1
|
Zhuo S, Wu Z, Williams C, Sundaresan C, Ameri SK. In-Ear Electronics with Mechanical Adaptability for Physiological Sensing. Adv Healthc Mater 2025; 14:e2404296. [PMID: 39663718 PMCID: PMC11773109 DOI: 10.1002/adhm.202404296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Significant developments have been made in the field of wearable healthcare by utilizing soft materials for the construction of electronic sensors. However, the lack of adaptability to complex topologies, such as ear canal, results in inadequate sensing performance. Here, we report an in-ear physiological sensor with mechanical adaptability, which softens upon contact with the ear canal's skin, thus reducing the sensor-skin mechanical mismatch and interface impedance. An efficient strategy of mechanical adjustment and switching is exploited to increase the softness of the device, leading to a significant decrease in Young's modulus from 30.5 MPa of thermoplastic polyurethane (TPU) to 0.86 MPa of TPU/Ecoflex foam (TEF).The mechanical adaptability at body temperature endows the in-ear device improved device-canal contact area and interface stability. As a result, the TEF-based in-ear device demonstrates reliable sensing, low motion artifact, and high comfort in electroencephalography (EEG) and core body temperature sensing. High quality EEG signals of alpha, beta, delta, and gamma are measured during different activities. Moreover, the TEF-based in-ear device exhibits high reusability for over 4 months, which makes it suitable for long-term healthcare monitoring.
Collapse
Affiliation(s)
- Shuyun Zhuo
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Zihuan Wu
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Chris Williams
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Chithiravel Sundaresan
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Shideh Kabiri Ameri
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
- Centre for Neuroscience StudiesQueen's UniversityKingstonONK7L 3N6Canada
| |
Collapse
|
2
|
Mathewson KE, Kuziek JP, Scanlon JEM, Robles D. The moving wave: Applications of the mobile EEG approach to study human attention. Psychophysiology 2024; 61:e14603. [PMID: 38798056 DOI: 10.1111/psyp.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Although historically confined to traditional research laboratories, electroencephalography (EEG) paradigms are now being applied to study a wide array of behaviors, from daily activities to specialized tasks in diverse fields such as sports science, neurorehabilitation, and education. This transition from traditional to real-world mobile research can provide new tools for understanding attentional processes as they occur naturally. Early mobile EEG research has made progress, despite the large size and wired connections. Recent developments in hardware and software have expanded the possibilities of mobile EEG, enabling a broader range of applications. Despite these advancements, limitations influencing mobile EEG remain that must be overcome to achieve adequate reliability and validity. In this review, we first assess the feasibility of mobile paradigms, including electrode selection, artifact correction techniques, and methodological considerations. This review underscores the importance of ecological, construct, and predictive validity in ensuring the trustworthiness and applicability of mobile EEG findings. Second, we explore studies on attention in naturalistic settings, focusing on replicating classic P3 component studies in mobile paradigms like stationary biking in our lab, and activities such as walking, cycling, and dual-tasking outside of the lab. We emphasize how the mobile approach complements traditional laboratory paradigms and the types of insights gained in naturalistic research settings. Third, we discuss promising applications of portable EEG in workplace safety and other areas including road safety, rehabilitation medicine, and brain-computer interfaces. In summary, this review explores the expanding possibilities of mobile EEG while recognizing the existing challenges in fully realizing its potential.
Collapse
Affiliation(s)
- Kyle E Mathewson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan P Kuziek
- Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Daniel Robles
- Department of Psychology, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
3
|
Xu J, Luo Z, Chen L, Zhou X, Zhang H, Zheng Y, Wei L. Recent advances in flexible memristors for advanced computing and sensing. MATERIALS HORIZONS 2024; 11:4015-4036. [PMID: 38919028 DOI: 10.1039/d4mh00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Conventional computing systems based on von Neumann architecture face challenges such as high power consumption and limited data processing capability. Improving device performance via scaling guided by Moore's Law becomes increasingly difficult. Emerging memristors can provide a promising solution for achieving high-performance computing systems with low power consumption. In particular, the development of flexible memristors is an important topic for wearable electronics, which can lead to intelligent systems in daily life with high computing capacity and efficiency. Here, recent advances in flexible memristors are reviewed, from operating mechanisms and typical materials to representative applications. Potential directions and challenges for future study in this area are also discussed.
