1
|
Grimaldi I, Leser FS, Janeiro JM, da Rosa BG, Campanelli AC, Romão L, Lima FRS. The multiple functions of PrP C in physiological, cancer, and neurodegenerative contexts. J Mol Med (Berl) 2022; 100:1405-1425. [PMID: 36056255 DOI: 10.1007/s00109-022-02245-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Cellular prion protein (PrPC) is a highly conserved glycoprotein, present both anchored in the cell membrane and soluble in the extracellular medium. It has a diversity of ligands and is variably expressed in numerous tissues and cell subtypes, most notably in the central nervous system (CNS). Its importance has been brought to light over the years both under physiological conditions, such as embryogenesis and immune system homeostasis, and in pathologies, such as cancer and neurodegenerative diseases. During development, PrPC plays an important role in CNS, participating in axonal growth and guidance and differentiation of glial cells, but also in other organs such as the heart, lung, and digestive system. In diseases, PrPC has been related to several types of tumors, modulating cancer stem cells, enhancing malignant properties, and inducing drug resistance. Also, in non-neoplastic diseases, such as Alzheimer's and Parkinson's diseases, PrPC seems to alter the dynamics of neurotoxic aggregate formation and, consequently, the progression of the disease. In this review, we explore in detail the multiple functions of this protein, which proved to be relevant for understanding the dynamics of organism homeostasis, as well as a promising target in the treatment of both neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bárbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Clara Campanelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luciana Romão
- Cell Morphogenesis Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Klein D, Groh J, Yuan X, Berve K, Stassart R, Fledrich R, Martini R. Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot-Marie-Tooth 1A. Glia 2022; 70:1100-1116. [PMID: 35188681 DOI: 10.1002/glia.24158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Xidi Yuan
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Berve
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Ruth Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Yao R, Murtaza M, Velasquez JT, Todorovic M, Rayfield A, Ekberg J, Barton M, St John J. Olfactory Ensheathing Cells for Spinal Cord Injury: Sniffing Out the Issues. Cell Transplant 2018; 27:879-889. [PMID: 29882418 PMCID: PMC6050914 DOI: 10.1177/0963689718779353] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are glia reported to sustain the continuous axon extension and successful topographic targeting of the olfactory receptor neurons responsible for the sense of smell (olfaction). Due to this distinctive property, OECs have been trialed in human cell transplant therapies to assist in the repair of central nervous system injuries, particularly those of the spinal cord. Though many studies have reported neurological improvement, the therapy remains inconsistent and requires further improvement. Much of this variability stems from differing olfactory cell populations prior to transplantation into the injury site. While some studies have used purified cells, others have used unpurified transplants. Although both preparations have merits and faults, the latter increases the variability between transplants received by recipients. Without a robust purification procedure in OEC transplantation therapies, the full potential of OECs for spinal cord injury may not be realised.
Collapse
Affiliation(s)
- R Yao
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Murtaza
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - J Tello Velasquez
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Todorovic
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - A Rayfield
- 2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - J Ekberg
- 2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - M Barton
- 2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - J St John
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Fenrich K, Gordon T. Canadian Association of Neuroscience Review: Axonal Regeneration in the Peripheral and Central Nervous Systems – Current Issues and Advances. Can J Neurol Sci 2016; 31:142-56. [PMID: 15198438 DOI: 10.1017/s0317167100053798] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractInjured nerves regenerate their axons in the peripheral (PNS) but not the central nervous system (CNS). The contrasting capacities have been attributed to the growth permissive Schwann cells in the PNS and the growth inhibitory environment of the oligodendrocytes in the CNS. In the current review, we first contrast the robust regenerative response of injured PNS neurons with the weak response of the CNS neurons, and the capacity of Schwann cells and not the oligodendrocytes to support axonal regeneration. We then consider the factors that limit axonal regeneration in both the PNS and CNS. Limiting factors in the PNS include slow regeneration of axons across the injury site, progressive decline in the regenerative capacity of axotomized neurons (chronic axotomy) and progressive failure of denervated Schwann cells to support axonal regeneration (chronic denervation). In the CNS on the other hand, it is the poor regenerative response of neurons, the inhibitory proteins that are expressed by oligodendrocytes and act via a common receptor on CNS neurons, and the formation of the glial scar that prevent axonal regeneration in the CNS. Strategies to overcome these limitations in the PNS are considered in detail and contrasted with strategies in the CNS.
