351
|
β3 integrin interacts directly with GluA2 AMPA receptor subunit and regulates AMPA receptor expression in hippocampal neurons. Proc Natl Acad Sci U S A 2012; 109:1323-8. [PMID: 22232691 DOI: 10.1073/pnas.1113736109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
The integrins are transmembrane receptors for ECM proteins, and they regulate various cellular functions in the central nervous system. In hippocampal neurons, the β3 integrin subtype is required for homeostatic synaptic scaling of AMPA receptors (AMPARs) induced by chronic activity deprivation. The surface level of β3 integrin in postsynaptic neurons directly correlates with synaptic strength and the abundance of synaptic GluA2 AMPAR subunit. Although these observations suggest a functional link between β3 integrin and AMPAR, little is known about the mechanistic basis for the connection. Here we investigate the nature of β3 integrin and AMPAR interaction underlying the β3 integrin-dependent control of synaptic AMPAR expression and thus synaptic strength. We show that β3 integrin and GluA2 subunit form a complex in mouse brain that involves the direct binding between their cytoplasmic domains. In contrast, β3 integrin associates with GluA1 AMPAR subunit only weakly, and, in a heterologous expression system, the interaction requires the coexpression of GluA2. Surprisingly, in hippocampal pyramidal neurons, expressing β3 integrin mutants with either increased or decreased affinity for extracellular ligands has no differential effects in elevating excitatory synaptic currents and surface GluA2 levels compared with WT β3 integrin. Our findings identify an integrin family member, β3, as a direct interactor of an AMPAR subunit and provide molecular insights into how this cell-adhesion protein regulates the composition of cell-surface AMPARs.
Collapse
|
352
|
Gal-Ben-Ari S, Rosenblum K. Molecular mechanisms underlying memory consolidation of taste information in the cortex. Front Behav Neurosci 2012; 5:87. [PMID: 22319481 PMCID: PMC3251832 DOI: 10.3389/fnbeh.2011.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022] Open
Abstract
The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex (GC) specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste–memory consolidation in the GC. Specifically, the roles of neurotransmitters, neuromodulators, immediate early genes, and translation regulation are addressed.
Collapse
|
353
|
Knipper M, Müller M, Zimmermann U. Molecular Mechanism of Tinnitus. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2012. [DOI: 10.1007/978-1-4614-3728-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
|
354
|
Abstract
RATIONALE The acne drug isotretinoin has 13-cis retinoic acid as its active agent. Adverse effects that have been described include severe depression. Animal studies indicate that the hippocampus is particularly sensitive to retinoic acid. Changes induced by isotretinoin to hippocampal function could contribute to depression but may be more evident in altered visuospatial learning and memory, the primary function of the hippocampus. OBJECTIVES We aimed to test the hypothesis that a course of oral isotretinoin therapy would result in declining visuospatial learning and memory. METHODS CANTAB tasks designed to assess visuospatial memory were performed repeatedly on 14 males and 3 females in an open prospective observational study of patients with severe acne undergoing isotretinoin therapy. Beck's Depression Inventory and Global Acne Grade were also administered. RESULTS Performance stayed unchanged for DMS, SRM and PRM tasks, while surprisingly participants improved their speed on the PRM task. Performance improved across sessions on the PAL task, and moreover the dose of isotretinoin correlated with improvement in the total trial score, reduction in total error rate and stage completed at the first trial. CONCLUSION Isotretinoin does not reduce learning and memory and our study suggests that it may instead lead to a dose-related improvement in specific aspects of hippocampal learning and memory. Retinoic acid functions in the hippocampus as the active metabolite of vitamin A, suggesting that this may be a limiting factor in the human hippocampus and addition of exogenous retinoic acid brings levels closer to an optimal state.
Collapse
|
355
|
Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 2012; 4:a005736. [PMID: 22086977 DOI: 10.1101/cshperspect.a005736] [Citation(s) in RCA: 732] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
Neural circuits must maintain stable function in the face of many plastic challenges, including changes in synapse number and strength, during learning and development. Recent work has shown that these destabilizing influences are counterbalanced by homeostatic plasticity mechanisms that act to stabilize neuronal and circuit activity. One such mechanism is synaptic scaling, which allows neurons to detect changes in their own firing rates through a set of calcium-dependent sensors that then regulate receptor trafficking to increase or decrease the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms may allow local changes in synaptic activation to generate local synaptic adaptations, and network-wide changes in activity to generate network-wide adjustments in the balance between excitation and inhibition. The signaling pathways underlying these various forms of homeostatic plasticity are currently under intense scrutiny, and although dozens of molecular pathways have now been implicated in homeostatic plasticity, a clear picture of how homeostatic feedback is structured at the molecular level has not yet emerged. On a functional level, neuronal networks likely use this complex set of regulatory mechanisms to achieve homeostasis over a wide range of temporal and spatial scales.
Collapse
Affiliation(s)
- Gina Turrigiano
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02493, USA.
| |
Collapse
|
356
|
Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 2011; 35:57-67. [PMID: 22154068 DOI: 10.1016/j.tins.2011.10.004] [Citation(s) in RCA: 798] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2011] [Revised: 10/07/2011] [Accepted: 10/24/2011] [Indexed: 12/21/2022]
Abstract
Deficits in cognitive control, a core disturbance of schizophrenia, appear to emerge from impaired prefrontal gamma oscillations. Cortical gamma oscillations require strong inhibitory inputs to pyramidal neurons from the parvalbumin basket cell (PVBC) class of GABAergic neurons. Recent findings indicate that schizophrenia is associated with multiple pre- and postsynaptic abnormalities in PVBCs, each of which weakens their inhibitory control of pyramidal cells. These findings suggest a new model of cortical dysfunction in schizophrenia in which PVBC inhibition is decreased to compensate for an upstream deficit in pyramidal cell excitation. This compensation is thought to rebalance cortical excitation and inhibition, but at a level insufficient to generate the gamma oscillation power required for high levels of cognitive control.