Collapse
Affiliation(s)
- Jiaming Xu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Ziwang Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Long Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
| |
Collapse
|
4
|
Repon MR, Mikučionienė D, Paul TK, Al-Humaidi JY, Rahman MM, Islam T, Shukhratov S. Architectural design and affecting factors of MXene-based textronics for real-world application. RSC Adv 2024; 14:16093-16116. [PMID: 38769956 PMCID: PMC11103351 DOI: 10.1039/d4ra01820f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Today, textile-based wearable electronic devices (textronics) have been developed by taking advantage of nanotechnology and textile substrates. Textile substrates offer flexibility, air permeability, breathability, and wearability, whereas, using nanomaterials offers numerous functional properties, like electrical conductivity, hydrophobicity, touch sensitivity, self-healing properties, joule heating properties, and many more. For these reasons, textronics have been extensively used in many applications. Recently, new emerging two-dimensional (2D) transition metal carbide and nitride, known as MXene, nanomaterials have been highly considered for developing textronics because the surface functional groups and hydrophilicity of MXene nanoflakes allow the facile fabrication of MXene-based textronics. In addition, MXene nanosheets possess excellent electroconductivity and mechanical properties as well as large surface area, which also give numerous opportunities to develop novel functional MXene/textile-based wearable electronic devices. Therefore, this review summarizes the recent advancements in the architectural design of MXene-based textronics, like fiber, yarn, and fabric. Regarding the fabrication of MXene/textile composites, numerous factors affect the functional properties (e.g. fabric structure, MXene size, etc.). All the crucial affecting parameters, which should be chosen carefully during the fabrication process, are critically discussed here. Next, the recent applications of MXene-based textronics in supercapacitors, thermotherapy, and sensors are elaborately delineated. Finally, the existing challenges and future scopes associated with the development of MXene-based textronics are presented.
Collapse
Affiliation(s)
- Md Reazuddin Repon
- Department of Textile Engineering, Daffodil International University Dhaka-1216 Bangladesh +88-37066227098
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology Studentų 56, LT-51424 Kaunas Lithuania
| | - Daiva Mikučionienė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology Studentų 56, LT-51424 Kaunas Lithuania
| | | | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials Sherpur-2100 Bangladesh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Sharof Shukhratov
- Department of Technological Education, Fergana State University Fergana 150100 Uzbekistan
| |
Collapse
|
5
|
Stanley J, Kunovski P, Hunt JA, Wei Y. Stretchable electronic strips for electronic textiles enabled by 3D helical structure. Sci Rep 2024; 14:11065. [PMID: 38744933 PMCID: PMC11094078 DOI: 10.1038/s41598-024-61406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
The development of stretchable electronic devices is a critical area of research for wearable electronics, particularly electronic textiles (e-textiles), where electronic devices embedded in clothing need to stretch and bend with the body. While stretchable electronics technologies exist, none have been widely adopted. This work presents a novel and potentially transformative approach to stretchable electronics using a ubiquitous structure: the helix. A strip of flexible circuitry ('e-strip') is twisted to form a helical ribbon, transforming it from flexible to stretchable. A stretchable core-in this case rubber cord-supports the structure, preventing damage from buckling. Existing helical electronics have only extended to stretchable interconnects between circuit modules, and individual components such as printed helical transistors. Fully stretchable circuits have, until now, only been produced in planar form: flat circuits, either using curved geometry to enable them to stretch, or using inherently stretchable elastomer substrates. Helical e-strips can bend along multiple axes, and repeatedly stretch between 30 and 50%, depending on core material and diameter. LED and temperature sensing helical e-strips are demonstrated, along with design rules for helical e-strip fabrication. Widely available materials and standard fabrication processes were prioritized to maximize scalability and accessibility.