Collapse
Affiliation(s)
- Keith Fenrich
- Centre for Neuroscience, Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
5
|
Groh J, Klein I, Hollmann C, Wettmarshausen J, Klein D, Martini R. CSF-1-activated macrophages are target-directed and essential mediators of Schwann cell dedifferentiation and dysfunction in Cx32-deficient mice. Glia 2015; 63:977-86. [PMID: 25628221 DOI: 10.1002/glia.22796] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/26/2022]
Abstract
We investigated connexin 32 (Cx32)-deficient mice, a model for the X-linked form of Charcot-Marie-Tooth neuropathy (CMT1X), regarding the impact of low-grade inflammation on Schwann cell phenotype. Whereas we previously identified macrophages as amplifiers of the neuropathy, we now explicitly focus on the impact of the phagocytes on Schwann cell dedifferentiation, a so far not-yet addressed disease-related mechanism for CMT1X. Using mice heterozygously deficient for Cx32 and displaying both Cx32-positive and -negative Schwann cells in one and the same nerve, we could demonstrate that macrophage clusters rather than single macrophages precisely associate with mutant but not with Cx32-positive Schwann cells. Similarly, in an advanced stage of Schwann cell perturbation, macrophage clusters were strongly associated with NCAM- and L1-positive, dedifferentiated Schwann cells. To clarify the role of macrophages regarding Schwann cell dedifferentiation, we generated Cx32-deficient mice additionally deficient for the macrophage-directed cytokine colony-stimulating factor (CSF)-1. In the absence of CSF-1, Cx32-deficient Schwann cells not only showed the expected amelioration in myelin preservation but also failed to upregulate the Schwann cell dedifferentiation markers NCAM and L1. Another novel and unexpected finding in the double mutants was the retained activation of ERK signaling, a pathway which is detrimental for Schwann cell homeostasis in myelin mutant models. Our findings demonstrate that increased ERK signaling can be compatible with the maintenance of Schwann cell differentiation and homeostasis in vivo and identifies CSF-1-activated macrophages as crucial mediators of detrimental Schwann cell dedifferentiation in Cx32-deficient mice.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg
| | | | | | | | | | | |
Collapse
|
6
|
Freidin M, Asche-Godin S, Abrams CK. Gene expression profiling studies in regenerating nerves in a mouse model for CMT1X: uninjured Cx32-knockout peripheral nerves display expression profile of injured wild type nerves. Exp Neurol 2015; 263:339-49. [PMID: 25447941 PMCID: PMC4262134 DOI: 10.1016/j.expneurol.2014.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 11/20/2022]
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X) is an inherited peripheral neuropathy caused by mutations in GJB1, the human gene for Connexin32 (Cx32). This present study uses Ilumina Ref8-v2 BeadArray to examine the expression profiles of injured and uninjured sciatic nerves at 5, 7, and 14 days post-crush injury (dpi) from Wild Type (WT) and Cx32-knockout (Cx32KO) mice to identify the genes and signaling pathways that are dysregulated in the absence of Schwann cell Cx32. Given the assumption that loss of Schwann cell Cx32 disrupts the regeneration and maintenance of myelinated nerve leading to a demyelinating neuropathy in CMT1X, we initially hypothesized that nerve crush injury would result in significant increases in differential gene expression in Cx32KO mice relative to WT nerves. However, microarray analysis revealed a striking collapse in the number of differentially expressed genes at 5 and 7 dpi in Cx32KO nerves relative to WT, while uninjured and 14 dpi time points showed large numbers of differentially regulated genes. Further comparisons within each genotype showed limited changes in Cx32KO gene expression following crush injury when compared to uninjured Cx32KO nerves. By contrast, WT nerves exhibited robust changes in gene expression at 5 and 7 dpi with no significant differences in gene expression by 14dpi relative to uninjured WT nerve samples. Taken together, these data suggest that the gene expression profile in uninjured Cx32KO sciatic nerve strongly resembles that of a WT nerve following injury and that loss of Schwann cell Cx32 leads to a basal state of gene expression similar to that of an injured WT nerve. These findings support a role for Cx32 in non-myelinating and regenerating populations of Schwann cells in normal axonal maintenance in re-myelination, and regeneration of peripheral nerve following injury. Disruption of Schwann cell-axonal communication in CMT1X may cause dysregulation of signaling pathways that are essential for the maintenance of intact myelinated peripheral nerves and to establish the necessary conditions for successful regeneration and remyelination following nerve injury.