Collapse
Affiliation(s)
- David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
357
|
Differential control of presynaptic efficacy by postsynaptic N-cadherin and β-catenin. Nat Neurosci 2011; 15:81-9. [PMID: 22138644 PMCID: PMC3245860 DOI: 10.1038/nn.2995] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2011] [Accepted: 11/02/2011] [Indexed: 01/02/2023]
Abstract
N-cadherin is a homophilic adhesion protein that remains expressed at mature excitatory synapses beyond its developmental role in synapse formation. We investigated the trans-synaptic activity of N-cadherin in regulating synapse function in rodent cultured hippocampal neurons using optical methods and electrophysiology. Interfering with N-cadherin in postsynaptic neurons reduced basal release probability (p(r)) at inputs to the neuron, and this trans-synaptic impairment of release accompanied impaired vesicle endocytosis. Moreover, loss of the GluA2 AMPA-type glutamate receptor subunit, which decreased p(r) by itself, occluded the interference with postsynaptic N-cadherin. The loss of postsynaptic N-cadherin activity, however, did not affect the compensatory upregulation of p(r) induced by chronic activity silencing, whereas postsynaptic β-catenin deletion blocked this presynaptic homeostatic adaptation. Our findings suggest that postsynaptic N-cadherin helps link basal pre- and postsynaptic strengths to control the p(r) offset, whereas the p(r) gain adjustment requires a distinct trans-synaptic pathway involving β-catenin.
Collapse
|
358
|
Vlachos A. Synaptopodin and the spine apparatus organelle-regulators of different forms of synaptic plasticity? Ann Anat 2011; 194:317-20. [PMID: 22217474 DOI: 10.1016/j.aanat.2011.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 11/27/2022]
Abstract
Synaptopodin (SP) is an actin-binding molecule, which is closely linked with the spine apparatus organelle (SA). Recent experimental evidence suggests that SP containing spines differ in their functional and structural properties from neighboring spines, which do not contain SP. These studies revealed for the first time that SP clusters colocalize with a functional internal source of calcium, which affects synaptic plasticity. Strikingly, SP-cluster associated calcium surges were shown to control synaptic strength in two ways: a ryanodine receptor (RyR) dependent potentiation of synaptic strength was reported, as well as inositol-triphosphate-receptor (IP3R) dependent depression. These results suggested that the SA is an important component of the molecular machinery controlling the calcium-dependent accumulation of AMPA-receptors (AMPA-R) at excitatory synapses. They raise the intriguing possibility that SP/SA could play a role in different forms of synaptic plasticity.
Collapse
Affiliation(s)
- Andreas Vlachos
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Germany.
| |
Collapse
|
359
|
Shepherd GMG, Katz DM. Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr Opin Neurobiol 2011; 21:827-33. [PMID: 21733672 PMCID: PMC3199024 DOI: 10.1016/j.conb.2011.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/20/2022]
Abstract
Recent findings in the genetics of neurodevelopmental syndromes have ushered in an exciting era of discovery in which substrates of neurologic dysfunction are being identified at the synaptic and microcircuit levels in mouse models of these disorders. We review recent progress in this area, focusing on two examples of mouse models of autism spectrum disorders (ASDs): Mecp2 models of Rett syndrome, and a Met-knockout model of non-syndromic forms of autism. In both cases, a dominant theme is changes in synaptic strength, associated with hyper-connectivity or hypo-connectivity in specific microcircuits. Alterations in intrinsic neuronal excitability are also found, but do not appear to be as common. The microcircuit-specific nature of synaptic changes observed in these ASD models indicates that it will be necessary to define mechanisms of circuit dysfunction on a case-by-case basis, not only in neocortex but also in brainstem and other sub-cortical areas. Thus, functional microcircuit analysis is emerging as an important line of investigation, highly complementary to neurogenetic and molecular strategies, and holds promise for generating models of the underlying pathophysiology and for guiding development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
360
|
Inactivity-induced increase in nAChRs upregulates Shal K(+) channels to stabilize synaptic potentials. Nat Neurosci 2011; 15:90-7. [PMID: 22081160 PMCID: PMC3888491 DOI: 10.1038/nn.2969] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2011] [Accepted: 09/09/2011] [Indexed: 11/09/2022]
Abstract
Long-term synaptic changes, which are essential for learning and memory, are dependent on homeostatic mechanisms that stabilize neural activity. Homeostatic responses have also been implicated in pathological conditions, including nicotine addiction. Although multiple homeostatic pathways have been described, little is known about how compensatory responses are tuned to prevent them from overshooting their optimal range of activity. We found that prolonged inhibition of nicotinic acetylcholine receptors (nAChRs), the major excitatory receptors in the Drosophila CNS, resulted in a homeostatic increase in the Drosophila α7 (Dα7)-nAChR. This response then induced an increase in the transient A-type K(+) current carried by Shaker cognate L (Shal; also known as voltage-gated K(+) channel 4, Kv4) channels. Although increasing Dα7-nAChRs boosted miniature excitatory postsynaptic currents, the ensuing increase in Shal channels served to stabilize postsynaptic potentials. These data identify a previously unknown mechanism for fine tuning the homeostatic response.
Collapse
|
361
|
Abstract
The proteolytic machinery comprising metalloproteases and γ-secretase, an intramembrane aspartyl protease involved in Alzheimer's disease, cleaves several substrates in addition to the extensively studied amyloid precursor protein. Some of these substrates, such as N-cadherin, are synaptic proteins involved in synapse remodeling and maintenance. Here we show, in rats and mice, that metalloproteases and γ-secretase are physiologic regulators of synapses. Both proteases are synaptic, with γ-secretase tethered at the synapse by δ-catenin, a synaptic scaffolding protein that also binds to N-cadherin and, through scaffolds, to AMPA receptor and a metalloprotease. Activity-dependent proteolysis by metalloproteases and γ-secretase takes place at both sides of the synapse, with the metalloprotease cleavage being NMDA receptor-dependent. This proteolysis decreases levels of synaptic proteins and diminishes synaptic transmission. Our results suggest that activity-dependent substrate cleavage by synaptic metalloproteases and γ-secretase modifies synaptic transmission, providing a novel form of synaptic autoregulation.
Collapse
|
362
|
Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial-tissue interactions. J Neurosci 2011; 31:12945-53. [PMID: 21900573 DOI: 10.1523/jneurosci.1332-11.2011] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
A long-term goal of tissue engineering is to exploit the ability of supporting materials to govern cell-specific behaviors. Instructive scaffolds code such information by modulating (via their physical and chemical features) the interface between cells and materials at the nanoscale. In modern neuroscience, therapeutic regenerative strategies (i.e., brain repair after damage) aim to guide and enhance the intrinsic capacity of the brain to reorganize by promoting plasticity mechanisms in a controlled fashion. Direct and specific interactions between synthetic materials and biological cell membranes may play a central role in this process. Here, we investigate the role of the material's properties alone, in carbon nanotube scaffolds, in constructing the functional building blocks of neural circuits: the synapses. Using electrophysiological recordings and rat cultured neural networks, we describe the ability of a nanoscaled material to promote the formation of synaptic contacts and to modulate their plasticity.
