1
|
Álvarez-López AI, Cruz-Chamorro I, Lardone PJ, Bejarano I, Aspiazu-Hinostroza K, Ponce-España E, Santos-Sánchez G, Álvarez-Sánchez N, Carrillo-Vico A. Melatonin, an Antitumor Necrosis Factor Therapy. J Pineal Res 2025; 77:e70025. [PMID: 39740227 DOI: 10.1111/jpi.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Tumor necrosis factor (TNF) is a biomarker of inflammation whose levels are elevated in patients with several diseases associated with dysregulation of the immune response. The main limitations of currently used anti-TNF therapies are the induction of immunodepression, which in many cases leads to serious adverse effects such as infection and cancer, and the inability to cross the blood-brain barrier in neuroinflammatory conditions. Melatonin, in addition to being a chronobiotic compound, is widely known for its antioxidant and immunomodulatory capacity to control inflammatory processes in different pathological contexts. The aim of the present review is to address human-based studies that describe the effect of melatonin on TNF production. The review includes all the articles published in PubMed databases until April 15, 2024. After depuration, 45 studies were finally included in the review, 23 related to the in vitro action of melatonin in human cells and 22 in vivo studies in humans. Most of the data reviewed support the idea that melatonin has an immunosuppressive effect on TNF levels, which, together with its low toxicity profile, low cost, and ability to cross the blood-brain barrier, points to melatonin as a potential anti-TNF therapy. Therefore, improving our knowledge of the action of melatonin in regulating TNF through appropriate clinical trials would reveal the true potential of this molecule as a possible anti-TNF therapy.
Collapse
Grants
- This work was supported by the Andalusian Government Ministry of Health PC-0019-2017, PI-0015-2018 and PEMP-0085-2020 (co-financed with FEDER funds, call Resolution of 7 July 2021 of the General Secretary for Research, Development and Innovation in Health, which calls for grants to finance research, development and innovation in biomedicine and health sciences in Andalusia by 2021), the PAIDI Program from the Andalusian Government (CTS160) and Regional Ministry of Economy and Knowledge of Andalusia (US-1263804) into the European Regional Development Fund Operational Programme 2014 to 2020. A.I.A.L. was supported by grants US-1263804 and PEMP-0085-2020. I.C.C. was supported by a postdoctoral fellowship from the Andalusian Government Ministry of Economy, Knowledge, Business, and University (DOC_00587/2020). I.B. and E.P.E were supported by the VI Program of Inner Initiative for Research and Transfer of the University of Seville [VI PPIT-US]. G.S.S. was supported by a FPU grant from the Spanish Ministerio de Educación, Cultura y Deporte (FPU16/02339). N.A.-S. was supported by a fellowship from the Andalusian Regional Ministry of Health (PC-0111-2016-0111).
Collapse
Affiliation(s)
- Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Karla Aspiazu-Hinostroza
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Universidad Católica de Cuenca, Research Department, Cuenca-Azuay, Ecuador
| | - Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Brekkan A, Lledo-Garcia R, Lacroix B, Jönsson S, Karlsson MO, Plan EL. Characterization of anti-drug antibody dynamics using a bivariate mixed hidden-markov model by nonlinear-mixed effects approach. J Pharmacokinet Pharmacodyn 2024; 51:65-75. [PMID: 37943398 PMCID: PMC10884144 DOI: 10.1007/s10928-023-09890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/01/2023] [Indexed: 11/10/2023]
Abstract
Biological therapies may act as immunogenic triggers leading to the formation of anti-drug antibodies (ADAs). Population pharmacokinetic (PK) models can be used to characterize the relationship between ADA and drug disposition but often rely on the ADA bioassay results, which may not be sufficiently sensitive to inform on this characterization.In this work, a methodology that could help to further elucidate the underlying ADA production and impact on the drug disposition was explored. A mixed hidden-Markov model (MHMM) was developed to characterize the underlying (hidden) formation of ADA against the biologic, using certolizumab pegol (CZP), as a test drug. CZP is a PEGylated Fc free TNF-inhibitor used in the treatment of rheumatoid arthritis and other chronic inflammatory diseases.The bivariate MHMM used information from plasma drug concentrations and ADA measurements, from six clinical studies (n = 845), that were correlated through a bivariate Gaussian function to infer about two hidden states; production and no-production of ADA influencing PK. Estimation of inter-individual variability was not supported in this case. Parameters associated with the observed part of the model were reasonably well estimated while parameters associated with the hidden part were less precise. Individual state sequences obtained using a Viterbi algorithm suggested that the model was able to determine the start of ADA production for each individual, being a more assay-independent methodology than traditional population PK. The model serves as a basis for identification of covariates influencing the ADA formation, and thus has the potential to identify aspects that minimize its impact on PK and/or efficacy.