Collapse
Affiliation(s)
- Mona Freidin
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Samantha Asche-Godin
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Charles K Abrams
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
7
|
Klein D, Groh J, Wettmarshausen J, Martini R. Nonuniform molecular features of myelinating Schwann cells in models for CMT1: Distinct disease patterns are associated with NCAM and c-Jun upregulation. Glia 2014; 62:736-50. [DOI: 10.1002/glia.22638] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Dennis Klein
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| | - Janos Groh
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| | - Jennifer Wettmarshausen
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| | - Rudolf Martini
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| |
Collapse
|
8
|
Martini R, Klein D, Groh J. Similarities between inherited demyelinating neuropathies and Wallerian degeneration: an old repair program may cause myelin and axon perturbation under nonlesion conditions. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:655-60. [PMID: 23831295 DOI: 10.1016/j.ajpath.2013.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/09/2023]
Abstract
Wallerian degeneration (WD) and inherited demyelinating neuropathies of the Charcot-Marie-Tooth type 1 (CMT1) appear to represent completely distinct events. CMT1-like diseases are chronic disorders of peripheral nerves that are genetically caused and lead to secondary neurodegenerative events, resulting in usually non-treatable disabilities, whereas WD is an acute, usually transient, reaction on injuries, aiming to allow peripheral nerve regeneration. Despite these differences, there are some striking similarities regarding molecular characteristics of neural cells in the affected peripheral nerves. The most conspicuous similarities might comprise the inflammatory component in both situations, as identified in appropriate mouse models. However, although inflammation is a beneficial component in WD, leading to removal of regrowth-repellent myelin debris, inflammation in CMT1 mouse models causes damage of initially intact nerve fibers. We hypothesize that, in CMT1 models, molecular pathways are activated that are shared with an important repair program after peripheral nerve injury, but lead to neural perturbation when activated under nonlesion conditions, as is the case in CMT1. These novel insights into the pathogenesis of CMT1 might be instrumental for the development of new therapeutic options in humans.
Collapse
Affiliation(s)
- Rudolf Martini
- Section of Developmental Neurobiology, Department of Neurology, University of Würzburg, Würzburg, Germany.
| | | | | |
Collapse
|
9
|
The characterisation of Pax3 expressant cells in adult peripheral nerve. PLoS One 2013; 8:e59184. [PMID: 23527126 PMCID: PMC3602598 DOI: 10.1371/journal.pone.0059184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/12/2013] [Indexed: 12/25/2022] Open
Abstract
Pax3 has numerous integral functions in embryonic tissue morphogenesis and knowledge of its complex function in cells of adult tissue continues to unfold. Across a variety of adult tissue lineages, the role of Pax3 is principally linked to maintenance of the tissue’s resident stem/progenitor cell population. In adult peripheral nerves, Pax3 is reported to be expressed in nonmyelinating Schwann cells, however, little is known about the purpose of this expression. Based on the evidence of the role of Pax3 in other adult tissue stem and progenitor cells, it was hypothesised that the cells in adult peripheral nerve that express Pax3 may be peripheral glioblasts. Here, methods have been developed for identification and visualisation of Pax3 expressant cells in normal 60 day old mouse peripheral nerve that allowed morphological and phenotypic distinctions to be made between Pax3 expressing cells and other nonmyelinating Schwann cells. The distinctions described provide compelling support for a resident glioblast population in adult mouse peripheral nerve.
Collapse
|
10
|
Kawaja MD, Boyd JG, Smithson LJ, Jahed A, Doucette R. Technical Strategies to Isolate Olfactory Ensheathing Cells for Intraspinal Implantation. J Neurotrauma 2009; 26:155-77. [DOI: 10.1089/neu.2008.0709] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Michael D. Kawaja
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - J. Gordon Boyd
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
| | - Laura J. Smithson
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Ali Jahed
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
| | - Ron Doucette
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
- Cameco MS Neuroscience Research Center, City Hospital, Saskatoon, Canada
| |
Collapse
|
11
|
Sereda MW, Nave KA. Animal models of Charcot-Marie-Tooth disease type 1A. Neuromolecular Med 2007; 8:205-16. [PMID: 16775377 DOI: 10.1385/nmm:8:1-2:205] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 01/10/2006] [Accepted: 01/17/2006] [Indexed: 11/11/2022]
Abstract
The most frequent genetic subtype of Charcot-Marie-Tooth disease is CMT1A, linked to chromosome 17p11.2. In the majority of cases, CMT1A is a gene dosage disease associated with a 1.5 Mb large genomic duplication. Transgenic models with extra copies of the Pmp22 gene have provided formal proof that overexpression of only this candidate gene is sufficent to cause peripheral demyelination, onion bulb formation, secondary axonal loss, and progressive muscle atrophy, the pathological hallmarks of CMT1A. The transgenic CMT rat with about 1.6-fold PMP22 overexpression exhibits clinical abnormalities, such as reduced nerve conduction velocity and lower grip strength that mimick findings in CMT1A patients. Also transgenic mice, carrying yeast artifical chromosomes as Pmp22 transgenes, demonstrate the variability of disease expression as a function of increased gene dosage. Recently, the first rational experimental therapies of CMT1A were tested, using transgenic animal models. In one proof-of-principle study with the CMT rat, a synthetic antagonist of the nuclear progesterone receptor was shown to reduce PMP22 overexpression and to ameliorate the clinical severity. In another study, administration of ascorbic acid, an essential factor of in vitro myelination, prolonged the survival and restored myelination of a dysmyelinated mouse model. Application of gene expression analysis to nerve biopsies that are readily available from such CMT1A animal models might identify additional pharmacological targets.
