissue growth and organ size in both invertebrate and vertebrate animals. However, how the Hpo kinase is regulated during development has not been clearly understood. Using a Bimolecular Fluorescence Complementation assay, we have investigated the functional significance of Hpo homo-dimer formation and subcellular localization in living cells. We found that Hpo dimerization and membrane association are critical for its activation in growth inhibition. As dimerization facilitates Hpo to access its binding partner, Hpo kinases in the homo-dimer trans-phosphorylate each other to increase their enzymatic activity. Moreover, loss- and gain-of-function studies indicate that upstream regulators, Expanded, Merlin and Kibra, play a critical role in promoting Hpo dimerization as well as association to the cortical F-actin beneath the plasma membrane. Enforced Hpo localization to the plasma membrane increases Hpo dimerization and activity. Therefore, homo-dimerization and plasma membrane association are two important mechanisms for Hpo activation in growth control during animal development.
Collapse
Affiliation(s)
- Yaoting Deng
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
312
|
Nitta S, Sakamoto N, Nakagawa M, Kakinuma S, Mishima K, Kusano-Kitazume A, Kiyohashi K, Murakawa M, Nishimura-Sakurai Y, Azuma S, Tasaka-Fujita M, Asahina Y, Yoneyama M, Fujita T, Watanabe M. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology 2013; 57:46-58. [PMID: 22911572 DOI: 10.1002/hep.26017] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) infection blocks cellular interferon (IFN)-mediated antiviral signaling through cleavage of Cardif by HCV-NS3/4A serine protease. Like NS3/4A, NS4B protein strongly blocks IFN-β production signaling mediated by retinoic acid-inducible gene I (RIG-I); however, the underlying molecular mechanisms are not well understood. Recently, the stimulator of interferon genes (STING) was identified as an activator of RIG-I signaling. STING possesses a structural homology domain with flaviviral NS4B, which suggests a direct protein-protein interaction. In the present study, we investigated the molecular mechanisms by which NS4B targets RIG-I-induced and STING-mediated IFN-β production signaling. IFN-β promoter reporter assay showed that IFN-β promoter activation induced by RIG-I or Cardif was significantly suppressed by both NS4B and NS3/4A, whereas STING-induced IFN-β activation was suppressed by NS4B but not by NS3/4A, suggesting that NS4B had a distinct point of interaction. Immunostaining showed that STING colocalized with NS4B in the endoplasmic reticulum. Immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays demonstrated that NS4B specifically bound STING. Intriguingly, NS4B expression blocked the protein interaction between STING and Cardif, which is required for robust IFN-β activation. NS4B truncation assays showed that its N terminus, containing the STING homology domain, was necessary for the suppression of IFN-β promoter activation. NS4B suppressed residual IFN-β activation by an NS3/4A-cleaved Cardif (Cardif1-508), suggesting that NS3/4A and NS4B may cooperate in the blockade of IFN-β production. CONCLUSION NS4B suppresses RIG-I-mediated IFN-β production signaling through a direct protein interaction with STING. Disruption of that interaction may restore cellular antiviral responses and may constitute a novel therapeutic strategy for the eradication of HCV.
Collapse
Affiliation(s)
- Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Verkhusha VV, Turoverov KK. Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:221-78. [PMID: 23351712 DOI: 10.1016/b978-0-12-407699-0.00004-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the current view of the interaction between the β-barrel scaffold of fluorescent proteins and their unique chromophore located in the internal helix. The chromophore originates from the polypeptide chain and its properties are influenced by the surrounding protein matrix of the β-barrel. On the other hand, it appears that a chromophore tightens the β-barrel scaffold and plays a crucial role in its stability. Furthermore, the presence of a mature chromophore causes hysteresis of protein unfolding and refolding. We survey studies measuring protein unfolding and refolding using traditional methods as well as new approaches, such as mechanical unfolding and reassembly of truncated fluorescent proteins. We also analyze models of fluorescent protein unfolding and refolding obtained through different approaches, and compare the results of protein folding in vitro to co-translational folding of a newly synthesized polypeptide chain.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
314
|
Fisher KH, Brown S, Zeidler MP. Designing RNAi screens to identify JAK/STAT pathway components. Methods Mol Biol 2013; 967:81-97. [PMID: 23296723 DOI: 10.1007/978-1-62703-242-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The JAK/STAT signaling pathway has essential roles in multiple developmental processes, including stem cell maintenance, immune responses, and cellular proliferation. As a result, it has been extensively studied in both vertebrate systems and lower complexity models, such as Drosophila. Given its connection with such a wide range of biological functions, it is no surprise that pathway misregulation is frequently associated with multiple human diseases including cancer. While the core components of the pathway, and a number of negative regulators, are well known and conserved in many organisms, more subtle levels of regulation and inter-pathway crosstalk are less well understood. With the emergence of RNA interference (RNAi) as a tool to knock down gene expression and so evaluate protein function, high-throughput screens have been developed to identify pathway regulators on a genome-wide scale. Here we discuss the approaches and methods employed thus far for identification of pathway regulators using RNAi in Drosophila. Furthermore, we discuss possible approaches for future screens and the significant potential for applying RNAi technology in vertebrate models.
Collapse
Affiliation(s)
- Katherine H Fisher
- MRC Centre of Developmental Biology and Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, UK
| | | | | |
Collapse
|
315
|
Li SY, Du MJ, Wan YJ, Lan B, Liu YH, Yang Y, Zhang CZ, Cao Y. The N-terminal 20-amino acid region of guanine nucleotide exchange factor Vav1 plays a distinguished role in T cell receptor-mediated calcium signaling. J Biol Chem 2012; 288:3777-85. [PMID: 23271736 DOI: 10.1074/jbc.m112.426221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vav1 is a guanine nucleotide exchange factor (GEF) specifically expressed in hematopoietic cells. It consists of multiple structural domains and plays important roles in T cell activation. The other highly conserved isoforms of Vav family, Vav2 and Vav3, are ubiquitously expressed in human tissues including lymphocytes. All three Vav proteins activate Rho family small GTPases, which are involved in a variety of biological processes during T cell activation. Intensive studies have demonstrated that Vav1 is indispensable for T cell receptor (TCR)-mediated signal transduction, whereas Vav2 and Vav3 function as GEFs that overlap with Vav1 on TCR-induced cytoskeleton reorganization. T cells lacking Vav1 exhibited severe defect in TCR-mediated calcium elevation, indicating that the co-existing Vav2 and Vav3 did not compensate Vav1 in calcium signaling. What is the functional particularity of Vav1 in lymphocytes? In this study, we identified the N-terminal 20 amino acids of Vav1 in the calponin homology (CH) domain to be essential for its interaction with calmodulin (CaM) that leads to TCR-induced calcium mobilization. Substitution of the 1-20 amino acids of Vav1 with those of Vav2 or Vav3 abolished the association with CaM, and the N-terminal mutations of Vav1 failed to potentiate normal TCR-induced calcium mobilization, that in turn, suspended nuclear factor of activated T cells (NFAT) activation and IL-2 production. This study highlights the importance of the N-terminal 20 aa of Vav1 for CaM binding, and provides new insights into the distinguished and irreplaceable role of Vav1 in T cell activation and signal transduction.