Collapse
|
363
|
Vitureira N, Letellier M, Goda Y. Homeostatic synaptic plasticity: from single synapses to neural circuits. Curr Opin Neurobiol 2011; 22:516-21. [PMID: 21983330 DOI: 10.1016/j.conb.2011.09.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2011] [Accepted: 09/21/2011] [Indexed: 10/16/2022]
Abstract
Homeostatic synaptic plasticity remains an enigmatic form of synaptic plasticity. Increasing interest on the topic has fuelled a surge of recent studies that have identified key molecular players and the signaling pathways involved. However, the new findings also highlight our lack of knowledge concerning some of the basic properties of homeostatic synaptic plasticity. In this review we address how homeostatic mechanisms balance synaptic strengths between the presynaptic and the postsynaptic terminals and across synapses that share the same postsynaptic neuron.
Collapse
Affiliation(s)
- Nathalia Vitureira
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
364
|
Marsden W. Stressor-induced NMDAR dysfunction as a unifying hypothesis for the aetiology, pathogenesis and comorbidity of clinical depression. Med Hypotheses 2011; 77:508-28. [DOI: 10.1016/j.mehy.2011.06.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2011] [Accepted: 06/05/2011] [Indexed: 02/07/2023]
|
365
|
Abstract
It has been established that homeostatic synaptic scaling plasticity can maintain neural network activity in a stable regime. However, the underlying learning rule for this mechanism is still unclear. Whether it is dependent on the presynaptic site remains a topic of debate. Here we focus on two forms of learning rules: traditional synaptic scaling (SS) without presynaptic effect and presynaptic-dependent synaptic scaling (PSD). Analysis of the synaptic matrices reveals that transition matrices between consecutive synaptic matrices are distinct: they are diagonal and linear to neural activity under SS, but become nondiagonal and nonlinear under PSD. These differences produce different dynamics in recurrent neural networks. Numerical simulations show that network dynamics are stable under PSD but not SS, which suggests that PSD is a better form to describe homeostatic synaptic scaling plasticity. Matrix analysis used in the study may provide a novel way to examine the stability of learning dynamics.
Collapse
Affiliation(s)
- Jian K Liu
- Laboratory of Neurophysics and Physiology, CNRS UMR 8119, Université Paris Descartes, Paris, France.
| |
Collapse
|
366
|
Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing. J Neurosci 2011; 31:10189-200. [PMID: 21752995 DOI: 10.1523/jneurosci.2088-11.2011] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023] Open
Abstract
Global changes of activity in neuronal networks induce homeostatic adaptations of synaptic strengths, which involve functional remodeling of both presynaptic and postsynaptic apparatuses. Despite considerable advances in understanding cellular properties of homeostatic synaptic plasticity, the underlying molecular mechanisms are not fully understood. Here, we explored the hypothesis that adaptive homeostatic adjustment of presynaptic efficacy involves molecular remodeling of the release apparatus including the presynaptic cytomatrix, which spatially and functionally coordinates neurotransmitter release. We found significant downregulation of cellular expression levels of presynaptic scaffolding proteins Bassoon, Piccolo, ELKS/CAST, Munc13, RIM, liprin-α, and synapsin upon prolonged (48 h) activity depletion in rat neuronal cultures. This was accompanied by a general reduction of Bassoon, Piccolo, ELKS/CAST, Munc13, and synapsin levels at synaptic sites. Interestingly, RIM was upregulated in a subpopulation of synapses. At the level of individual synapses, RIM quantities correlated well with synaptic activity, and a constant relationship between RIM levels and synaptic activity was preserved upon silencing. Silencing also induced synaptic enrichment of other previously identified regulators of presynaptic release probability, i.e., synaptotagmin1, SV2B, and P/Q-type calcium channels. Seeking responsible cellular mechanisms, we revealed a complex role of the ubiquitin-proteasome system in the functional presynaptic remodeling and enhanced degradation rates of Bassoon and liprin-α upon silencing. Together, our data indicate a significant molecular reorganization of the presynaptic release apparatus during homeostatic adaptation to network inactivity and identify RIM, synaptotagmin1, Ca(v)2.1, and SV2B as molecular candidates underlying the main silencing-induced functional hallmark at presynapse, i.e., increase of neurotransmitter release probability.
Collapse
|
367
|
Crawford DC, Mennerick S. Presynaptically silent synapses: dormancy and awakening of presynaptic vesicle release. Neuroscientist 2011; 18:216-23. [PMID: 21908849 DOI: 10.1177/1073858411418525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
Synapses represent the main junctures of communication between neurons in the nervous system. In many neurotransmitter systems, a fraction of presynaptic terminals fails to release vesicles in response to action potential stimulation and strong calcium influx. These silent presynaptic terminals exhibit a reversible functional dormancy beyond low vesicle release probability, and dormancy status may have important implications in neural function. Recent advances have implicated presynaptic proteins interacting with vesicles downstream of cAMP and protein kinase A signaling cascades in modulating the number of these mute presynaptic terminals, and dormancy induction may represent a homeostatic neuroprotective mechanism active during pathological insults involving excitotoxicity. Interestingly, dormancy reversal may also be induced during Hebbian plasticity. Here, details of synaptic dormancy, recent insights into the molecular signaling cascades involved, and potential clinical and mechanistic implications of this form of synaptic plasticity are described.
Collapse
Affiliation(s)
- Devon C Crawford
- Graduate Program in Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | |
Collapse
|
368
|
Gias C, Vugler A, Lawrence J, Carr AJ, Chen LL, Ahmado A, Semo M, Coffey PJ. Degeneration of cortical function in the Royal College of Surgeons rat. Vision Res 2011; 51:2176-85. [PMID: 21871912 DOI: 10.1016/j.visres.2011.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2010] [Revised: 06/13/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
The purpose of the current study was to determine the progress of cortical functional degeneration in the Royal College of Surgeons (RCS) rat. Cortical responses were measured with optical imaging of intrinsic signals using gratings of various spatial frequencies. Subsequently, electrophysiological recordings were also taken across cortical layers in response to a pulse of broad-spectrum light. We found significant degeneration in the cortical processing of visual information as early as 4 weeks of age. These results show that degeneration in the cortical response of the RCS rat starts before development has been properly completed.
Collapse
Affiliation(s)
- Carlos Gias
- Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
369
|
Abstract
Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons. Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections. We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons): following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition. Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule. We consider potential reasons for these discrepancies.