Collapse
Affiliation(s)
- M W Sereda
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
12
|
Meyer zu Hörste G, Prukop T, Nave KA, Sereda MW. Myelin disorders: Causes and perspectives of Charcot-Marie-Tooth neuropathy. J Mol Neurosci 2006; 28:77-88. [PMID: 16632877 DOI: 10.1385/jmn:28:1:77] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Revised: 11/30/1999] [Accepted: 08/08/2005] [Indexed: 01/25/2023]
Abstract
Charcot-Marie-Tooth (CMT) disease is a common hereditary neuropathy that causes progressive distally pronounced muscle weakness and can lead to life-long disability in patients. In most cases, the disorder has been associated with a partial duplication of human chromosome 17 (CMT1A), causing 1.5-fold overexpression of the peripheral myelin protein 22 kDa (PMP22). Increased PMP22 gene dosage results in demyelination, secondary axonal loss, and neurogenic muscle atrophy. Experimental therapeutic approaches based on the role of progesterone and ascorbic acid in myelin formation recently have reached preclinical proof-of-principle trials in rodents. It was shown that progesterone receptor antagonists can reduce PMP22 overexpression and clinical severity in a CMT1A rat model. Furthermore, ascorbic acid treatment reduced premature death and demyelination in a CMT1A mouse model. Thus, basic research has opened up new vistas for the understanding and treatment of hereditary neuropathies.
Collapse
|
13
|
Massa R, Palumbo C, Cavallaro T, Panico MB, Bei R, Terracciano C, Rizzuto N, Bernardi G, Modesti A. Overexpression of ErbB2 and ErbB3 receptors in Schwann cells of patients with Charcot-Marie-tooth disease type 1A. Muscle Nerve 2006; 33:342-9. [PMID: 16307437 DOI: 10.1002/mus.20460] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Axon-derived neuregulins (NRGs) are a family of growth factors whose binding to ErbB tyrosine kinase receptors promotes the maturation, proliferation and survival of Schwann cells (SCs). Correct NRG/ErbB signaling is essential for the homeostasis of axonal-glial complexes and seems to play a role in peripheral nerve repair. The potential involvement of ErbB receptors in human peripheral neuropathies has not been clarified. Therefore, we assessed the immunoreactivity for EGFR (ErbB1), ErbB2, and ErbB3 in nerve biopsies from patients with different forms of Charcot-Marie-Tooth disease, type 1, (CMT1), as compared to others with inflammatory neuropathies and controls. The most notable changes consisted in the overexpression of ErbB2 and ErbB3 by SCs of nerves from CMT1A patients. These findings are consistent with an impairment of SC differentiation and expand the molecular phenotype of CMT1A. The upregulation of these receptors may play a role in the inhibition of myelination or in the promotion of recurrent demyelination and axonal damage.
Collapse
Affiliation(s)
- Roberto Massa
- Dipartimento di Neuroscienze, Università di Roma Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yagi T, Matsuda J, Tominaga K, Suzuki K, Suzuki K. Hematopoietic Cell Transplantation Ameliorates Clinical Phenotype and Progression of the CNS Pathology in the Mouse Model of Late Onset Krabbe Disease. J Neuropathol Exp Neurol 2005; 64:565-75. [PMID: 16042308 DOI: 10.1097/01.jnen.0000171646.01966.0c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Krabbe disease is a genetic demyelinating disease caused by a deficiency of galactosylceramidase. The majority of cases are of infantile onset with rapid clinical course. A rare late onset form with milder clinical symptoms also exists. The latter form has been reported to respond well to the bone marrow transplantation (BMT) therapy. We tested whether the BMT could be an effective therapy for the mouse model of the late onset form, saposin-A-/- (SAP-A-/-) mice. We used green fluorescent protein transgenic mice as the donors. Chimeric SAP-A-/- mice that received BMT showed very little evidence of neurologic symptoms. At postnatal day 190 when severe demyelination was evident in naive SAP-A-/- mice, demyelination was virtually absent in the brain of chimeric SAP-A-/- mice. Presence of residual enzyme activity, at the time of rapid myelination in SAP-A-/- mice, appears to limit initial inflammatory responses and macrophage infiltration, thereby preventing progression of demyelination in the CNS in SAP-A-/- mice. In contrast, the peripheral nerves showed features of hypertrophic neuropathy with hypomyelination and onion bulb formation, suggesting that there are different cellular responses to the BMT in the CNS and PNS.