Collapse
Affiliation(s)
- Shi-Yang Li
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Medicinal Chemical Biology College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, Peoples Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
316
|
Yu R, Guo X, Zhong J, Li M, Zeng Z, Zhang H. The N-terminal HSDCIF motif is required for cell surface trafficking and dimerization of family B G protein coupled receptor PAC1. PLoS One 2012; 7:e51811. [PMID: 23284775 PMCID: PMC3528735 DOI: 10.1371/journal.pone.0051811] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/06/2012] [Indexed: 12/19/2022] Open
Abstract
PAC1 is PACAP (pituitary adenylate cyclase-activating polypeptide) preferring receptor belonging to class B G protein coupled receptor (GPCR) mediating the most effects of PACAP. The important role of G protein coupled receptor homo/heteromerization in receptor folding, maturation, trafficking, and cell surface expression has become increasingly evident. The bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) assay were used in this research to confirm the dimerization of PAC1 for the first time. The structure-activity relationship focused on the N-terminal HSDCIF motif, which locates behind the signal sequence and has high homology with PACAP (1–6), was assayed using a receptor mutant with the deletion of the HSDCIF motif. The fluorescence confocal microscope observation showed that the deletion of the HSDCIF motif impaired the cell delivery of PAC1. The results of BiFC, BRET and westernblot indicated that the deletion of HSDCIF motif and the replacement of the Cys residue with Ala in HSDCIF motif resulted in the disruption of receptor dimerization. And the exogenous chemically synthesized oligopeptide HSDCIF (100 nmol/L) not only down-regulated the dimerization of PAC1, induced the internalization of PAC1, but also inhibited the proliferation of CHO cells expressing PAC1 stably and decreased the activity of PACAP on the cell viability. All these data suggested that the N-terminal HSDCIF motif played key role in the trafficking and the dimerization of PAC1, and the exogenous oligopeptide HSDCIF had effects on the cell signaling, trafficking and the dimerization of PAC1.
Collapse
Affiliation(s)
- Rongjie Yu
- Cell Biology Institute, the Department of Cell Biology, Jinan University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
317
|
Choe J, Kim KM, Park S, Lee YK, Song OK, Kim MK, Lee BG, Song HK, Kim YK. Rapid degradation of replication-dependent histone mRNAs largely occurs on mRNAs bound by nuclear cap-binding proteins 80 and 20. Nucleic Acids Res 2012; 41:1307-18. [PMID: 23234701 PMCID: PMC3553978 DOI: 10.1093/nar/gks1196] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The translation of mammalian messenger RNAs (mRNAs) can be driven by either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF)4E. Although CBP80/20-dependent translation (CT) is known to be coupled to an mRNA surveillance mechanism termed nonsense-mediated mRNA decay (NMD), its molecular mechanism and biological role remain obscure. Here, using a yeast two-hybrid screening system, we identify a stem-loop binding protein (SLBP) that binds to a stem-loop structure at the 3′-end of the replication-dependent histone mRNA as a CT initiation factor (CTIF)-interacting protein. SLBP preferentially associates with the CT complex of histone mRNAs, but not with the eIF4E-depedent translation (ET) complex. Several lines of evidence indicate that rapid degradation of histone mRNA on the inhibition of DNA replication largely takes place during CT and not ET, which has been previously unappreciated. Furthermore, the ratio of CBP80/20-bound histone mRNA to eIF4E-bound histone mRNA is larger than the ratio of CBP80/20-bound polyadenylated β-actin or eEF2 mRNA to eIF4E-bound polyadenylated β-actin or eEF2 mRNA, respectively. The collective findings suggest that mRNAs harboring a different 3′-end use a different mechanism of translation initiation, expanding the repertoire of CT as a step for determining the fate of histone mRNAs.
Collapse
Affiliation(s)
- Junho Choe
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Morimoto H, Baba R. [Cellular stress and eIF-2alpha kinase]. J UOEH 2012; 34:331-338. [PMID: 23270257 DOI: 10.7888/juoeh.34.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The alpha subunit of eukaryotic initiation factor -2 (eIF-2alpha) is a molecule related to the first step of protein synthesis initiation in eukaryotes. eIF-2alpha is phosphorylated in response to a wide variety of stimuli, including viral infection, starvation, ischemia, and heat shock. Four mammalian eIF-2alpha kinases have been reported: PKR (double-stranded RNA dependent protein kinase), HRI (heme-regulated inhibitor), GCN2 (general control non-derepressible 2), and PERK (PKR-like endoplasmic reticulum kinase). Each kinase contains unique domains that recognize a different cellular stress and transmits the signals to eIF-2alpha. Hence, eIF-2alpha is considered to be a key molecule in integrated stress response. Understanding eIF-2alpha as a component of the integrated stress response may be helpful in revealing stress sitmulus and the responses to stress at the cellular level. This knowledge will contribute to the development of preventive and therapeutic approaches to stress mediated diseases.
Collapse
Affiliation(s)
- Hiroyuki Morimoto
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | | |
Collapse
|
319
|
Abstract
Mutations in the protein DJ-1 cause recessive forms of early onset familial Parkinson’s disease (PD). To date, most of the causative mutations studied destabilize formation of DJ-1 homodimers, which appears to be closely linked to its normal function in oxidative stress and other cellular processes. Despite the importance of understanding the dimerization dynamics of this protein, this aspect of DJ-1 biology has not previously been directly studied in living cells. Here, we use bimolecular fluorescence complementation to study DJ-1 dimerization and find not only that DJ-1 forms homodimers in living cells but that most PD causative DJ-1 mutations disrupt this process, including the L166P, M26I, L10P, and P158∆ mutations. Interestingly, the E64D mutant form of DJ-1 retains the ability to form homodimers. However, while wild-type DJ-1 dimers are stabilized under oxidative stress conditions, we find that the E64D mutation blocks this stabilization. Furthermore, our data show that the E64D mutation potentiates the formation of aggresomes containing DJ-1. We also observe that while the widely studied L166P mutation prevents DJ-1 from forming homodimers or heterodimers with wild-type protein, the mutant protein is able to partially disrupt formation of wild-type homodimers. In summary, by investigating DJ-1 dimerization in living cells, we have uncovered several novel properties of PD causative mutations in DJ-1, which may ultimately provide novel insight into PD pathogenesis and possible therapeutic options.