Collapse
Affiliation(s)
- Ari Brekkan
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, SE-75123, Sweden
| | | | | | - Siv Jönsson
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, SE-75123, Sweden
| | - Mats O Karlsson
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, SE-75123, Sweden
| | - Elodie L Plan
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, SE-75123, Sweden.
| |
Collapse
|
3
|
Brown P, Pratt AG, Hyrich KL. Therapeutic advances in rheumatoid arthritis. BMJ 2024; 384:e070856. [PMID: 38233032 DOI: 10.1136/bmj-2022-070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Rheumatoid arthritis (RA) is one of the most common immune mediated inflammatory diseases. People with rheumatoid arthritis present with pain, swelling, and stiffness that typically affects symmetrically distributed small and large joints. Without effective treatment, significant joint damage, disability, and work loss develop, owing to chronic inflammation of the joint lining (synovium). Over the past 25 years, the management of this condition has been revolutionized, resulting in substantially higher levels of disease remission and better long term outcomes. This improvement reflects a paradigm shift towards early and aggressive pharmacological intervention coupled with a proliferation in treatment choice, in turn related to enhanced pathobiological understanding and the advent of new drugs for rheumatoid arthritis. Following an overview of these developments from a historical perspective, and with a general audience in mind, this review focuses on newer, targeted treatments in an ever evolving landscape. The review highlights ongoing areas of debate and unmet need, including the proportion of patients with persistent, difficult-to-treat disease, despite recent advances. Also discussed are personalized, strategic approaches to individual patients, the role for imaging in clinical decision making, and the goal of sustained, drug free remission and disease prevention in the future.
Collapse
Affiliation(s)
- Philip Brown
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne Hospitals and Cumbria, Northumberland; and Tyne and Wear NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne Hospitals and Cumbria, Northumberland; and Tyne and Wear NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Kimme L Hyrich
- Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
4
|
Ceban F, Xu J. The Evolution of TNF-α Blockade for the Treatment of Rheumatoid Arthritis. JOURNAL OF UNDERGRADUATE LIFE SCIENCES 2022. [DOI: 10.33137/juls.v16i1.39048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor (TNF)-α is a potent trimeric cytokine which plays a fundamental role in the host immuno-inflammatory response, as well as in homeostasis and development. Although critical for canonical immune function, TNF-α has great destructive potential and is implicated in the development of multiple immune-mediated disorders. Within the context of rheumatoid arthritis (RA), TNF-α acts as a primary pathogenic driver by precipitating a pro-inflammatory cytokine cascade and coordinating the attraction and activation of immune cells, all of which culminate in damage to the synovium. The discovery of the paramount role of TNF-α in the pathophysiology of RA motivated studies to understand the effects of TNF blockade in vitro and in vivo. Promising preclinical results provided the impetus for clinical trials, spearheaded in the 1980s and 90s by Marc Feldmann, which revealed significant improvements across RA symptom scores and finally led to FDA approval in 1998. As of 2021, five TNF-α blocking agents have been widely applied clinically, including infliximab (IFX), etanercept (ETN), adalimumab (ADA), golimumab (GLM) and certolizumab pegol (CZP). All of them successfully ameliorated symptoms of RA and the associated tissue damage, especially in patients not responding to traditional treatment methods. Anti-TNFs are most often administered in combination with methotrexate (MTX) as part of Phase II treatment (i.e., second line). Although the general availability of anti-TNFs has dramatically improved patient outcomes, sustained remission is rare and the mechanism of RA remains incompletely understood. Thus, additional basic and translational research is warranted, towards the aim of developing novel RA treatments.