Collapse
|
370
|
Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling. Nat Neurosci 2011; 14:1112-4. [PMID: 21841774 PMCID: PMC3164917 DOI: 10.1038/nn.2893] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2011] [Accepted: 06/27/2011] [Indexed: 11/08/2022]
Abstract
Neurons adapt to long-lasting changes in network activity, both in vivo and in vitro, by adjusting their synaptic strengths to stabilize firing rates. We found that homeostatic scaling of excitatory synapses was impaired in hippocampal neurons derived from mice lacking presenilin 1 (Psen1(-/-) mice) or expressing a familial Alzheimer's disease-linked Psen1 mutation (Psen1(M146V)). These findings suggest that deficits in synaptic homeostasis may contribute to brain dysfunction in Alzheimer's disease.
Collapse
|
371
|
Abstract
Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPA receptor (AMPAR) abundance are incompletely understood. Furthermore, it remains unclear to what extent scaling up and scaling down use distinct molecular machinery. PSD-95 is a scaffold protein proposed to serve as a binding "slot" that determines synaptic AMPAR content, and synaptic PSD-95 abundance is regulated by activity, raising the possibility that activity-dependent changes in the synaptic abundance of PSD-95 or other membrane-associated guanylate kinases (MAGUKs) drives the bidirectional changes in AMPAR accumulation during synaptic scaling. We found that synaptic PSD-95 and SAP102 (but not PSD-93) abundance were bidirectionally regulated by activity, but these changes were not sufficient to drive homeostatic changes in synaptic strength. Although not sufficient, the PSD-95 MAGUKs were necessary for synaptic scaling, but scaling up and down were differentially dependent on PSD-95 and PSD-93. Scaling down was completely blocked by reduced or enhanced PSD-95, through a mechanism that depended on the PDZ1/2 domains. In contrast, scaling up could be supported by either PSD-95 or PSD-93 in a manner that depended on neuronal age and was unaffected by a superabundance of PSD-95. Together, our data suggest that scaling up and down of quantal amplitude is not driven by changes in synaptic abundance of PSD-95 MAGUKs, but rather that the PSD-95 MAGUKs serve as critical synaptic organizers that use distinct protein-protein interactions to mediate homeostatic accumulation and loss of synaptic AMPAR.
Collapse
|
372
|
Sandoval R, González A, Caviedes A, Pancetti F, Smalla KH, Kaehne T, Michea L, Gundelfinger ED, Wyneken U. Homeostatic NMDA receptor down-regulation via brain derived neurotrophic factor and nitric oxide-dependent signalling in cortical but not in hippocampal neurons. J Neurochem 2011; 118:760-72. [PMID: 21699542 DOI: 10.1111/j.1471-4159.2011.07365.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Nitric oxide (NO) has been proposed to down-regulate NMDA receptors (NMDA-Rs) in a homeostatic manner. However, NMDA-R-dependent NO synthesis also can cause excitotoxic cell death. Using bicuculline-stimulated hippocampal and cortical cell cultures, we have addressed the role of the brain-derived neurotrophic factor-NO pathway in NMDA-R down-regulation. This pathway protected cortical cells from NMDA-induced death and led to NMDA-R inhibition. In contrast, no evidence was gained for the presence of this protective pathway in hippocampal neurons, in which NMDA-induced NO synthesis was confirmed to be toxic. Therefore, opposing effects of NO depended on the activation of different signalling pathways. The pathophysiological relevance of this observation was investigated in synaptosomes and post-synaptic densities isolated from rat hippocampi and cerebral cortices following kainic acid-induced status epilepticus. In cortical, but not in hippocampal synaptosomes, brain-derived neurotrophic factor induced NO synthesis and inhibited NMDA-R currents present in isolated post-synaptic densities. In conclusion, we identified a NO-dependent homeostatic response in the rat cerebral cortex induced by elevated activity. A low performance of this pathway in brain areas including the hippocampus may be related to their selective vulnerability in pathologies such as temporal lobe epilepsy.
Collapse
Affiliation(s)
- Rodrigo Sandoval
- Laboratorio de Neurotoxicología Ambiental, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Abstract
How can synapses change the amount of neurotransmitter released during synaptic plasticity? Although release in general is intensely investigated, its determinants during plasticity are still poorly understood. As a model for plastic strengthening of synaptic release, we here use the well-established presynaptic homeostatic compensation during interference with postsynaptic glutamate receptors at the Drosophila neuromuscular junction. Combining short-term plasticity analysis, cumulative EPSC analysis, fluctuation analysis, and quantal short-term plasticity modeling, we found an increase in the number of release-ready vesicles during presynaptic strengthening. High-resolution light microscopy revealed an increase in the amount of the active zone protein Bruchpilot and an enlargement of the presynaptic cytomatrix structure. Furthermore, these functional and structural alterations of the active zone were not only observed after lifelong but already after minutes of presynaptic strengthening. Our results demonstrate that presynaptic plasticity can induce active zone remodeling, which regulates the number of release-ready vesicles within minutes.
Collapse
|
374
|
Huang YZ, Rothwell JC, Chen RS, Lu CS, Chuang WL. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol 2011; 122:1011-8. [PMID: 20869307 DOI: 10.1016/j.clinph.2010.08.016] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2010] [Revised: 08/28/2010] [Accepted: 08/30/2010] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Theta burst stimulation, a form of repetitive transcranial magnetic stimulation, can induce lasting changes in corticospinal excitability that are thought to involve long-term potentiation/depression (LTD/LTD)-like effects on cortical synapses. The pattern of delivery of TBS is crucial in determining the direction of change in synaptic efficiency. Previously we explained this by postulating (1) that a single burst of stimulation induces a mixture of excitatory and inhibitory effects and (2) those effects may cascade to produce long-lasting effects. Here we formalise those ideas into a simple mathematical model. METHODS The model is based on a simplified description of the glutamatergic synapse in which post-synaptic Ca(2+) entry initiates processes leading to different amount of potentiation and depression of synaptic transmission. The final effect on the synapse results from summation of the two effects. RESULTS The model using these assumptions can fit reported data. Metaplastic effects of voluntary contraction on the response to TBS can be incorporated by changing time constants in the model. CONCLUSIONS The pattern-dependent after-effects and interactions with voluntary contraction can be successfully modelled by using reasonable assumptions about known cellular mechanisms of plasticity. SIGNIFICANCE The model could provide insight into development of new plasticity induction protocols using TMS.