Collapse
Affiliation(s)
- Jessica Stanley
- Smart Wearable Research Group, Department of Engineering, Nottingham Trent University, Nottingham, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK.
| | | | - John A Hunt
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
- College of Biomedical Engineering, China Medical University, Taichung, 40402, Taiwan
| | - Yang Wei
- Smart Wearable Research Group, Department of Engineering, Nottingham Trent University, Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
6
|
Zu W, Carranza HE, Bartlett MD. Enhancing Electrical Conductivity of Stretchable Liquid Metal-Silver Composites through Direct Ink Writing. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38685822 PMCID: PMC11082841 DOI: 10.1021/acsami.4c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Structure-property-process relationships are a controlling factor in the performance of materials. This offers opportunities in emerging areas, such as stretchable conductors, to control process conditions during printing to enhance performance. Herein, by systematically tuning direct ink write (DIW) process parameters, the electrical conductivity of multiphase liquid metal (LM)-silver stretchable conductors is increased by a maximum of 400% to over 1.06 × 106 S·m-1. This is achieved by modulating the DIW print velocity, which enables the in situ elongation, coalescence, and percolation of these multiphase inclusions during printing. These DIW printed filaments are conductive as fabricated and are soft (modulus as low as 1.1 MPa), stretchable (strain limit >800%), and show strain invariant conductivity up to 80% strain. These capabilities are demonstrated through a set of electromagnetic induction coils that can transfer power wirelessly through air and water, even under deformation. This work provides a methodology to program properties in stretchable conductors, where the combination of material composition and process parameters leads to greatly enhanced performance. This approach can find use in applications such as soft robots, soft electronics, and printed materials for deformable, yet highly functional devices.
Collapse
Affiliation(s)
- Wuzhou Zu
- Mechanical
Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hugo E. Carranza
- Mechanical
Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Bartlett
- Mechanical
Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Zhuo S, Zhang A, Tessier A, Williams C, Kabiri Ameri S. Solvent-Free and Cost-Efficient Fabrication of a High-Performance Nanocomposite Sensor for Recording of Electrophysiological Signals. BIOSENSORS 2024; 14:188. [PMID: 38667181 PMCID: PMC11048393 DOI: 10.3390/bios14040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Carbon nanotube (CNT)-based nanocomposites have found applications in making sensors for various types of physiological sensing. However, the sensors' fabrication process is usually complex, multistep, and requires longtime mixing and hazardous solvents that can be harmful to the environment. Here, we report a flexible dry silver (Ag)/CNT/polydimethylsiloxane (PDMS) nanocomposite-based sensor made by a solvent-free, low-temperature, time-effective, and simple approach for electrophysiological recording. By mechanical compression and thermal treatment of Ag/CNT, a connected conductive network of the fillers was formed, after which the PDMS was added as a polymer matrix. The CNTs make a continuous network for electrons transport, endowing the nanocomposite with high electrical conductivity, mechanical strength, and durability. This process is solvent-free and does not require a high temperature or complex mixing procedure. The sensor shows high flexibility and good conductivity. High-quality electroencephalography (EEG) and electrooculography (EOG) were performed using fabricated dry sensors. Our results show that the Ag/CNT/PDMS sensor has comparable skin-sensor interface impedance with commercial Ag/AgCl-coated dry electrodes, better performance for noninvasive electrophysiological signal recording, and a higher signal-to-noise ratio (SNR) even after 8 months of storage. The SNR of electrophysiological signal recording was measured to be 26.83 dB for our developed sensors versus 25.23 dB for commercial Ag/AgCl-coated dry electrodes. Our process of compress-heating the functional fillers provides a universal approach to fabricate various types of nanocomposites with different nanofillers and desired electrical and mechanical properties.