Collapse
|
5
|
Mohd Noor AA, Azlan M, Mohd Redzwan N. Orchestrated Cytokines Mediated by Biologics in Psoriasis and Its Mechanisms of Action. Biomedicines 2022; 10:biomedicines10020498. [PMID: 35203707 PMCID: PMC8962336 DOI: 10.3390/biomedicines10020498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Psoriasis is an autoimmune disease mediated by disturbed T cells and other immune cells, and is defined by deep-red, well-demarcated skin lesions. Due to its varied etiologies and indefinite standard pathogenesis, it is challenging to consider the right treatment exclusively for each psoriasis patient; thus, researchers yearn to seek even more precise treatments other than topical treatment and systemic therapy. Using biologics to target specific immune components, such as upregulated cytokines secreted by activated immune cells, is the most advanced therapy for psoriasis to date. By inhibiting the appropriate pro-inflammatory cytokines, cellular signaling can be altered and, thus, can inhibit further downstream inflammatory pathways. Herein, the roles of cytokines with their mechanisms of action in progressing psoriasis and how the usage of biologics alleviates cellular inflammation are discussed. In addition, other potential pro-inflammatory cytokines, with their mechanism of action, are presented herein. The authors hope that this gathered information may benefit future research in expanding the discovery of targeted psoriasis therapy.
Collapse
Affiliation(s)
- Aina Akmal Mohd Noor
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Maryam Azlan
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Norhanani Mohd Redzwan
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-9767-6130
| |
Collapse
|
6
|
Marcuzzi A, Melloni E, Zauli G, Romani A, Secchiero P, Maximova N, Rimondi E. Autoinflammatory Diseases and Cytokine Storms-Imbalances of Innate and Adaptative Immunity. Int J Mol Sci 2021; 22:11241. [PMID: 34681901 PMCID: PMC8541037 DOI: 10.3390/ijms222011241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Innate and adaptive immune responses have a well-known link and represent the distinctive origins of several diseases, many of which may be the consequence of the loss of balance between these two responses. Indeed, autoinflammation and autoimmunity represent the two extremes of a continuous spectrum of pathologic conditions with numerous overlaps in different pathologies. A common characteristic of these dysregulations is represented by hyperinflammation, which is an exaggerated response of the immune system, especially involving white blood cells, macrophages, and inflammasome activation with the hyperproduction of cytokines in response to various triggering stimuli. Moreover, hyperinflammation is of great interest, as it is one of the main manifestations of COVID-19 infection, and the cytokine storm and its most important components are the targets of the pharmacological treatments used to combat COVID-19 damage. In this context, the purpose of our review is to provide a focus on the pathogenesis of autoinflammation and, in particular, of hyperinflammation in order to generate insights for the identification of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Elisabetta Melloni
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| | - Giorgio Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Arianna Romani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Paola Secchiero
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| | - Natalia Maximova
- Bone Marrow Transplant Unit, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Erika Rimondi
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| |
Collapse
|
7
|
Sánchez-Robles EM, Girón R, Paniagua N, Rodríguez-Rivera C, Pascual D, Goicoechea C. Monoclonal Antibodies for Chronic Pain Treatment: Present and Future. Int J Mol Sci 2021; 22:ijms221910325. [PMID: 34638667 PMCID: PMC8508878 DOI: 10.3390/ijms221910325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic pain remains a major problem worldwide, despite the availability of various non-pharmacological and pharmacological treatment options. Therefore, new analgesics with novel mechanisms of action are needed. Monoclonal antibodies (mAbs) are directed against specific, targeted molecules involved in pain signaling and processing pathways that look to be very effective and promising as a novel therapy in pain management. Thus, there are mAbs against tumor necrosis factor (TNF), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP), or interleukin-6 (IL-6), among others, which are already recommended in the treatment of chronic pain conditions such as osteoarthritis, chronic lower back pain, migraine, or rheumatoid arthritis that are under preclinical research. This narrative review summarizes the preclinical and clinical evidence supporting the use of these agents in the treatment of chronic pain.