Collapse
Affiliation(s)
- Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei 10507, Taiwan.
| | | | | | | | | |
Collapse
|
375
|
Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain. J Neurosci 2011; 31:5477-82. [PMID: 21471384 DOI: 10.1523/jneurosci.0328-11.2011] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Structural and functional plastic changes in the primary somatosensory cortex (S1) have been observed following peripheral nerve injury that often leads to neuropathic pain, which is characterized by tactile allodynia. However, remodeling of cortical connections following injury has been believed to take months or years; this is not temporally correlated with the rapid development of allodynia and S1 hyperexcitability. Here we first report, by using long-term two-photon imaging of postsynaptic dendritic spines in living adult mice, that synaptic connections in the S1 are rewired within days following sciatic nerve ligation through phase-specific and size-dependent spine survival/growth. Spine turnover in the S1 area corresponding to the injured paw markedly increased during an early phase of neuropathic pain and was restored in a late phase of neuropathic pain, which was prevented by immediate local blockade of the injured nerve throughout the early phase. New spines that generated before nerve injury showed volume decrease after injury, whereas more new spines that formed in the early phase of neuropathic pain became persistent and substantially increased their volume during the late phase. Further, preexisting stable spines survived less following injury than controls, and such lost persistent spines were smaller in size than the surviving ones, which displayed long-term potentiation-like enlargement over weeks. These results suggest that peripheral nerve injury induces rapid and selective remodeling of cortical synapses, which is associated with neuropathic pain development, probably underlying, at least partially, long-lasting sensory changes in neuropathic subjects.
Collapse
|
376
|
Pierce JP, McCloskey DP, Scharfman HE. Morphometry of hilar ectopic granule cells in the rat. J Comp Neurol 2011; 519:1196-218. [PMID: 21344409 DOI: 10.1002/cne.22568] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Granule cell (GC) neurogenesis in the dentate gyrus (DG) does not always proceed normally. After severe seizures (e.g., status epilepticus [SE]) and some other conditions, newborn GCs appear in the hilus. Hilar ectopic GCs (EGCs) can potentially provide insight into the effects of abnormal location and seizures on GC development. Additionally, hilar EGCs that develop after SE may contribute to epileptogenesis and cognitive impairments that follow SE. Thus, it is critical to understand how EGCs differ from normal GCs. Relatively little morphometric information is available on EGCs, especially those restricted to the hilus. This study quantitatively analyzed the structural morphology of hilar EGCs from adult male rats several months after pilocarpine-induced SE, when they are considered to have chronic epilepsy. Hilar EGCs were physiologically identified in slices, intracellularly labeled, processed for light microscopic reconstruction, and compared to GC layer GCs, from both the same post-SE tissue and the NeuroMorpho database (normal GCs). Consistently, hilar EGC and GC layer GCs had similar dendritic lengths and field sizes, and identifiable apical dendrites. However, hilar EGC dendrites were topologically more complex, with more branch points and tortuous dendritic paths. Three-dimensional analysis revealed that, remarkably, hilar EGC dendrites often extended along the longitudinal DG axis, suggesting increased capacity for septotemporal integration. Axonal reconstruction demonstrated that hilar EGCs contributed to mossy fiber sprouting. This combination of preserved and aberrant morphological features, potentially supporting convergent afferent input to EGCs and broad, divergent efferent output, could help explain why the hilar EGC population could impair DG function.
Collapse
Affiliation(s)
- Joseph P Pierce
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | |
Collapse
|
377
|
Glutamate receptor δ2 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells. J Neurosci 2011; 31:3362-74. [PMID: 21368048 DOI: 10.1523/jneurosci.5601-10.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023] Open
Abstract
The number of synaptic AMPA receptors (AMPARs) is the major determinant of synaptic strength and is differently regulated in input pathway-dependent and target cell type-dependent manners. In cerebellar Purkinje cells (PCs), the density of synaptic AMPARs is approximately five times lower at parallel fiber (PF) synapses than at climbing fiber (CF) synapses. However, molecular mechanisms underlying this biased synaptic distribution remain unclear. As a candidate molecule, we focused on glutamate receptor δ2 (GluRδ2 or GluD2), which is known to be efficiently trafficked to and selectively expressed at PF synapses in PCs. We applied postembedding immunogold electron microscopy to GluRδ2 knock-out (KO) and control mice, and measured labeling density for GluA1-4 at three excitatory synapses in the cerebellar molecular layer. In both control and GluRδ2-KO mice, GluA1-3 were localized at PF and CF synapses in PCs, while GluA2-4 were at PF synapses in interneurons. In control mice, labeling density for each of GluA1-3 was four to six times lower at PF-PC synapses than at CF-PC synapses. In GluRδ2-KO mice, however, their labeling density displayed a three- to fivefold increase at PF synapses, but not at CF synapses, thus effectively eliminating input pathway-dependent disparity between the two PC synapses. Furthermore, we found an unexpected twofold increase in labeling density for GluA2 and GluA3, but not GluA4, at PF-interneuron synapses, where we identified low but significant expression of GluRδ2. These results suggest that GluRδ2 is involved in a common mechanism that restricts the number of synaptic AMPARs at PF synapses in PCs and molecular layer interneurons.
Collapse
|
378
|
Impaired activity-dependent plasticity of quantal amplitude at the neuromuscular junction of Rab3A deletion and Rab3A earlybird mutant mice. J Neurosci 2011; 31:3580-8. [PMID: 21389214 DOI: 10.1523/jneurosci.5278-10.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023] Open
Abstract
Rab3A is a small GTPase associated with synaptic vesicles that is required for some forms of activity-dependent plasticity. It is thought to regulate the number of vesicles that fuse through an effect on docking, vesicle maturation, or mobilization. We recently showed that at the neuromuscular junction, loss of Rab3A led to an increase in the occurrence of miniature endplate currents (mepcs) with abnormally long half-widths (Wang et al., 2008). Here we show that such events are also increased after short-term activity blockade, and this process is not Rab3A-dependent. However, in the course of these experiments we discovered that the homeostatic increase in mepc amplitude after activity blockade is diminished in the Rab3A deletion mouse and abolished in the Rab3A Earlybird mouse which expresses a point mutant of Rab3A. We show that homeostatic plasticity at the neuromuscular junction does not depend on tumor necrosis factor α, is not accompanied by an increase in the levels of VAChT, the vesicular transporter for ACh, and confirm that there is no increase in ACh receptors at the junction, three characteristics distinct from that of CNS homeostatic plasticity. Activity blockade does not produce time course changes in mepcs that would be consistent with a fusion pore mechanism. We conclude that Rab3A is involved in a novel presynaptic mechanism to homeostatically regulate the amount of transmitter in a quantum.