Collapse
Affiliation(s)
- Shuyun Zhuo
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Anan Zhang
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Alexandre Tessier
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Chris Williams
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Shideh Kabiri Ameri
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
8
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
9
|
Islam MR, Afroj S, Yin J, Novoselov KS, Chen J, Karim N. Advances in Printed Electronic Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304140. [PMID: 38009793 PMCID: PMC10853734 DOI: 10.1002/advs.202304140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Indexed: 11/29/2023]
Abstract
Electronic textiles (e-textiles) have emerged as a revolutionary solution for personalized healthcare, enabling the continuous collection and communication of diverse physiological parameters when seamlessly integrated with the human body. Among various methods employed to create wearable e-textiles, printing offers unparalleled flexibility and comfort, seamlessly integrating wearables into garments. This has spurred growing research interest in printed e-textiles, due to their vast design versatility, material options, fabrication techniques, and wide-ranging applications. Here, a comprehensive overview of the crucial considerations in fabricating printed e-textiles is provided, encompassing the selection of conductive materials and substrates, as well as the essential pre- and post-treatments involved. Furthermore, the diverse printing techniques and the specific requirements are discussed, highlighting the advantages and limitations of each method. Additionally, the multitude of wearable applications made possible by printed e-textiles is explored, such as their integration as various sensors, supercapacitors, and heated garments. Finally, a forward-looking perspective is provided, discussing future prospects and emerging trends in the realm of printed wearable e-textiles. As advancements in materials science, printing technologies, and design innovation continue to unfold, the transformative potential of printed e-textiles in healthcare and beyond is poised to revolutionize the way wearable technology interacts and benefits.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Junyi Yin
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsDepartment of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Jun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Nazmul Karim
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
- Nottingham School of Art and DesignNottingham Trent UniversityShakespeare StreetNottinghamNG1 4GGUK
| |
Collapse
|
10
|
Greig T, Torah R, Yang K. Electrical Stimulation for Wound Healing: Opportunities for E-Textiles. IEEE Rev Biomed Eng 2024; 17:264-279. [PMID: 36173786 DOI: 10.1109/rbme.2022.3210598] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ulcers and chronic wounds are a large and expensive problem, costing billions of pounds a year and affecting millions of people. Electrical stimulation has been known to have a positive effect on wound healing since the 1960s and this has been confirmed in numerous studies, reducing the time to heal, and the incidence of adverse events such as infections. However, because each study used different parameters for the treatment, inclusion criteria and metrics for quantifying the success, it is currently hard to combine them statistically and gain a true picture of its efficacy. As such, electrical stimulation has not been universally adopted as a recommended treatment for various types of wound. This paper summarises the biological basis for electrical simulation treatment and reviews the clinical evidence for its effectiveness. Notable is the lack of research focused on the electrodes used to deliver electrostimulation treatment. However, a significant amount of work has been conducted on electrodes for other medical applications in the field of e-textiles. This e-textile work is reviewed with a focus on its potential in electrostimulation and proposals are made for future developments to improve future studies and applications for wound healing via electrical stimulation.
Collapse
|
11
|
Chang T, Akin S, Cho S, Lee J, Lee SA, Park T, Hong S, Yu T, Ji Y, Yi J, Gong SL, Kim DR, Kim YL, Jun MBG, Lee CH. In Situ Spray Polymerization of Conductive Polymers for Personalized E-textiles. ACS NANO 2023; 17:22733-22743. [PMID: 37933955 DOI: 10.1021/acsnano.3c07283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
E-textiles, also known as electronic textiles, seamlessly merge wearable technology with fabrics, offering comfort and unobtrusiveness and establishing a crucial role in health monitoring systems. In this field, the integration of custom sensor designs with conductive polymers into various fabric types, especially in large areas, has presented significant challenges. Here, we present an innovative additive patterning method that utilizes a dual-regime spray system, eliminating the need for masks and allowing for the programmable inscription of sensor arrays onto consumer textiles. Unlike traditional spray techniques, this approach enables in situ, on-the-fly polymerization of conductive polymers, enabling intricate designs with submillimeter resolution across fabric areas spanning several meters. Moreover, it addresses the nozzle clogging issues commonly encountered in such applications. The resulting e-textiles preserve essential fabric characteristics such as breathability, wearability, and washability while delivering exceptional sensing performance. A comprehensive investigation, combining experimental, computational, and theoretical approaches, was conducted to examine the critical factors influencing the operation of the dual-regime spraying system and its role in e-textile fabrication. These findings provide a flexible solution for producing e-textiles on consumer fabric items and hold significant implications for a diverse range of wearable sensing applications.