Collapse
|
8
|
Huang BC, Lu YC, Liao JM, Liu HJ, Hong ST, Hsieh YC, Chuang CH, Chen HJ, Liao TY, Ho KW, Wang YT, Cheng TL. Development of a structure-based computational simulation to optimize the blocking efficacy of pro-antibodies. Chem Sci 2021; 12:9759-9769. [PMID: 34349949 PMCID: PMC8293997 DOI: 10.1039/d1sc01748a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/20/2021] [Accepted: 06/13/2021] [Indexed: 11/21/2022] Open
Abstract
The on-target toxicity of monoclonal antibodies (Abs) is mainly due to the fact that Abs cannot distinguish target antigens (Ags) expressed in disease regions from those in normal tissues during systemic administration. In order to overcome this issue, we “copied” an autologous Ab hinge as an “Ab lock” and “pasted” it on the binding site of the Ab by connecting a protease substrate and linker in between to generate a pro-Ab, which can be specifically activated in the disease region to enhance Ab selectivity and reduce side effects. Previously, we reported that 70% of pro-Abs can achieve more than 100-fold blocking ability compared to the parental Abs. However, 30% of pro-Abs do not have such efficient blocking ability. This is because the same Ab lock linker cannot be applied to every Ab due to the differences in the complementarity-determining region (CDR) loops. Here we designed a method which uses structure-based computational simulation (MSCS) to optimize the blocking ability of the Ab lock for all Ab drugs. MSCS can precisely adjust the amino acid composition of the linker between the Ab lock and Ab drug with the assistance of molecular simulation. We selected αPD-1, αIL-1β, αCTLA-4 and αTNFα Ab as models and attached the Ab lock with various linkers (L1 to L7) to form pro-Abs by MSCS, respectively. The resulting cover rates of the Ab lock with various linkers compared to the Ab drug were in the range 28.33–42.33%. The recombinant pro-Abs were generated by MSCS prediction in order to verify the application of molecular simulation for pro-Ab development. The binding kinetics effective concentrations (EC-50) for αPD-1 (200-250-fold), αIL-1β (152-186-fold), αCTLA-4 (68-150-fold) and αTNFα Ab (20-123-fold) were presented as the blocking ability of pro-Ab compared to the Ab drug. Further, there was a positive correlation between cover rate and blocking ability of all pro-Ab candidates. The results suggested that MSCS was able to predict the Ab lock linker most suitable for application to αPD-1, αIL-1β, αCTLA-4 and αTNFα Ab to form pro-Abs efficiently. The success of MSCS in optimizing the pro-Ab can aid the development of next-generation pro-Ab drugs to significantly improve Ab-based therapies and thus patients' quality of life. The pro-Ab blocks the Ag binding site using an Ab lock. We designed a method which uses structure-based computational simulation (MSCS) to predict the cover rate of Ab locks with various linkers and select the suitable linker for each Ab.![]()
Collapse
Affiliation(s)
- Bo-Cheng Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung Taiwan
| | - Yun-Chi Lu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University Kaohsiung Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University Kaohsiung Taiwan
| | - Jun-Min Liao
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University Kaohsiung Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University Kaohsiung Taiwan
| | - Hui-Ju Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung Taiwan
| | - Shih-Ting Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung Taiwan
| | - Yuan-Chin Hsieh
- School of Medicine for International Students, I-Shou University Kaohsiung Taiwan
| | - Chih-Hung Chuang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University Kaohsiung Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University Kaohsiung Taiwan
| | - Huei-Jen Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung Taiwan
| | - Tzu-Yi Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung Taiwan
| | - Kai-Wen Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung Taiwan
| | - Yeng-Tseng Wang
- Department of Biochemistry, Kaohsiung Medical University Kaohsiung Taiwan
| | - Tian-Lu Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung Taiwan .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University Kaohsiung Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University Kaohsiung Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital Kaohsiung Taiwan
| |
Collapse
|
9
|
Cannon GW, Erickson AR, Teng CC, Huynh T, Austin S, Wade SW, Stolshek BS, Collier DH, Mutebi A, Sauer BC. Tumour necrosis factor inhibitor exposure and radiographic outcomes in Veterans with rheumatoid arthritis: a longitudinal cohort study. Rheumatol Adv Pract 2019; 3:rkz015. [PMID: 31763619 DOI: 10.1093/rap/rkz015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/31/2019] [Indexed: 01/23/2023] Open
Abstract
Objectives The aim was to estimate the impact of TNF inhibitor (TNFi) exposure on radiographic disease progression in US Veterans with RA during the first year after initiating therapy. Methods This historical longitudinal cohort design used clinical and claims data to evaluate radiographic progression after initiation of TNFi. US Veterans with RA initiating TNFi treatment (index date), ≥ 6 months pre-index and ≥ 12 months post-index VA enrolment/activity, and initial (6 months pre-index to 30 days post-index) and follow-up (10-18 months post-index) bilateral hand radiographs were eligible. The cumulative TNFi exposure and change in modified Sharp score (MSS) between initial and follow-up radiographs were calculated. The percentage of patients with clinically meaningful change in MSS (≥ 5) for each month of exposure was assessed using a longitudinal marginal structural model with inverse probability of treatment weights. Mean values and CIs were generated using 1000 bootstrapped samples. Results For 246 eligible patients, the mean (s.d.) age was 58 (11) years; 81% were male. The mean (s.d.) initial MSS was 19.6 (33.4) (range 0-214). The mean change (s.d.) in MSS was 0.3 (3.6) (median 0, range -19 to 22). Patients with the greatest exposure had the least radiographic progression for both crude and adjusted model analyses. Adjusted rates of MSS change ≥ 5 points (95% CI) were 10.6% (9.8%, 11.4%) for patients with 3 months of exposure compared with 5.4% (5.1%, 5.7%) for patients with 12 months of exposure. Conclusion One-year changes in radiographic progression were small. Patients with the greatest cumulative TNFi exposure experienced the least progression.