Collapse
|
320
|
Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 2012; 151:859-870. [PMID: 23141542 DOI: 10.1016/j.cell.2012.09.039] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/08/2012] [Accepted: 09/30/2012] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are processed from primary transcripts that contain partially self-complementary foldbacks. As in animals, the core microprocessor in plants is a Dicer protein, DICER-LIKE1 (DCL1). Processing accuracy and strand selection is greatly enhanced through the RNA binding protein HYPONASTIC LEAVES 1 (HYL1) and the zinc finger protein SERRATE (SE). We have combined a luciferase-based genetic screen with whole-genome sequencing for rapid identification of new regulators of miRNA biogenesis and action. Among the first six mutants analyzed were three alleles of C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1)/FIERY2 (FRY2). In the miRNA processing complex, SE functions as a scaffold to mediate CPL1 interaction with HYL1, which needs to be dephosphorylated for optimal activity. In the absence of CPL1, HYL1 dephosphorylation and hence accurate processing and strand selection from miRNA duplexes are compromised. Our findings thus define a new regulatory step in plant miRNA biogenesis.
Collapse
Affiliation(s)
- Pablo A Manavella
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Felix Ott
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Sascha Laubinger
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Mirita Franz
- Proteome Center, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Boris Macek
- Proteome Center, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
321
|
Miyakawa K, Sawasaki T, Matsunaga S, Tokarev A, Quinn G, Kimura H, Nomaguchi M, Adachi A, Yamamoto N, Guatelli J, Ryo A. Interferon-Induced SCYL2 Limits Release of HIV-1 by Triggering PP2A-Mediated Dephosphorylation of the Viral Protein Vpu. Sci Signal 2012; 5:ra73. [PMID: 23047923 DOI: 10.1126/scisignal.2003212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
323
|
Burmeister BT, Taglieri DM, Wang L, Carnegie GK. Src homology 2 domain-containing phosphatase 2 (Shp2) is a component of the A-kinase-anchoring protein (AKAP)-Lbc complex and is inhibited by protein kinase A (PKA) under pathological hypertrophic conditions in the heart. J Biol Chem 2012; 287:40535-46. [PMID: 23045525 DOI: 10.1074/jbc.m112.385641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AKAP-Lbc is a scaffold protein that coordinates cardiac hypertrophic signaling. RESULTS AKAP-Lbc interacts with Shp2, facilitating its regulation by PKA. CONCLUSION AKAP-Lbc integrates PKA and Shp2 signaling in the heart. Under pathological hypertrophic conditions Shp2 is phosphorylated by PKA, and phosphatase activity is inhibited. SIGNIFICANCE Inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote pathological cardiac hypertrophy. Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Our results identify a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that the tyrosine phosphatase, Shp2, is a component of the A-kinase-anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits its protein-tyrosine phosphatase activity. Given the important cardiac roles of both AKAP-Lbc and Shp2, we investigated the AKAP-Lbc-Shp2 interaction in the heart. AKAP-Lbc-tethered PKA is implicated in cardiac hypertrophic signaling; however, mechanism of PKA action is unknown. Mutations resulting in loss of Shp2 catalytic activity are also associated with cardiac hypertrophy and congenital heart defects. Our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Thus, while induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote compensatory cardiac hypertrophy.
Collapse
Affiliation(s)
- Brian T Burmeister
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
324
|
Grefen C, Blatt MR. A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques 2012; 53:311-14. [PMID: 23066669 DOI: 10.2144/000113941] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/12/2012] [Indexed: 11/23/2022] Open
Abstract
Gene expression and binary interaction techniques are vital tools that shape our understanding of protein complexes. An inherent flaw, however, with most current protein-protein interaction techniques is the variability in expression levels for fusion proteins when using several individual plasmids. Here, we describe a novel recombination-based cloning strategy called 2in1 that enables co-expression of fusion proteins on a cell-by-cell basis from a single plasmid. We demonstrate the utility of 2in1 through the development of a ratiometric bimolecular fluorescence complementation assay (rBiFC), in which both candidate genes are simultaneously cloned into a single vector backbone containing an internal fluorescent marker for expression control and ratiometric analysis. rBiFC significantly increases the credibility of protein-protein interaction results allowing ratiometric comparison between different protein pairs. In addition to its use in rBiFC, 2in1 can be introduced easily into other vector systems that rely on multiple gene expression and prove feasible in future synthetic biological approaches.
Collapse
Affiliation(s)
- Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
325
|
Li G, Zhang J, Li J, Yang Z, Huang H, Xu L. Imitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:261-70. [PMID: 22694359 DOI: 10.1111/j.1365-313x.2012.05074.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
During their life cycle, flowering plants must experience a transition from vegetative to reproductive growth. Here, we report that double mutations in the Arabidopsis thaliana IMITATION SWITCH (AtISWI) genes, CHROMATIN REMODELING11 (CHR11) and CHR17, and the plant-specific DDT-domain containing genes, RINGLET1 (RLT1) and RLT2, resulted in plants with similar developmental defects, including the dramatically accelerated vegetative-to-reproductive transition. We demonstrated that AtISWI physically interacts with RLTs in preventing plants from activating the vegetative-to-reproductive transition early by regulating several key genes that contribute to flower timing. In particular, AtISWI and RLTs repress FT, SEP1, SEP3, FUL, and SOC1, but promote FLC in the leaf. Furthermore, AtISWI and RLTs may directly repress FT and SEP3 through associating with the FT and SEP3 loci. Our study reveals that AtISWI and RLTs represent a previously unrecognized genetic pathway that is required for the maintenance of the plant vegetative phase.