Collapse
Affiliation(s)
- Taehoo Chang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Semih Akin
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Junsang Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seul Ah Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuhyun Ji
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sunland L Gong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Medicine, Indiana University, Indianapolis, Indiana 46202, United States
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Martin Byung-Guk Jun
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chi Hwan Lee
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Maharjan S, Samoei VK, Jayatissa AH, Noh JH, Sano K. Knittle Pressure Sensor Based on Graphene/Polyvinylidene Fluoride Nanocomposite Coated on Polyester Fabric. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7087. [PMID: 38005017 PMCID: PMC10672550 DOI: 10.3390/ma16227087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
In this paper, a knittle pressure sensor was designed and fabricated by coating graphene/Polyvinylidene Fluoride nanocomposite on the knitted polyester substrate. The coating was carried out by a dip-coating method in a nanocomposite solution. The microstructure, surface properties and electrical properties of coated layers were investigated. The sensors were tested under the application of different pressures, and the corresponding sensor signals were analyzed in terms of resistance change. It was observed that the change in resistance was 55% kPa-1 with a sensitivity limit of 0.25 kPa. The sensor model was created and simulated using COMSOL Multiphysics software, and the model data were favorably compared with the experimental results. This investigation suggests that graphene-based nanocomposites can be used in knittle pressure sensor applications.
Collapse
Affiliation(s)
- Surendra Maharjan
- Nanotechnology and MEMS Laboratory, Department of Mechanical, Industrial, and Manufacturing Engineering (MIME), The University of Toledo, Toledo, OH 43606, USA (V.K.S.)
| | - Victor K. Samoei
- Nanotechnology and MEMS Laboratory, Department of Mechanical, Industrial, and Manufacturing Engineering (MIME), The University of Toledo, Toledo, OH 43606, USA (V.K.S.)
| | - Ahalapitiya H. Jayatissa
- Nanotechnology and MEMS Laboratory, Department of Mechanical, Industrial, and Manufacturing Engineering (MIME), The University of Toledo, Toledo, OH 43606, USA (V.K.S.)
| | - Joo-Hyong Noh
- Materials & Surface Engineering Research Institute, Kanto Gakuin University, Yokohama 236-0037, Japan; (J.-H.N.); (K.S.)
| | - Keiichiro Sano
- Materials & Surface Engineering Research Institute, Kanto Gakuin University, Yokohama 236-0037, Japan; (J.-H.N.); (K.S.)
| |
Collapse
|
13
|
Wireless EEG: A survey of systems and studies. Neuroimage 2023; 269:119774. [PMID: 36566924 DOI: 10.1016/j.neuroimage.2022.119774] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
The popular brain monitoring method of electroencephalography (EEG) has seen a surge in commercial attention in recent years, focusing mostly on hardware miniaturization. This has led to a varied landscape of portable EEG devices with wireless capability, allowing them to be used by relatively unconstrained users in real-life conditions outside of the laboratory. The wide availability and relative affordability of these devices provide a low entry threshold for newcomers to the field of EEG research. The large device variety and the at times opaque communication from their manufacturers, however, can make it difficult to obtain an overview of this hardware landscape. Similarly, given the breadth of existing (wireless) EEG knowledge and research, it can be challenging to get started with novel ideas. Therefore, this paper first provides a list of 48 wireless EEG devices along with a number of important-sometimes difficult-to-obtain-features and characteristics to enable their side-by-side comparison, along with a brief introduction to each of these aspects and how they may influence one's decision. Secondly, we have surveyed previous literature and focused on 110 high-impact journal publications making use of wireless EEG, which we categorized by application and analyzed for device used, number of channels, sample size, and participant mobility. Together, these provide a basis for informed decision making with respect to hardware and experimental precedents when considering new, wireless EEG devices and research. At the same time, this paper provides background material and commentary about pitfalls and caveats regarding this increasingly accessible line of research.