Collapse
|
379
|
Lee KJ, Lee Y, Rozeboom A, Lee JY, Udagawa N, Hoe HS, Pak DTS. Requirement for Plk2 in orchestrated ras and rap signaling, homeostatic structural plasticity, and memory. Neuron 2011; 69:957-73. [PMID: 21382555 DOI: 10.1016/j.neuron.2011.02.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/22/2010] [Indexed: 12/01/2022]
Abstract
Ras and Rap small GTPases are important for synaptic plasticity and memory. However, their roles in homeostatic plasticity are unknown. Here, we report that polo-like kinase 2 (Plk2), a homeostatic suppressor of overexcitation, governs the activity of Ras and Rap via coordination of their regulatory proteins. Plk2 directs elimination of Ras activator RasGRF1 and Rap inhibitor SPAR via phosphorylation-dependent ubiquitin-proteasome degradation. Conversely, Plk2 phosphorylation stimulates Ras inhibitor SynGAP and Rap activator PDZGEF1. These Ras/Rap regulators perform complementary functions to downregulate dendritic spines and AMPA receptors following elevated activity, and their collective regulation by Plk2 profoundly stimulates Rap and suppresses Ras. Furthermore, perturbation of Plk2 disrupts Ras and Rap signaling, prevents homeostatic shrinkage and loss of dendritic spines, and impairs proper memory formation. Our study demonstrates a critical role of Plk2 in the synchronized tuning of Ras and Rap and underscores the functional importance of this regulation in homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Kea Joo Lee
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057-1464, USA
| | | | | | | | | | | | | |
Collapse
|
380
|
Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning. Neurobiol Aging 2011; 33:1744-57. [PMID: 21531046 DOI: 10.1016/j.neurobiolaging.2011.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
Cognitive flexibility is critical for survival and reflects the malleability of the central nervous system (CNS) in response to changing environmental demands. Normal aging results in difficulties modifying established behaviors, which may involve medial prefrontal cortex (mPFC) dysfunction. Using extinction of conditioned fear in rats to assay cognitive flexibility, we demonstrate that extinction deficits reminiscent of mPFC dysfunction first appear during middle age, in the absence of hippocampus-dependent context deficits. Emergence of aging-related extinction deficits paralleled a redistribution of neuronal excitability across two critical mPFC regions via two distinct mechanisms. First, excitability decreased in regular spiking neurons of infralimbic-mPFC (IL), a region whose activity is required for extinction. Second, excitability increased in burst spiking neurons of prelimbic-mPFC (PL), a region whose activity hinders extinction. Experiments using synaptic blockers revealed that these aging-related differences were intrinsic. Thus, changes in IL and PL intrinsic excitability may contribute to cognitive flexibility impairments observed during normal aging.
Collapse
|
381
|
Koga M, Serritella AV, Messmer MM, Hayashi-Takagi A, Hester LD, Snyder SH, Sawa A, Sedlak TW. Glutathione is a physiologic reservoir of neuronal glutamate. Biochem Biophys Res Commun 2011; 409:596-602. [PMID: 21539809 DOI: 10.1016/j.bbrc.2011.04.087] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 01/04/2023]
Abstract
Glutamate, the principal excitatory neurotransmitter of the brain, participates in a multitude of physiologic and pathologic processes, including learning and memory. Glutathione, a tripeptide composed of the amino acids glutamate, cysteine, and glycine, serves important cofactor roles in antioxidant defense and drug detoxification, but glutathione deficits occur in multiple neuropsychiatric disorders. Glutathione synthesis and metabolism are governed by a cycle of enzymes, the γ-glutamyl cycle, which can achieve intracellular glutathione concentrations of 1-10mM. Because of the considerable quantity of brain glutathione and its rapid turnover, we hypothesized that glutathione may serve as a reservoir of neural glutamate. We quantified glutamate in HT22 hippocampal neurons, PC12 cells and primary cortical neurons after treatment with molecular inhibitors targeting three different enzymes of the glutathione metabolic cycle. Inhibiting 5-oxoprolinase and γ-glutamyl transferase, enzymes that liberate glutamate from glutathione, leads to decreases in glutamate. In contrast, inhibition of γ-glutamyl cysteine ligase, which uses glutamate to synthesize glutathione, results in substantial glutamate accumulation. Increased glutamate levels following inhibition of glutathione synthesis temporally precede later effects upon oxidative stress.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Meyer 4-137, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | |
Collapse
|
382
|
Abstract
Axons are generally considered as reliable transmission cables in which stable propagation occurs once an action potential is generated. Axon dysfunction occupies a central position in many inherited and acquired neurological disorders that affect both peripheral and central neurons. Recent findings suggest that the functional and computational repertoire of the axon is much richer than traditionally thought. Beyond classical axonal propagation, intrinsic voltage-gated ionic currents together with the geometrical properties of the axon determine several complex operations that not only control signal processing in brain circuits but also neuronal timing and synaptic efficacy. Recent evidence for the implication of these forms of axonal computation in the short-term dynamics of neuronal communication is discussed. Finally, we review how neuronal activity regulates both axon morphology and axonal function on a long-term time scale during development and adulthood.
Collapse
Affiliation(s)
- Dominique Debanne
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Emilie Campanac
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Andrzej Bialowas
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Edmond Carlier
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Gisèle Alcaraz
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| |
Collapse
|
383
|
Watanabe K, Kamatani D, Hishida R, Shibuki K. Timing-dependent effects of whisker trimming in thalamocortical slices including the mouse barrel cortex. Brain Res 2011; 1385:93-106. [DOI: 10.1016/j.brainres.2011.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2010] [Revised: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 11/17/2022]
|
384
|
|
385
|
Mochida S. Dynamic remodeling of synaptic efficacy. Neurosci Res 2011; 70:1. [PMID: 21402109 DOI: 10.1016/j.neures.2011.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
386
|
Graham BA, Tadros MA, Schofield PR, Callister RJ. Probing glycine receptor stoichiometry in superficial dorsal horn neurones using the spasmodic mouse. J Physiol 2011; 589:2459-74. [PMID: 21486794 DOI: 10.1113/jphysiol.2011.206326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022] Open
Abstract
Inhibitory glycine receptors (GlyRs) are pentameric ligand gated ion channels composed of α and β subunits assembled in a 2:3 stoichiometry. The α1/βheteromer is considered the dominant GlyR isoform at 'native' adult synapses in the spinal cord and brainstem. However, the α3 GlyR subunit is concentrated in the superficial dorsal horn (SDH: laminae I-II), a spinal cord region important for processing nociceptive signals from skin, muscle and viscera. Here we use the spasmodic mouse, which has a naturally occurring mutation (A52S) in the α1 subunit of the GlyR, to examine the effect of the mutation on inhibitory synaptic transmission and homeostatic plasticity, and to probe for the presence of various GlyR subunits in the SDH.We usedwhole cell recording (at 22-24◦C) in lumbar spinal cord slices obtained from ketamine-anaesthetized (100 mg kg⁻¹, I.P.) spasmodic and wild-type mice (mean age P27 and P29, respectively, both sexes). The amplitude and decay time constants of GlyR mediated mIPSCs in spasmodic micewere reduced by 25% and 50%, respectively (42.0 ± 3.6 pA vs. 31.0 ± 1.8 pA, P <0.05 and 7.4 ± 0.5 ms vs. 5.0 ± 0.4 ms, P <0.05; means ± SEM, n =34 and 31, respectively). Examination of mIPSC amplitude versus rise time and decay time relationships showed these differences were not due to electrotonic effects. Analysis of GABAAergic mIPSCs and A-type potassium currents revealed altered GlyR mediated neurotransmission was not accompanied by the synaptic or intrinsic homeostatic plasticity previously demonstrated in another GlyR mutant, spastic. Application of glycine to excised outside-out patches from SDH neurones showed glycine sensitivity was reduced more than twofold in spasmodic GlyRs (EC50 =130 ± 20 μM vs. 64 ± 11 μM, respectively; n =8 and 15, respectively). Differential agonist sensitivity and mIPSC decay times were subsequently used to probe for the presence of α1-containing GlyRs in SDHneurones.Glycine sensitivity, based on the response to 1-3 μM glycine, was reduced in>75% of neurones tested and decay times were faster in the spasmodic sample. Together, our data suggest most GlyRs and glycinergic synapses in the SDH contain α1 subunits and few are composed exclusively of α3 subunits. Therefore, future efforts to design therapies that target the α3 subunit must consider the potential interaction between α1 and α3 subunits in the GlyR.