Collapse
Affiliation(s)
- Takashi Yagi
- Department of Pathology and Laboratory Medicine , University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
15
|
Studzinski DM, Benjamins JA. Expression of P0 glycoprotein in CNS glia: Effects of overexpression in N20.1 cells. Glia 2005; 52:234-44. [PMID: 15968635 DOI: 10.1002/glia.20240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine effects of expression of the PNS myelin P0 glycoprotein in glial cells of CNS lineage, we transfected murine N20.1 glial cells with a rat P0 cDNA. A stably transfected cell line expressing high levels of P0 message showed P0 immunostaining, along with changes in morphology. Polymerase chain reaction (PCR) identified the predicted rat P0 sequence in the transfected N20.1 cells and further revealed low levels of mouse P0 message in the nontransfected cells and in primary mouse astrocytes. This is the first evidence of endogenous expression of message for P0 glycoprotein in CNS glia. Quantitative RT-PCR confirmed the expression of rat P0 mRNA in the transfected N20.1 cells, at levels about 400 times greater than murine P0 in nontransfected cells. A 27-kD band was detected in the transfected cells by Western blot with P0 antibody, but not in mock-transfected or nontransfected N20.1 cells. Immunocytochemistry following permeabilization showed intracellular vesicular localization of P0 in the cytoplasm and perinuclear rings in transfected cells, with a similar pattern but much lower levels in nontransfected cells. Faint surface staining for P0 protein without permeabilization was seen only on the transfected cells. A few transfected cells with membrane sheets stained more intensely for surface P0. Quantitative RT-PCR was used to determine if P0 overexpression altered expression of other myelin-related genes compared with glial fibrillary acidic protein (GFAP); the ratios of myelin basic protein (MBP)/GFAP and proteolipid protein (PLP)/GFAP were increased 2- to 3-fold in the P0-transfected cells. We conclude that P0 overexpression alters N20.1 gene expression and cell morphology, and shifts the cells from astroglial to oligodendroglial phenotype.
Collapse
|
16
|
Gajavelli S, Wood PM, Pennica D, Whittemore SR, Tsoulfas P. BMP signaling initiates a neural crest differentiation program in embryonic rat CNS stem cells. Exp Neurol 2004; 188:205-23. [PMID: 15246821 DOI: 10.1016/j.expneurol.2004.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 02/04/2004] [Accepted: 03/16/2004] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) have an important role in neuronal and astrocytic differentiation of embryonic and adult neural stem cells (NSCs). Here, we show that BMP6, BMP7, GDF5, and GDF6 instructively differentiate E12, E14, and E17 rat cortical NSCs into a variety of neural crest lineages. Clonal analysis shows that BMP7-treated NSCs develop mostly into smooth muscle and peripheral glia. We observed a rapid induction of premigratory neural crest markers like p75NTR, and AP-2 alpha followed by Msx1, Msx2, and Slug, transcription factors that participate in neural crest development. These results suggest that NSCs cultured in vitro in the presence of FGF2 display expanded developmental potential.
Collapse
Affiliation(s)
- Shyam Gajavelli
- Department of Neurosurgery, The Miami Project to Cure Paralysis, University of Miami School of Medicine, FL 33136, USA
| | | | | | | | | |
Collapse
|
17
|
Mäurer M, Müller M, Kobsar I, Leonhard C, Martini R, Kiefer R. Origin of pathogenic macrophages and endoneurial fibroblast-like cells in an animal model of inherited neuropathy. Mol Cell Neurosci 2003; 23:351-9. [PMID: 12837620 DOI: 10.1016/s1044-7431(03)00055-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Macrophages have recently been shown to be critically involved in the pathogenesis of genetically determined demyelination in mice heterozygously deficient for P0 (P0(+-)). Since little is known about the origin of these cells, we created chimeric P0(+-) mice by transplanting bone marrow from green fluorescent protein (GFP)-transgenic mice into irradiated P0(+-) mice. When analyzing chimeric P0(+-) mice, we could determine two populations (GFP(+) and GFP(-)) of endoneurial macrophages that became phagocytic for myelin and increased in number. We found that both GFP(-) resident macrophages and GFP(+) macrophages proliferated in peripheral nerves of P0(+-) mice but not in nerves of chimeric or nonchimeric P0(++) mice. These findings demonstrate a so far poorly recognized role of resident endoneurial macrophages in demyelinating neuropathies. Surprisingly, we also found GFP(+) cells that unequivocally showed the morphological characteristics of fibroblasts. These blood-borne fibroblast-like cells express the common hematopoetic stem cell marker CD34 and might comprise another cell type of potential importance for immune regulation in hereditary demyelinating neuropathies.