Collapse
Affiliation(s)
- Guang Li
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
326
|
Ha CM, Park D, Han JK, Jang JI, Park JY, Hwang EM, Seok H, Chang S. Calcyon forms a novel ternary complex with dopamine D1 receptor through PSD-95 protein and plays a role in dopamine receptor internalization. J Biol Chem 2012; 287:31813-22. [PMID: 22843680 DOI: 10.1074/jbc.m112.370601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcyon, once known for interacting directly with the dopamine D(1) receptor (D(1)DR), is implicated in various neuropsychiatric disorders including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Although its direct interaction with D(1)DR has been shown to be misinterpreted, it still plays important roles in D(1)DR signaling. Here, we found that calcyon interacts with the PSD-95 and subsequently forms a ternary complex with D(1)DR through PSD-95. Calcyon is phosphorylated on Ser-169 by the PKC activator phorbol 12-myristate 13-acetate or by the D(1)DR agonist SKF-81297, and its phosphorylation increases its association with PSD-95 and recruitment to the cell surface. Interestingly, the internalization of D(1)DR at the cell surface was enhanced by phorbol 12-myristate 13-acetate and SKF-81297 in the presence of calcyon, but not in the presence of its S169A phospho-deficient mutant, suggesting that the phosphorylation of calcyon and the internalization of the surface D(1)DR are tightly correlated. Our results suggest that calcyon regulates D(1)DR trafficking by forming a ternary complex with D(1)DR through PSD-95 and thus possibly linking glutamatergic and dopamine receptor signalings. This also raises the possibility that a novel ternary complex could represent a potential therapeutic target for the modulation of related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chang Man Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Dynamics of Ras complexes observed in living cells. SENSORS 2012; 12:9411-22. [PMID: 23012550 PMCID: PMC3444108 DOI: 10.3390/s120709411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 06/29/2012] [Accepted: 07/04/2012] [Indexed: 11/17/2022]
Abstract
K-Ras works as a switch in many important intracellular signaling pathways and plays important roles in cell growth, proliferation, differentiation and carcinogenesis. For signal transduction from K-Ras to Raf1, the best-characterized effector of K-Ras, the general view is that Ras recruits Raf1 from the cytoplasm to the cell membrane. To elucidate this process, we constructed a series of fusion proteins (including Raf1 and K-Ras fused with either fluorescent proteins or fluorescent protein fragments) to compare subcellular localizations of these proteins. Bimolecular fluorescence complementation (BiFC) and a co-transfection system were used. In the BiFC system, the K-Ras/Raf1 complexes were mainly located in the cell membrane, while the Raf1 control was uniformly distributed in the cytoplasm. However, the complexes of Raf1 and K-RasC185S, a K-Ras mutant which loses membrane-localization, were also able to accumulate in the cell membrane. In contrast, an apparent cytosolic distribution pattern was observed in cells co-transfected with mcerulean-Raf1 and EGFP-K-RasC185S, suggesting that the membrane localization of K-Ras/Raf1 complexes is not entirely dependent on K-Ras, and that other factors, such as the irreversible conformation formed between K-Ras and Raf1 may play a role. This study sheds light on the interaction between K-Ras and Raf1 and provides a practical method to elucidate the mechanism underlying K-Ras and Raf1 binding to the cell membrane.
Collapse
|
328
|
Lee S, Ha JS, Lee SG, Kim TK. Inducible Biosynthetic Nanoscaffolds as Recruitment Platforms for Detecting Molecular Target Interactions inside Living Cells. J Am Chem Soc 2012; 134:11346-9. [DOI: 10.1021/ja303518d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sangkyu Lee
- Department of Biological
Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, Korea
| | - Jae-Seok Ha
- Reons Innovative Medicines Institute, Anyang, Gyeonggi-do, Korea
| | - Seung-Goo Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
| | - Tae K. Kim
- Reons Innovative Medicines Institute, Anyang, Gyeonggi-do, Korea
- Unist-Olympus Biomed Imaging
Center, School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology,
Ulsan, Korea
| |
Collapse
|
329
|
Christian WV, Li N, Hinkle PM, Ballatori N. β-Subunit of the Ostα-Ostβ organic solute transporter is required not only for heterodimerization and trafficking but also for function. J Biol Chem 2012; 287:21233-43. [PMID: 22535958 PMCID: PMC3375545 DOI: 10.1074/jbc.m112.352245] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/09/2012] [Indexed: 12/29/2022] Open
Abstract
The organic solute transporter, Ost/Slc51, is composed of two distinct proteins that must heterodimerize to generate transport activity, but the role of the individual subunits in mediating transport activity is unknown. The present study identified regions in Ostβ required for heterodimerization with Ostα, trafficking of the Ostα-Ostβ complex to the plasma membrane, and bile acid transport activity in HEK293 cells. Bimolecular fluorescence complementation analysis revealed that a 25-amino acid peptide containing the Ostβ transmembrane (TM) domain heterodimerized with Ostα, although the resulting complex failed to reach the plasma membrane and generate cellular [(3)H]taurocholate transport activity. Deletion of the single TM domain of Ostβ abolished interaction with Ostα, demonstrating that the TM segment is necessary and sufficient for formation of a heteromeric complex with Ostα. Mutation of the highly conserved tryptophan-asparagine sequence within the TM domain of Ostβ to alanines did not prevent cell surface trafficking, but abolished transport activity. Removal of the N-terminal 27 amino acids of Ostβ resulted in a transporter complex that reached the plasma membrane and exhibited transport activity at 30 °C. Complete deletion of the C terminus of Ostβ abolished [(3)H]taurocholate transport activity, but reinsertion of two native arginines immediately C-terminal to the TM domain rescued this defect. These positively charged residues establish the correct N(exo)/C(cyt) topology of the peptide, in accordance with the positive inside rule. Together, the results demonstrate that Ostβ is required for both proper trafficking of Ostα and formation of the functional transport unit, and identify specific residues of Ostβ critical for these processes.