Collapse
Affiliation(s)
- B A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia.
| | | | | | | |
Collapse
|
387
|
Calcium-independent inhibitory G-protein signaling induces persistent presynaptic muting of hippocampal synapses. J Neurosci 2011; 31:979-91. [PMID: 21248122 DOI: 10.1523/jneurosci.4960-10.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023] Open
Abstract
Adaptive forms of synaptic plasticity that reduce excitatory synaptic transmission in response to prolonged increases in neuronal activity may prevent runaway positive feedback in neuronal circuits. In hippocampal neurons, for example, glutamatergic presynaptic terminals are selectively silenced, creating "mute" synapses, after periods of increased neuronal activity or sustained depolarization. Previous work suggests that cAMP-dependent and proteasome-dependent mechanisms participate in silencing induction by depolarization, but upstream activators are unknown. We, therefore, tested the role of calcium and G-protein signaling in silencing induction in cultured hippocampal neurons. We found that silencing induction by depolarization was not dependent on rises in intracellular calcium, from either extracellular or intracellular sources. Silencing was, however, pertussis toxin sensitive, which suggests that inhibitory G-proteins are recruited. Surprisingly, blocking four common inhibitory G-protein-coupled receptors (GPCRs) (adenosine A(1) receptors, GABA(B) receptors, metabotropic glutamate receptors, and CB(1) cannabinoid receptors) and one ionotropic receptor with metabotropic properties (kainate receptors) failed to prevent depolarization-induced silencing. Activating a subset of these GPCRs (A(1) and GABA(B)) with agonist application induced silencing, however, which supports the hypothesis that G-protein activation is a critical step in silencing. Overall, our results suggest that depolarization activates silencing through an atypical GPCR or through receptor-independent G-protein activation. GPCR agonist-induced silencing exhibited dependence on the ubiquitin-proteasome system, as was shown previously for depolarization-induced silencing, implicating the degradation of vital synaptic proteins in silencing by GPCR activation. These data suggest that presynaptic muting in hippocampal neurons uses a G-protein-dependent but calcium-independent mechanism to depress presynaptic vesicle release.
Collapse
|
388
|
Stabilising influence: integrins in regulation of synaptic plasticity. Neurosci Res 2011; 70:24-9. [PMID: 21352859 DOI: 10.1016/j.neures.2011.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/25/2010] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 12/28/2022]
Abstract
Hebbian synaptic plasticity, such as hippocampal long-term potentiation (LTP), is thought to be important for particular types of learning and memory. It involves changes in the expression and activity of a large array of proteins, including cell adhesion molecules. The integrin class of cell adhesion molecules has been extensively studied in this respect, and appear to have a defined role in consolidating both structural and functional changes brought about by LTP. With the use of integrin inhibitors, it has been possible to identify a critical time window of several minutes after LTP induction for the participation of integrins in LTP. Altering the interactions of integrins with their ligands during this time compromises structural changes involving actin polymerisation and spine enlargement that could be required for accommodating new AMPA receptors (AMPARs). After this critical window of structural remodelling and plasticity, integrins "lock-in" and stabilise the morphological changes, conferring the requisite longevity for LTP. Genetic manipulations targeting integrin subtypes have helped identify the specific integrin subunits involved in LTP and correlate alterations in plasticity with behavioural deficits. Moreover, recent studies have implicated integrins in AMPAR trafficking and glycine receptor lateral diffusion, highlighting their multifaceted functions at the synapse.
Collapse
|
389
|
Abstract
Experience-dependent modifications of neural circuits and function are believed to heavily depend on changes in synaptic efficacy such as LTP/LTD. Hence, much effort has been devoted to elucidating the mechanisms underlying these forms of synaptic plasticity. Although most of this work has focused on excitatory synapses, it is now clear that diverse mechanisms of long-term inhibitory plasticity have evolved to provide additional flexibility to neural circuits. By changing the excitatory/inhibitory balance, GABAergic plasticity can regulate excitability, neural circuit function and ultimately, contribute to learning and memory, and neural circuit refinement. Here we discuss recent advancements in our understanding of the mechanisms and functional relevance of GABAergic inhibitory synaptic plasticity.
Collapse
|
390
|
Man HY. GluA2-lacking, calcium-permeable AMPA receptors--inducers of plasticity? Curr Opin Neurobiol 2011; 21:291-8. [PMID: 21295464 DOI: 10.1016/j.conb.2011.01.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
AMPA receptors (AMPARs) are heterotetromeric complexes composed of GluA1-4 subunits. They are glutamate-gated channels traditionally considered solely as ion carriers for postsynaptic depolarization. However, the existence and dynamic regulation of GluA2-lacking, calcium-permeable AMPARs (Cp-AMPARs) enable these special receptors to serve also as signaling molecules presumably via calcium influx. Recent studies have implicated Cp-AMPARs in several types of synaptic plasticity, including homeostatic synaptic regulation and Hebbian synaptic plasticity. Cp-AMPARs are usually expressed transiently at an early stage of synaptic plasticity, but are then replaced with normal GluA2-containing receptors, indicating a role for Cp-AMPARs in induction, rather than the maintenance, of synaptic plasticity.