Collapse
Affiliation(s)
- Mathias Mäurer
- Department of Neurology, Bayerische Julius-Maximilians-Universität Würzburg, D-97080 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Atanasoski S, Scherer SS, Nave KA, Suter U. Proliferation of Schwann cells and regulation of cyclin D1 expression in an animal model of Charcot-Marie-Tooth disease type 1A. J Neurosci Res 2002; 67:443-9. [PMID: 11835311 DOI: 10.1002/jnr.10133] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Overexpression of PMP22 is responsible for the most common form of inherited neuropathy, Charcot-Marie-Tooth disease (CMT) type 1A. The PMP22-transgenic rat (CMT rat) is an animal model of CMT1A, and its peripheral nerves show the characteristic features of ongoing demyelination and remyelination that is also seen in CMT1A patients. Since Schwann cell proliferation is a prominent feature of peripheral nerves in inherited peripheral neuropathies, we examined proliferation and the expression of cyclin D1 in CMT rats. D-type cyclins are required for the initial steps in cell division and nuclear import is crucial for the function of cyclin D1 in promoting cell proliferation. Like normal myelinating Schwann cells in wild-type rats, remyelinating Schwann cells in CMT rats show perinuclear cyclin D1 expression. Schwann cells with nuclear cyclin D1 expression, as well as proliferating Schwann cells, were both associated with demyelinated axonal segments. Supernumerary onion bulb Schwann cells, however, do not express cyclin D1 and were not proliferating. Thus, cyclin D1 expression and its subcellular localization correlate directly with distinct physiological states of Schwann cells in this animal model of CMT1A.
Collapse
Affiliation(s)
- Suzana Atanasoski
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
19
|
Carenini S, Mäurer M, Werner A, Blazyca H, Toyka KV, Schmid CD, Raivich G, Martini R. The role of macrophages in demyelinating peripheral nervous system of mice heterozygously deficient in p0. J Cell Biol 2001; 152:301-8. [PMID: 11266447 PMCID: PMC2199607 DOI: 10.1083/jcb.152.2.301] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Mice heterozygously deficient in the p0 gene (P0(+/-)) are animal models for some forms of inherited neuropathies. They display a progressive demyelinating phenotype in motor nerves, accompanied by mild infiltration of lymphocytes and increase in macrophages. We have shown previously that the T lymphocytes are instrumental in the demyelination process. This study addresses the functional role of the macrophage in this monogenic myelin disorder. In motor nerves of P0(+/)- mice, the number of macrophages in demyelinated peripheral nerves was increased by a factor of five when compared with motor nerves of wild-type mice. Immunoelectron microscopy, using a specific marker for mouse macrophages, displayed macrophages not only in the endoneurium of the myelin mutants, but also within endoneurial tubes, suggesting an active role in demyelination. To elucidate the roles of the macrophages, we crossbred the myelin mutants with a spontaneous mouse mutant deficient in macrophage colony-stimulating factor (M-CSF), hence displaying impaired macrophage activation. In the P0-deficient double mutants also deficient in M-CSF, the numbers of macrophages were not elevated in the demyelinating motor nerves and demyelination was less severe. These findings demonstrate an active role of macrophages during pathogenesis of inherited demyelination with putative impact on future treatment strategies.
Collapse
Affiliation(s)
- Stefano Carenini
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, D-97080 Würzburg, Germany
| | - Mathias Mäurer
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, D-97080 Würzburg, Germany
| | - Alexander Werner
- Department of Neuromorphology, Max-Planck-Institute for Neuroscience, Martinsried, D-82152 Germany
| | - Heinrich Blazyca
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, D-97080 Würzburg, Germany
| | - Klaus V. Toyka
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, D-97080 Würzburg, Germany
| | - Christoph D. Schmid
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, D-97080 Würzburg, Germany
| | - Gennadij Raivich
- Department of Neuromorphology, Max-Planck-Institute for Neuroscience, Martinsried, D-82152 Germany
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|
20
|
Donaghy M, Sisodiya SM, Kennett R, McDonald B, Haites N, Bell C. Steroid responsive polyneuropathy in a family with a novel myelin protein zero mutation. J Neurol Neurosurg Psychiatry 2000; 69:799-805. [PMID: 11080236 PMCID: PMC1737181 DOI: 10.1136/jnnp.69.6.799] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To report a novel hereditary motor and sensory neuropathy (HMSN) phenotype, with partial steroid responsiveness, caused by a novel dominant mutation in the myelin protein zero (MPZ) gene. Most MPZ mutations lead to the HMSN type I phenotype, with recent reports of Déjérine-Sottas, congenital hypomyelination, and HMSN II also ascribed to MPZ mutations. Differing phenotypes may reflect the effect of particular mutations on MPZ structure and adhesivity. METHODS Clinical, neurophysiological, neuropathological, and molecular genetic analysis of a family presenting with an unusual hereditary neuropathy. RESULTS Progressive disabling weakness, with positive sensory phenomena and areflexia, occurred in the proband with raised CSF protein and initial steroid responsiveness. Nerve biopsy in a less severely affected sibling disclosed a demyelinating process with disruption of compacted myelin. The younger generation were so far less severely affected, becoming symptomatic only after 30 years. All affected family members were heterozygous for a novel MPZ mutation (Ile99Thr), in a conserved residue. CONCLUSIONS This broadens the range of familial neuropathy associated with MPZ mutations to include steroid responsive neuropathy, initially diagnosed as chronic inflammatory demyelinating polyneuropathy.