Collapse
Affiliation(s)
| | - Na Li
- From the Departments of Environmental Medicine and
| | - Patricia M. Hinkle
- Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York 14642
| | | |
Collapse
|
330
|
Duda T, Pertzev A, Sharma RK. Differential Ca(2+) sensor guanylate cyclase activating protein modes of photoreceptor rod outer segment membrane guanylate cyclase signaling. Biochemistry 2012; 51:4650-7. [PMID: 22642846 DOI: 10.1021/bi300572w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoreceptor ROS-GC1 (rod outer segment membrane guanylate cyclase) is a vital component of phototransduction. It is a bimodal Ca(2+) signal transduction switch, operating between 20 and ∼1000 nM. Modulated by Ca(2+) sensors guanylate cyclase activating proteins 1 and 2 (GCAP1 and GCAP2, respectively), decreasing [Ca(2+)](i) from 200 to 20 nM progressively turns it "on", as does the modulation by the Ca(2+) sensor S100B, increasing [Ca(2+)](i) from 100 to 1000 nM. The GCAP mode plays a vital role in phototransduction in both rods and cones and the S100B mode in the transmission of neural signals to cone ON-bipolar cells. Through a programmed domain deletion, expression, in vivo fluorescence spectroscopy, and in vitro reconstitution experiments, this study demonstrates that the biochemical mechanisms modulated by two GCAPs in Ca(2+) signaling of ROS-GC1 activity are totally different. (1) They involve different structural domains of ROS-GC1. (2) Their signal migratory pathways are opposite: GCAP1 downstream and GCAP2 upstream. (3) Importantly, the isolated catalytic domain, translating the GCAP-modulated Ca(2+) signal into the generation of cyclic GMP, in vivo, exists as a homodimer, the two subunits existing in an antiparallel conformation. Furthermore, the findings demonstrate that the N-terminally placed signaling helix domain is not required for the catalytic domain's dimeric state. The upstream GCAP2-modulated pathway is the first of its kind to be observed for any member of the membrane guanylate cyclase family. It defines a new model of Ca(2+) signal transduction.
Collapse
Affiliation(s)
- Teresa Duda
- The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
| | | | | |
Collapse
|
331
|
Herpes virus fusion and entry: a story with many characters. Viruses 2012; 4:800-32. [PMID: 22754650 PMCID: PMC3386629 DOI: 10.3390/v4050800] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 12/13/2022] Open
Abstract
Herpesviridae comprise a large family of enveloped DNA viruses all of whom employ orthologs of the same three glycoproteins, gB, gH and gL. Additionally, herpesviruses often employ accessory proteins to bind receptors and/or bind the heterodimer gH/gL or even to determine cell tropism. Sorting out how these proteins function has been resolved to a large extent by structural biology coupled with supporting biochemical and biologic evidence. Together with the G protein of vesicular stomatitis virus, gB is a charter member of the Class III fusion proteins. Unlike VSV G, gB only functions when partnered with gH/gL. However, gH/gL does not resemble any known viral fusion protein and there is evidence that its function is to upregulate the fusogenic activity of gB. In the case of herpes simplex virus, gH/gL itself is upregulated into an active state by the conformational change that occurs when gD, the receptor binding protein, binds one of its receptors. In this review we focus primarily on prototypes of the three subfamilies of herpesviruses. We will present our model for how herpes simplex virus (HSV) regulates fusion in series of highly regulated steps. Our model highlights what is known and also provides a framework to address mechanistic questions about fusion by HSV and herpesviruses in general.
Collapse
|
332
|
Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012; 17:4047-132. [PMID: 22469598 PMCID: PMC6268795 DOI: 10.3390/molecules17044047] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Förster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research.
Collapse
Affiliation(s)
- Hellen C. Ishikawa-Ankerhold
- Ludwig Maximilian University of Munich, Institute of Anatomy and Cell Biology, Schillerstr. 42, 80336 München, Germany
| | - Richard Ankerhold
- Carl Zeiss Microimaging GmbH, Kistlerhofstr. 75, 81379 München, Germany
| | - Gregor P. C. Drummen
- Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio&Nano-Solutions, Helmutstr. 3A, 40472 Düsseldorf, Germany
| |
Collapse
|
333
|
Fernandez-Rodriguez J, Marlovits TC. Induced heterodimerization and purification of two target proteins by a synthetic coiled-coil tag. Protein Sci 2012; 21:511-9. [PMID: 22362668 DOI: 10.1002/pro.2035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/23/2012] [Indexed: 11/09/2022]
Abstract
A synthetic de novo designed heterodimeric coiled-coil was used to copurify two target fluorescent proteins, Venus and enhanced cyan fluorescent protein (ECFP). The coiled-coil consists of two 21-amino acid repetitive sequences, (EIAALEK)(3) and (KIAALKE)(3), named E3 and K3, respectively. These sequences were fused to the C-termini of ECFP or Venus followed by either a strep- or a his-tag, respectively, for affinity purification. Mixed lysates of Venus-K3 and ECFP-E3 were subjected to consecutive affinity purification and showed highly specific association between the coiled-coil pair by SDS-PAGE, gel filtration, isothermal titration calorimetry (ITC), and fluorescence resonance energy transfer (FRET). The tagged proteins eluted as heterodimers at the concentrations tested. FRET analysis further showed that the coiled-coil pair was stable in buffers commonly used for protein purification, including those containing high salt concentration and detergent. This study shows that the E3/K3 pair is very well suited for the copurification of two target proteins expressed in vivo because of its high specificity: it forms exclusively heterodimers in solution, it does not interact with any cellular proteins and it is stable under different buffer conditions.
Collapse
|
334
|
Wang R, Li Q, Helfer CM, Jiao J, You J. Bromodomain protein Brd4 associated with acetylated chromatin is important for maintenance of higher-order chromatin structure. J Biol Chem 2012; 287:10738-52. [PMID: 22334664 DOI: 10.1074/jbc.m111.323493] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chromatin structure organization is crucial for regulating many fundamental cellular processes. However, the molecular mechanism that regulates the assembly of higher-order chromatin structure remains poorly understood. In this study, we demonstrate that Brd4 (bromodomain-containing protein 4) protein participates in the maintenance of the higher-order chromatin structure. Brd4, a member of the BET family of proteins, has been shown to play important roles in cellular growth control, cell cycle progression, and cancer development. We apply in situ single cell chromatin imaging and micrococcal nuclease (MNase) assay to show that Brd4 depletion leads to a large scale chromatin unfolding. A dominant-negative inhibitor encoding the double bromodomains (BDI/II) of Brd4 can competitively dissociate endogenous Brd4 from chromatin to trigger severely fragmented chromatin morphology. Mechanistic studies using Brd4 truncation mutants reveal that the Brd4 C-terminal domain is crucial for maintaining normal chromatin structure. Using bimolecular fluorescence complementation technology, we demonstrate that Brd4 molecules interact intermolecularly on chromatin and that replacing Brd4 molecules by BDI/II causes abnormal nucleosome aggregation and chromatin fragmentation. These studies establish a novel structural role of Brd4 in supporting the higher chromatin architecture.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
335
|
Kelley DR, Arreola A, Gallagher TL, Gasser CS. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development 2012; 139:1105-9. [PMID: 22296848 DOI: 10.1242/dev.067918] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
KANADI (KAN) transcription factors promote abaxial cell fate throughout plant development and are required for organ formation during embryo, leaf, carpel and ovule development. ABERRANT TESTA SHAPE (ATS, or KAN4) is necessary during ovule development to maintain the boundary between the two ovule integuments and to promote inner integument growth. Yeast two-hybrid assays identified ETTIN (ETT, or AUXIN RESPONSE FACTOR 3) as a transcription factor that could physically interact with ATS. ATS and ETT were shown to physically interact in vivo in transiently transformed tobacco epidermal cells using bimolecular fluorescence complementation. ATS and ETT were found to share an overlapping expression pattern during Arabidopsis ovule development and loss of either gene resulted in congenital fusion of the integuments and altered seed morphology. We hypothesize that in wild-type ovules a physical interaction between ATS and ETT allows these proteins to act in concert to define the boundary between integument primordia. We further show protein-protein interaction in yeast between ETT and KAN1, a paralog of ATS. Thus, a direct physical association between ETT and KAN proteins underpins their previously described common role in polarity establishment and organogenesis. We propose that ETT-KAN protein complex(es) constitute part of an auxin-dependent regulatory module that plays a conserved role in a variety of developmental contexts.