Collapse
Affiliation(s)
- Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA.
| |
Collapse
|
391
|
Jakawich SK, Nasser HB, Strong MJ, McCartney AJ, Perez AS, Rakesh N, Carruthers CJL, Sutton MA. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 2011; 68:1143-58. [PMID: 21172615 DOI: 10.1016/j.neuron.2010.11.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/01/2010] [Indexed: 12/21/2022]
Abstract
Homeostatic synaptic plasticity is important for maintaining stability of neuronal function, but heterogeneous expression mechanisms suggest that distinct facets of neuronal activity may shape the manner in which compensatory synaptic changes are implemented. Here, we demonstrate that local presynaptic activity gates a retrograde form of homeostatic plasticity induced by blockade of AMPA receptors (AMPARs) in cultured hippocampal neurons. We show that AMPAR blockade produces rapid (<3 hr) protein synthesis-dependent increases in both presynaptic and postsynaptic function and that the induction of presynaptic, but not postsynaptic, changes requires coincident local activity in presynaptic terminals. This "state-dependent" modulation of presynaptic function requires postsynaptic release of brain-derived neurotrophic factor (BDNF) as a retrograde messenger, which is locally synthesized in dendrites in response to AMPAR blockade. Taken together, our results reveal a local crosstalk between active presynaptic terminals and postsynaptic signaling that dictates the manner by which homeostatic plasticity is implemented at synapses.
Collapse
Affiliation(s)
- Sonya K Jakawich
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
392
|
APC(Cdh1) mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat Neurosci 2010; 14:181-9. [PMID: 21186356 DOI: 10.1038/nn.2715] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2010] [Accepted: 11/17/2010] [Indexed: 12/21/2022]
Abstract
Homeostatic plasticity is crucial for maintaining neuronal output by counteracting unrestrained changes in synaptic strength. Chronic elevation of synaptic activity by bicuculline reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs), but the underlying mechanisms of this effect remain unclear. We found that activation of EphA4 resulted in a decrease in synaptic and surface GluR1 and attenuated mEPSC amplitude through a degradation pathway that requires the ubiquitin proteasome system (UPS). Elevated synaptic activity resulted in increased tyrosine phosphorylation of EphA4, which associated with the ubiquitin ligase anaphase-promoting complex (APC) and its activator Cdh1 in neurons in a ligand-dependent manner. APC(Cdh1) interacted with and targeted GluR1 for proteasomal degradation in vitro, whereas depletion of Cdh1 in neurons abolished the EphA4-dependent downregulation of GluR1. Knockdown of EphA4 or Cdh1 prevented the reduction in mEPSC amplitude in neurons that was a result of chronic elevated activity. Our results define a mechanism by which EphA4 regulates homeostatic plasticity through an APC(Cdh1)-dependent degradation pathway.
Collapse
|
393
|
Inhibition of learning and memory by general anesthetics. Can J Anaesth 2010; 58:167-77. [DOI: 10.1007/s12630-010-9428-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2010] [Accepted: 11/15/2010] [Indexed: 12/28/2022] Open
|
394
|
Abstract
Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these "brakes" are structural, such as perineuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects.
Collapse
|
395
|
Abstract
Neurons adapt to altered network activity through homeostatic changes in synaptic function. In this issue of Neuron, Goold and Nicoll report that chronic hyperactivation of individual CA1 pyramidal neurons drives cell-autonomous, compensatory synapse elimination via CaMKIV-dependent transcription. These findings suggest that neurons gauge their intrinsic activity to instruct homeostatic regulation of synaptic inputs.
Collapse
Affiliation(s)
- Michael A Sutton
- Molecular and Behavioral Neuroscience Institute and Department of Molecular and Integrative Physiology, University of Michigan, 5067 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
396
|
Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channels, which help control neuronal excitability, are important for the response to drugs of abuse. Here, we describe a novel pathway for morphine-dependent enhancement of GIRK channel signaling in hippocampal neurons. Morphine treatment for ∼20 h increased the colocalization of GIRK2 with PSD95, a dendritic spine marker. Western blot analysis and quantitative immunoelectron microscopy revealed an increase in GIRK2 protein and targeting to dendritic spines. In vivo administration of morphine also produced an upregulation of GIRK2 protein in the hippocampus. The mechanism engaged by morphine required elevated intracellular Ca(2+) and was insensitive to pertussis toxin, implicating opioid receptors that may couple to Gq G-proteins. Met-enkephalin, but not the μ-selective (DAMGO) and δ-selective (DPDPE) opioid receptor agonists, mimicked the effect of morphine, suggesting involvement of a heterodimeric opioid receptor complex. Peptide (KN-93) inhibition of CaMKII prevented the morphine-dependent change in GIRK localization, whereas expression of a constitutively activated form of CaMKII mimicked the effects of morphine. Coincident with an increase in GIRK2 surface expression, functional analyses revealed that morphine treatment increased the size of serotonin-activated GIRK currents and Ba(2+)-sensitive basal K(+) currents in neurons. These results demonstrate plasticity in neuronal GIRK signaling that may contribute to the abusive effects of morphine.
Collapse
|
397
|
Luo L, Rodriguez E, Jerbi K, Lachaux JP, Martinerie J, Corbetta M, Shulman GL, Piomelli D, Turrigiano GG, Nelson SB, Joëls M, de Kloet ER, Holsboer F, Amodio DM, Frith CD, Block ML, Zecca L, Hong JS, Dantzer R, Kelley KW, Craig AD. Ten years of Nature Reviews Neuroscience: insights from the highly cited. Nat Rev Neurosci 2010; 11:718-26. [PMID: 20852655 PMCID: PMC3395239 DOI: 10.1038/nrn2912] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
To celebrate the first 10 years of Nature Reviews Neuroscience, we invited the authors of the most cited article of each year to look back on the state of their field of research at the time of publication and the impact their article has had, and to discuss the questions that might be answered in the next 10 years. This selection of highly cited articles provides interesting snapshots of the progress that has been made in diverse areas of neuroscience. They show the enormous influence of neuroimaging techniques and highlight concepts that have generated substantial interest in the past decade, such as neuroimmunology, social neuroscience and the 'network approach' to brain function. These advancements will pave the way for further exciting discoveries that lie ahead.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
398
|
|
399
|
Müller-Dahlhaus F, Ziemann U, Classen J. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. Front Synaptic Neurosci 2010; 2:34. [PMID: 21423520 PMCID: PMC3059695 DOI: 10.3389/fnsyn.2010.00034] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2010] [Accepted: 07/11/2010] [Indexed: 11/13/2022] Open
Abstract
Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behavior such as learning and memory.
Collapse
|