Collapse
Affiliation(s)
- M Donaghy
- Department of Clinical Neurology, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Hirst EM, Johnson TC, Li Y, Raisman G. Improved post-embedding immunocytochemistry of myelinated nervous tissue for electron microscopy. J Neurosci Methods 2000; 95:151-8. [PMID: 10752486 DOI: 10.1016/s0165-0270(99)00173-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The particularly high lipid content of normal mature adult myelin sheaths, together with the light fixation protocols usually necessary to retain antigenicity, combine to make white matter nervous tissue an especially problematical subject for post-embedding immuno-electron microscopy using modern acrylic resins. Fixation and infiltration modifications to standard processing schedules for Lowicryl were found to greatly improve the embedding and therefore the resulting morphology. This in turn improved the signal to noise ratio by reducing the high non-specific backgrounds usually found in poorly infiltrated areas. Using Lowicryl HM20, we have been able to obtain satisfactory immunostaining for myelin basic protein with good retention of structural integrity in the myelin of both normal and lesioned adult cortico spinal tract.
Collapse
Affiliation(s)
- E M Hirst
- Division of Neurobiology, National Institute for Medical Research, London, UK.
| | | | | | | |
Collapse
|
22
|
Abstract
The myelin-associated glycoprotein, a minor component of myelin in the central and peripheral nervous system, has been implicated in the formation and maintenance of myelin. Although the analysis of MAG null mutants confirms this view, the phenotype of this mutant is surprisingly subtle. In the CNS of MAG-deficient mice, initiation of myelination, formation of morphologically intact myelin sheaths and to a minor extent, integrity of myelin is affected. In the PNS, in comparison, only maintenance of myelin is impaired. Recently, the large isoform of MAG has been identified as the functionally important isoform in the CNS, whereas the small MAG isoform is sufficient to maintain the integrity of myelinated fibers in the PNS. Remarkably, none of the different defects in the MAG mutant is consistently associated with each myelinated fiber. These observations suggest that other molecules performing similar functions as MAG might compensate, at least partially, for the absence of MAG in the null mutant.
Collapse
Affiliation(s)
- M Schachner
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
23
|
Bonetti B, Valdo P, Stegagno C, Tanel R, Zanusso GL, Ramarli D, Fiorini E, Turazzi S, Carner M, Moretto G. Tumor necrosis factor alpha and human Schwann cells: signalling and phenotype modulation without cell death. J Neuropathol Exp Neurol 2000; 59:74-84. [PMID: 10744037 DOI: 10.1093/jnen/59.1.74] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The aim of the study was to evaluate the biological response of human Schwann cells (SC) to tumor necrosis factor alpha (TNFalpha) in vitro and to the inflammatory milieu of chronic inflammatory demyelinating polyradiculoneuritis (CIDP). By immunocytochemical and functional assays, we found that SC expressed TNF receptors and that TNFalpha promoted in SC cultures transient activation of transcription factors NFkappaB and c-jun in the absence of apoptosis. In addition, TNFalpha significantly increased the proportion of non-myelin-forming SC expressing the p75 nerve growth factor receptor. Such phenotypic effect was dose-dependent and partially mediated by NFkappaB, as assessed by functional blockage with acetylsalicylic acid. We then extended our study to a human disease in which SC are exposed to TNFalpha. Increased signals for NFkappaB, but not c-jun, molecules were observed by immunohistochemistry on SC nuclei in nerve biopsies from patients with CIDP, as compared with controls. Irrespective of the presence of nerve inflammation, SC showed no evidence of apoptosis. Taken together, our results suggested that SC are potential targets of TNFalpha and that this cytokine exerted no cytotoxic effects either in vivo or in vitro. Rather, TNFalpha may influence the fate of SC by activating transcriptional pathways and modulating their phenotype.