Collapse
Affiliation(s)
- Dior R Kelley
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
336
|
Li Y, Pi L, Huang H, Xu L. ATH1 and KNAT2 proteins act together in regulation of plant inflorescence architecture. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1423-33. [PMID: 22140242 PMCID: PMC3276100 DOI: 10.1093/jxb/err376] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/05/2011] [Accepted: 10/27/2011] [Indexed: 05/18/2023]
Abstract
The inflorescence of flowering plants is a highly organized structure, not only contributing to plant reproductive processes, but also constituting an important part of the entire plant morphology. Previous studies have revealed that the class-I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS (BP or KNAT1), KNAT2, and KNAT6 play essential roles in inflorescence architecture. Pedicel morphology is known to contribute greatly to inflorescence architecture, and BP negatively regulates KNAT2 and KNAT6 to ensure that pedicels have a normal upward-pointing orientation. These findings indicate that a genetic network exists in controlling pedicel orientation, but how this network functions in the developmental process remains elusive. Here it is reported that the ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) gene, which belongs to the BELL1-like homeodomain gene family, is a new member participating in regulating pedicel orientation in the class-I KNOX network. In a genetic screening for suppressors of isoginchaku-2D, a gain-of-function ASYMMETRIC LEAVES2 mutant that displays downward-pointing pedicels, a suppressor mutant was obtained. Characterization of this mutant revealed that the mutation corresponds to ATH1. Genetic analysis indicated that ATH1 acts mainly in the KNAT2 pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that ATH1 physically interacts with KNAT2. The data indicate that the ATH1-KNAT2 complex acts redundantly with KNAT6, both of which are negatively regulated by BP during pedicel development.
Collapse
Affiliation(s)
| | | | | | - Lin Xu
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
337
|
Imaging Protein Oligomerization in Neurodegeneration Using Bimolecular Fluorescence Complementation. Methods Enzymol 2012; 506:157-74. [DOI: 10.1016/b978-0-12-391856-7.00033-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
338
|
Unoki T, Matsuda S, Kakegawa W, Van N, Kohda K, Suzuki A, Funakoshi Y, Hasegawa H, Yuzaki M, Kanaho Y. NMDA Receptor-Mediated PIP5K Activation to Produce PI(4,5)P2 Is Essential for AMPA Receptor Endocytosis during LTD. Neuron 2012; 73:135-48. [DOI: 10.1016/j.neuron.2011.09.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2011] [Indexed: 10/14/2022]
|
339
|
Sheridan DC, Moua O, Lorenzon NM, Beam KG. Bimolecular fluorescence complementation and targeted biotinylation provide insight into the topology of the skeletal muscle Ca ( 2+) channel β1a subunit. Channels (Austin) 2012; 6:26-40. [PMID: 22522946 DOI: 10.4161/chan.18916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In skeletal muscle, L-type calcium channels (DHPRs), localized to plasma membrane sarcoplasmic reticulum junctions, are tightly packed into groups of four termed tetrads. Here, we have used bimolecular fluorescence complementation (BiFC) and targeted biotinylation to probe the structure and organization of β1a subunits associated with native CaV 1.1 in DHPRs of myotubes. The construct YN-β1a-YC, in which the non-fluorescent fragments of YFP ("YN" corresponding to YFP residues 1-158, and "YC" corresponding to YFP residues 159-238) were fused, respectively, to the N- and C-termini of β1a, was fully functional and displayed yellow fluorescence within DHPR tetrads after expression in β1-knockout (β1KO) myotubes; this yellow fluorescence demonstrated the occurrence of BiFC of YN and YC on the β1a N- and C-termini. In these experiments, we avoided overexpression because control experiments in non-muscle cells indicated that this could result in non-specific BiFC. BiFC of YN-β1a-YC in DHPR tetrads appeared to be intramolecular between N- and C-termini of individual β1a subunits rather than between adjacent DHPRs because BiFC (1) was observed for YN-β1a-YC co-expressed with CaV 1.2 (which does not form tetrads) and (2) was not observed after co-expression of YN-β1a-YN plus YC-β1a-YC in β1KO myotubes. Thus, β1a function is compatible with N- and C-termini being close enough together to allow BiFC. However, both termini appeared to have positional freedom and not to be closely opposed by other junctional proteins since both were accessible to gold-streptavidin conjugates. Based on these results, a model is proposed for the arrangement of β1a subunits in DHPR tetrads.
Collapse
Affiliation(s)
- David C Sheridan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | |
Collapse
|
340
|
Slavoff SA, Liu DS, Cohen JD, Ting AY. Imaging protein-protein interactions inside living cells via interaction-dependent fluorophore ligation. J Am Chem Soc 2011; 133:19769-76. [PMID: 22098454 DOI: 10.1021/ja206435e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report a new method, Interaction-Dependent PRobe Incorporation Mediated by Enzymes, or ID-PRIME, for imaging protein-protein interactions (PPIs) inside living cells. ID-PRIME utilizes a mutant of Escherichia coli lipoic acid ligase, LplA(W37V), which can catalyze the covalent ligation of a coumarin fluorophore onto a peptide recognition sequence called LAP1. The affinity between the ligase and LAP1 is tuned such that, when each is fused to a protein partner of interest, LplA(W37V) labels LAP1 with coumarin only when the protein partners to which they are fused bring them together. Coumarin labeling in the absence of such interaction is low or undetectable. Characterization of ID-PRIME in living mammalian cells shows that multiple protein-protein interactions can be imaged (FRB-FKBP, Fos-Jun, and neuroligin-PSD-95), with as little as 10 min of coumarin treatment. The signal intensity and detection sensitivity are similar to those of the widely used fluorescent protein complementation technique (BiFC) for PPI detection, without the disadvantage of irreversible complex trapping. ID-PRIME provides a powerful and complementary approach to existing methods for visualization of PPIs in living cells with spatial and temporal resolution.