Collapse
Affiliation(s)
- Grant W Cannon
- Salt Lake City VA Medical Center, University of Utah, Salt Lake City, UT, USA.,Division of Rheumatology, University of Utah, Salt Lake City, UT, USA
| | - Alan R Erickson
- VA Nebraska-Western Iowa Health Care System and Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chia-Chen Teng
- Salt Lake City VA Medical Center, University of Utah, Salt Lake City, UT, USA.,Division of Epidemiology, University of Utah, Salt Lake City, UT, USA
| | - Tina Huynh
- Salt Lake City VA Medical Center, University of Utah, Salt Lake City, UT, USA.,Division of Epidemiology, University of Utah, Salt Lake City, UT, USA
| | - Sharon Austin
- Salt Lake City VA Medical Center, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sally W Wade
- Wade Outcomes Research and Consulting, Salt Lake City, UT, USA
| | | | | | | | - Brian C Sauer
- Salt Lake City VA Medical Center, University of Utah, Salt Lake City, UT, USA.,Division of Epidemiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Systemic rheumatic diseases: From biological agents to small molecules. Autoimmun Rev 2019; 18:583-592. [PMID: 30959214 DOI: 10.1016/j.autrev.2018.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
The development of biologics and small oral molecules has recently changed the scenario of pharmacologic treatment of systemic rheumatic diseases and it has become a real revolution. These drugs have innovative mechanisms of action, based on the inhibition of specific molecular or cellular targets directly involved in disease pathogenesis. This new scenario has lead to a regular update of the management recommendations of several institutions, such as those for Rheumatoid Arthritis treatment that address the use of conventional and biologic therapies including TNF inhibitors (adalimumab, certolizumab pegol, etanercept, golimumab, infliximab), abatacept, rituximab, IL-6 inhibitors (tocilizumab and sarilumab), biosimilars and small oral molecules (the JAK inhibitors tofacitinib and baricitinib). Monotherapy, combination therapy, treatment strategies (such as treat-to-target) and the targets of sustained clinical remission or low disease activity are the final goal of the guidelines for rheumatic patients management. In another condition represented by Axial Spondyloarthritis guidelines suggest to start first with non-steroidal anti-inflammatory drugs to improve lifestyle and reduce spine inflammation, but if this is not achieved in 2-4 weeks it is important to consider the use of local therapies (i.e. glucocorticoid injections) or to start biologic therapy such as TNF inhibitors and then eventually switching to another TNF inhibitor or swapping to IL-17 inhibitor. In the case of active Psoriatic Arthritis, guidelines suggest to start with non-steroidal anti-inflammatory drugs and even local glucocorticoid injections especially for oligoarthritis, then to start conventional therapies if lack of efficacy, and finally start biologics or small oral molecules in the presence of drugs toxicity, unfavorable prognostic factors and still active arthritis. In several cases, active Psoriatic Arthritis patients develop a complex clinical condition with comorbidities such as diabetes, inflammatory bowel disease and high risk of infections, and for this reason the American College of Rheumatology and the National Psoriasis Foundation have developed specific guidelines for their management. Biologic and new small molecules therapies are very expensive, but the availability of biosimilars offers the opportunity of reducing the treatment cost and significantly decreasing the cost of originators as well. In fact, we live in a period characterized by the need to rationalize costs of these drugs, to allow treating a higher number of patients and to maintain a homogeneous possibility of treatment choice. For these reasons, we need to follow scientific guidelines and patients' clinical conditions to choose the correct treatment, also based on the economic burden of therapies.
Collapse
|