Collapse
Affiliation(s)
- B Bonetti
- Sezione di Neurologia Cliica, Dipartimento di Scienze Neurologiche e della Visione, Università di Verona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gu�nard V, Schweitzer B, Flechsig E, Hemmi S, Martini R, Suter U, Schachner M. Effective gene transfer oflacZ andP0 into Schwann cells of P0-deficient mice. Glia 1999. [DOI: 10.1002/(sici)1098-1136(19990115)25:2<165::aid-glia7>3.0.co;2-l] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Abstract
Hereditary peripheral neuropathies have traditionally been classified by the clinical disease pattern and mode of inheritance. It only recently became possible to provide a more precise subdivision of the diseases by the discovery of distinct genetic defects. Most inherited peripheral neuropathies are caused by distinct mutations in the genes of three well known myelin components, peripheral myelin protein 22, P0 and the gap junction protein connexin 32. The present review addresses the expression and functional roles of these myelin components, as well as the putative pathomechanisms caused by distinct mutations in the corresponding genes. Moreover, the suitability of mutant animals, such as knock-out mice and transgenic rodents, as artificial models for these diseases and their use in the study of possible treatment strategies are discussed.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, University of Würzburg, Germany.
| | | | | |
Collapse
|
26
|
Abstract
Dys- and demyelination are the common endpoints of several inherited diseases of glial cells, which elaborate myelin and which maintain the myelin sheath very much like an "external" cellular organelle. Whereas some of the genes that are affected by mutations appear to be glial-specific, other genes are expressed in many cell types but their defect is restricted to oligodendrocytes or Schwann cells. Many of the disease genes and their encoded proteins have been studied with the help of mouse models, and a number of different molecular pathomechanisms have emerged which have been summarized in Figure 8. Some of the new concepts in the field, which have been addressed in this review, have only emerged because similar pathomechanisms were discovered for different myelin proteins. Mouse models have clearly helped to address both, the molecular pathology of myelin diseases and the normal function of myelin genes, but as discussed in this review, these questions turned out to be very different. Despite the progress in understanding the role of the abundant myelin proteins, there also remain a number of open questions that concern, among other things, the initial axon-glia recognition, the assembly process of the myelin sheath, and the long-term interaction of axons with their myelinating glia. Finally, animal models of human neurological diseases should not be restricted to the study of pathology, but they should also contribute to the development of experimental treatments. It is encouraging that a few attempts have been made.
Collapse
Affiliation(s)
- H Werner
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The hereditary neuropathy Charcot-Marie-Tooth (CMT) type 1A is, in the majority of cases, caused by duplication of the gene for the peripheral myelin protein PMP22, which leads to abnormally increased PMP22 expression. Recent in vitro and in vivo data indicate a novel function of PMP22 in Schwann-cell growth and differentiation other than its role in myelination, and suggest that overproduction of PMP22 leads to a new Schwann-cell phenotype in CMT1A. Taking these data into account, we developed a new hypothesis on the pathogenesis of CMT1A neuropathy: that the defective myelin stability and turnover observed in the disease is caused by altered PMP22 gene dosage and its resultant effect on abnormal Schwann-cell growth and differentiation.
Collapse
Affiliation(s)
- C O Hanemann
- Dept of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
28
|
Martini R, Carenini S. Formation and maintenance of the myelin sheath in the peripheral nerve: roles of cell adhesion molecules and the gap junction protein connexin 32. Microsc Res Tech 1998; 41:403-15. [PMID: 9672423 DOI: 10.1002/(sici)1097-0029(19980601)41:5<403::aid-jemt7>3.0.co;2-q] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Based on previous in vitro studies, the cell adhesion molecules L1, N-CAM, MAG, and P0, which all belong to the immunoglobulin (Ig)-superfamily, have been suggested to mediate myelin formation in the peripheral nervous system. Unexpectedly, studies in mice deficient for the corresponding molecules revealed that only P0 plays pivotal roles during the formation of peripheral nerve myelin in vivo, while L1-, N-CAM-, and MAG-deficient mice develop myelin of normal ultrastructure. However, MAG turned out to be important for the maintenance of myelin, as reflected by degeneration of myelin and axons in MAG-deficient mice older than 6 months. The MAG-mediated maintenance of myelin is backed up by N-CAM, since mice deficient in both MAG and N-CAM show an earlier and more prominent myelin degeneration than MAG single mutants. Another peripheral nerve component involved in the maintenance of myelinated fibers is connexin 32 (Cx32), a gap junction channel protein that does not belong to the Ig-superfamily. Mice deficient in Cx32 initially form normal myelin, which then develops blown-up periaxonal collars and abnormally shaped non-compacted regions followed by myelin and axonal degeneration. Our findings strongly support the view that very few myelin components are necessary for myelin formation whereas the maintenance of myelin is much more sensitive to molecular alterations. In addition, it became evident that myelin molecules can fulfill functionally overlapping roles that ensure that myelination takes place even under conditions in which there is a deficiency in the normal molecular components of myelin.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, University of Würzburg, Germany
| | | |
Collapse
|
29
|
Martini R, Schachner M. Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia 1997. [DOI: 10.1002/(sici)1098-1136(199704)19:4<298::aid-glia3>3.0.co;2-u] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|