Collapse
Affiliation(s)
- Sarah A Slavoff
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
341
|
Hirasaka K, Lago CU, Kenaston MA, Fathe K, Nowinski SM, Nikawa T, Mills EM. Identification of a redox-modulatory interaction between uncoupling protein 3 and thioredoxin 2 in the mitochondrial intermembrane space. Antioxid Redox Signal 2011; 15:2645-61. [PMID: 21619484 PMCID: PMC3183655 DOI: 10.1089/ars.2011.3888] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Uncoupling protein 3 (UCP3) is a member of the mitochondrial solute carrier superfamily that is enriched in skeletal muscle and controls mitochondrial reactive oxygen species (ROS) production, but the mechanisms underlying this function are unclear. AIMS The goal of this work focused on the identification of mechanisms underlying UCP3 functions. RESULTS Here we report that the N-terminal, intermembrane space (IMS)-localized hydrophilic domain of mouse UCP3 interacts with the N-terminal mitochondrial targeting signal of thioredoxin 2 (Trx2), a mitochondrial thiol reductase. Cellular immunoprecipitation and in vitro pull-down assays show that the UCP3-Trx2 complex forms directly, and that the Trx2 N-terminus is both necessary and sufficient to confer UCP3 binding. Mutation studies show that neither a catalytically inactivated Trx2 mutant, nor a mutant Trx2 bearing the N-terminal targeting sequence of cytochrome c oxidase (COXMTS-Trx2) bind UCP3. Biochemical analyses using permeabilized mitochondria, and live cell experiments using bimolecular fluorescence complementation show that the UCP3-Trx2 complex forms specifically in the IMS. Finally, studies in C2C12 myocytes stably overexpressing UCP3 (2.5-fold) and subjected to Trx2 knockdown show that Trx2 is required for the UCP3-dependent mitigation of complex III-driven mitochondrial ROS generation. UCP3 expression was increased in mice fed a high fat diet, leading to increased localization of Trx2 to the IMS. UCP3 overexpression also increased expression of the glucose transporter GLUT4 in a Trx2-dependent fashion. INNOVATION This is the first report of a mitochondrial protein-protein interaction with UCP3 and the first demonstration that UCP3 binds directly, and in cells and tissues with mitochondrial thioredoxin 2. CONCLUSION These studies identify a novel UCP3-Trx2 complex, a novel submitochondrial localization of Trx2, and a mechanism underlying UCP3-regulated mitochondrial ROS production.
Collapse
Affiliation(s)
- Katsuya Hirasaka
- Division of Pharmacology/Toxicology, University of Texas at Austin, Austin, Texas 78714, USA
| | | | | | | | | | | | | |
Collapse
|
342
|
Trowitzsch S, Klumpp M, Thoma R, Carralot JP, Berger I. Light it up: highly efficient multigene delivery in mammalian cells. Bioessays 2011; 33:946-55. [PMID: 22002169 DOI: 10.1002/bies.201100109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multigene delivery and expression systems are emerging as key technologies for many applications in contemporary biology. We have developed new methods for multigene delivery and expression in eukaryotic hosts for a variety of applications, including production of protein complexes for structural biology and drug development, provision of multicomponent protein biologics, and cell-based assays. We implemented tandem recombineering to facilitate rapid generation of multicomponent gene expression constructs for efficient transformation of mammalian cells, resulting in homogenous cell populations. Analysis of multiple parameters in living cells may require co-expression of fluorescently tagged sensors simultaneously in a single cell, at defined and ideally controlled ratios. Our method enables such applications by overcoming currently limiting challenges. Here, we review recent multigene delivery and expression strategies and their exploitation in mammalian cells. We discuss applications in drug discovery assays, interaction studies, and biologics production, which may benefit in the future from our novel approach.
Collapse
|
343
|
Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network. J Virol 2011; 85:13010-8. [PMID: 21994455 DOI: 10.1128/jvi.02651-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response.
Collapse
|
344
|
Haider AJ, Briggs D, Self TJ, Chilvers HL, Holliday ND, Kerr ID. Dimerization of ABCG2 analysed by bimolecular fluorescence complementation. PLoS One 2011; 6:e25818. [PMID: 21991363 PMCID: PMC3185054 DOI: 10.1371/journal.pone.0025818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/11/2011] [Indexed: 12/18/2022] Open
Abstract
ABCG2 is one of three human ATP binding cassette transporters that are functionally capable of exporting a diverse range of substrates from cells. The physiological consequence of ABCG2 multidrug transport activity in leukaemia, and some solid tumours is the acquisition of cancer multidrug resistance. ABCG2 has a primary structure that infers that a minimal functional transporting unit would be a homodimer. Here we investigated the ability of a bimolecular fluorescence complementation approach to examine ABCG2 dimers, and to probe the role of individual amino acid substitutions in dimer formation. ABCG2 was tagged with fragments of venus fluorescent protein (vYFP), and this tagging did not perturb trafficking or function. Co-expression of two proteins bearing N-terminal and C-terminal fragments of YFP resulted in their association and detection of dimerization by fluorescence microscopy and flow cytometry. Point mutations in ABCG2 which may affect dimer formation were examined for alterations in the magnitude of fluorescence complementation signal. Bimolecular fluorescence complementation (BiFC) demonstrated specific ABCG2 dimer formation, but no changes in dimer formation, resulting from single amino acid substitutions, were detected by BiFC analysis.
Collapse
Affiliation(s)
- Ameena J. Haider
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Deborah Briggs
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Tim J. Self
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hannah L. Chilvers
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nicholas D. Holliday
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ian D. Kerr
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
345
|
Tian G, Lu Q, Zhang L, Kohalmi SE, Cui Y. Detection of protein interactions in plant using a gateway compatible bimolecular fluorescence complementation (BiFC) system. J Vis Exp 2011:3473. [PMID: 21947026 PMCID: PMC3230203 DOI: 10.3791/3473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We have developed a BiFC technique to test the interaction between two proteins in vivo. This is accomplished by splitting a yellow fluorescent protein (YFP) into two non-overlapping fragments. Each fragment is cloned in-frame to a gene of interest. These constructs can then be co-transformed into Nicotiana benthamiana via Agrobacterium mediated transformation, allowing the transit expression of fusion proteins. The reconstitution of YFP signal only occurs when the inquest proteins interact (1-7). To test and validate the protein-protein interactions, BiFC can be used together with yeast two hybrid (Y2H) assay. This may detect indirect interactions which can be overlooked in the Y2H. Gateway technology is a universal platform that enables researchers to shuttle the gene of interest (GOI) into as many expression and functional analysis systems as possible(8,9). Both the orientation and reading frame can be maintained without using restriction enzymes or ligation to make expression-ready clones. As a result, one can eliminate all the re-sequencing steps to ensure consistent results throughout the experiments. We have created a series of Gateway compatible BiFC and Y2H vectors which provide researchers with easy-to-use tools to perform both BiFC and Y2H assays(10). Here, we demonstrate the ease of using our BiFC system to test protein-protein interactions in N. benthamiana plants.
Collapse
Affiliation(s)
- Gang Tian
- Department of Biology, University of Western Ontario, Canada
| | | | | | | | | |
Collapse
|
346
|
Ye F, Tan L, Yang Q, Xia Y, Deng LW, Murata-Hori M, Liou YC. HURP regulates chromosome congression by modulating kinesin Kif18A function. Curr Biol 2011; 21:1584-91. [PMID: 21924616 DOI: 10.1016/j.cub.2011.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 07/26/2011] [Accepted: 08/10/2011] [Indexed: 11/29/2022]
Abstract
Chromosome biorientation and congression during mitosis require precise control of microtubule dynamics [1-4]. The dynamics of kinetochore microtubules (K-MTs) are regulated by a variety of microtubule-associated proteins (MAPs) [4-9]. Recently, a MAP known as HURP (hepatoma upregulated protein) was identified [10-12]. During mitosis, Ran-guanosine 5'-triphosphate (RanGTP) releases HURP from the importin β inhibitory complex and allows it to localize to the kinetochore fiber (k-fiber) [12, 13]. HURP stabilizes k-fibers and promotes chromosome congression [12, 14, 15]. However, the molecular mechanism underlying the role of HURP in regulating chromosome congression remains elusive. Here, we show that overexpression of the N-terminal microtubule binding domain (1-278 aa, HURP(278)) of HURP induces a series of mitotic defects that mimic the effects of Kif18A depletion. In addition, coimmunoprecipitation and bimolecular fluorescence complementation assays identify Kif18A as a novel interaction partner of HURP. Furthermore, quantitative results from live-cell imaging analyses illustrate that HURP regulates Kif18A localization and dynamics at the plus end of K-MTs. Lastly, misaligned chromosomes in HURP(278)-overexpressing cells can be partially rescued by the overexpression of Kif18A. Our results demonstrate in part the regulatory mechanism for Kif18A during chromosome congression and provide new insights into the mechanism of chromosome movement at the metaphase plate.
Collapse
Affiliation(s)
- Fan Ye
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
347
|
Kim J, Lee J, Kwon D, Lee H, Grailhe R. A comparative analysis of resonance energy transfer methods for Alzheimer related protein-protein interactions in living cells. MOLECULAR BIOSYSTEMS 2011; 7:2991-6. [PMID: 21909576 DOI: 10.1039/c1mb05279a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) are extensively used to analyze protein interactions occurring in living cells. Although these two techniques are broadly applied in cellular biology, comparative analysis of their strengths and limitations is lacking. To this end, we analyzed a small network of proteins involved in the amyloidogenic processing of the Alzheimer β-amyloid precursor using FRET based cytometry, BRET, and fluorescence lifetime imaging microscopy (FLIM). Using all three methods, we were able to detect the interactions of the amyloid precursor protein with APBB1, APBB2, and APP itself. And we found an unreported interacting pair, APP-APH1A. In addition, we show that these four interacting pairs exhibit a strong FRET correlation with the acceptor/donor expression ratios. Overall the FRET based cytometry was the most sensitive and reliable approach to screen for new interacting proteins. Therefore, we applied FRET based cytometry to study competitive binding of two proteins, APBB1 and APBB2, with the same APP target.
Collapse
Affiliation(s)
- Jiho Kim
- Neurodegeneration and Applied Microscopy, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 463-400, South Korea
| | | | | | | | | |
Collapse
|
348
|
Lee S, Lee KH, Ha JS, Lee SG, Kim TK. Small-molecule-based nanoassemblies as inducible nanoprobes for monitoring dynamic molecular interactions inside live cells. Angew Chem Int Ed Engl 2011; 50:8709-13. [PMID: 21796746 PMCID: PMC3229982 DOI: 10.1002/anie.201101467] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/01/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Sangkyu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
349
|
Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Curr Opin Genet Dev 2011; 21:664-70. [PMID: 21893407 DOI: 10.1016/j.gde.2011.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 11/20/2022]
Abstract
The importance of mechanical signals during embryogenesis and development, through both intercellular and extracellular signals, is coming into focus. It is widely hypothesized that physical forces help to guide the shape, cellular differentiation and the patterning of tissues. To test these ideas many classical engineering principles and imaging technologies are being adapted. Recent advances in microscopy, mechanical testing and genetic and pharmacological techniques, alongside computational models are helping to dissect the activity of mechanical signals in development at the cellular and molecular level. These inroads are providing maps of mechanical changes in tissue structure and stiffness, and will permit deeper insights into the role of mechanics in both developmental biology and disease.
Collapse
|
350
|
Dwane S, Kiely PA. Tools used to study how protein complexes are assembled in signaling cascades. Bioeng Bugs 2011; 2:247-59. [PMID: 22002082 PMCID: PMC3225741 DOI: 10.4161/bbug.2.5.17844] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 01/08/2023] Open
Abstract
Most proteins do not function on their own but as part of large signaling complexes that are arranged in every living cell in response to specific environmental cues. Proteins interact with each other either constitutively or transiently and do so with different affinity. When identifying the role played by a protein inside a cell, it is essential to define its particular cohort of binding partners so that the researcher can predict what signaling pathways the protein is engaged in. Once identified and confirmed, the information might allow the interaction to be manipulated by pharmacological inhibitors to help fight disease. In this review, we discuss protein-protein interactions and how they are essential to propagate signals in signaling pathways. We examine some of the high-throughput screening methods and focus on the methods used to confirm specific protein-protein interactions including; affinity tagging, co-immunoprecipitation, peptide array technology and fluorescence microscopy.
Collapse
Affiliation(s)
- Susan Dwane
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | | |
Collapse
|