Collapse
|
14
|
Meena JS, Choi SB, Jung SB, Kim JW. Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Mater Today Bio 2023; 19:100565. [PMID: 36816602 PMCID: PMC9932217 DOI: 10.1016/j.mtbio.2023.100565] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Sedentary lifestyles and evolving work environments have created challenges for global health and cause huge burdens on healthcare and fitness systems. Physical immobility and functional losses due to aging are two main reasons for noncommunicable disease mortality. Smart electronic textiles (e-textiles) have attracted considerable attention because of their potential uses in health monitoring, rehabilitation, and training assessment applications. Interactive textiles integrated with electronic devices and algorithms can be used to gather, process, and digitize data on human body motion in real time for purposes such as electrotherapy, improving blood circulation, and promoting wound healing. This review summarizes research advances on e-textiles designed for wearable healthcare and fitness systems. The significance of e-textiles, key applications, and future demand expectations are addressed in this review. Various health conditions and fitness problems and possible solutions involving the use of multifunctional interactive garments are discussed. A brief discussion of essential materials and basic procedures used to fabricate wearable e-textiles are included. Finally, the current challenges, possible solutions, opportunities, and future perspectives in the area of smart textiles are discussed.
Collapse
Affiliation(s)
- Jagan Singh Meena
- Research Center for Advanced Materials Technology, Core Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Su Bin Choi
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung-Boo Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Woong Kim
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
15
|
Diatezo L, Le MQ, Tonellato C, Puig L, Capsal JF, Cottinet PJ. Development and Optimization of 3D-Printed Flexible Electronic Coatings: A New Generation of Smart Heating Fabrics for Automobile Applications. MICROMACHINES 2023; 14:762. [PMID: 37420995 DOI: 10.3390/mi14040762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 07/09/2023]
Abstract
Textile-based Joule heaters in combination with multifunctional materials, fabrication tactics, and optimized designs have changed the paradigm of futuristic intelligent clothing systems, particularly in the automobile field. In the design of heating systems integrated into a car seat, conductive coatings via 3D printing are expected to have further benefits over conventional rigid electrical elements such as a tailored shape and increased comfort, feasibility, stretchability, and compactness. In this regard, we report on a novel heating technique for car seat fabrics based on the use of smart conductive coatings. For easier processes and integration, an extrusion 3D printer is employed to achieve multilayered thin films coated on the surface of the fabric substrate. The developed heater device consists of two principal copper electrodes (so-called power buses) and three identical heating resistors made of carbon composites. Connections between the copper power bus and the carbon resistors are made by means of sub-divide the electrodes, which is critical for electrical-thermal coupling. Finite element models (FEM) are developed to predict the heating behavior of the tested substrates under different designs. It is pointed out that the most optimized design solves important drawbacks of the initial design in terms of temperature regularity and overheating. Full characterizations of the electrical and thermal properties, together with morphological analyses via SEM images, are conducted on different coated samples, making it possible to identify the relevant physical parameters of the materials as well as confirm the printing quality. It is discovered through a combination of FEM and experimental evaluations that the printed coating patterns have a crucial impact on the energy conversion and heating performance. Our first prototype, thanks to many design optimizations, entirely meets the specifications required by the automobile industry. Accordingly, multifunctional materials together with printing technology could offer an efficient heating method for the smart textile industry with significantly improved comfort for both the designer and user.
Collapse
Affiliation(s)
- Léopold Diatezo
- Electrical Department, Ladoua Campus, University Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| | - Minh-Quyen Le
- Electrical Department, Ladoua Campus, University Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| | | | - Lluis Puig
- Company TESCA-Group, 17452 Massanes, Spain
| | - Jean-Fabien Capsal
- Electrical Department, Ladoua Campus, University Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| | - Pierre-Jean Cottinet
- Electrical Department, Ladoua Campus, University Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| |
Collapse
|
16
|
Deng Z, Guo L, Chen X, Wu W. Smart Wearable Systems for Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052479. [PMID: 36904682 PMCID: PMC10007426 DOI: 10.3390/s23052479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/12/2023]
Abstract
Smart wearable systems for health monitoring are highly desired in personal wisdom medicine and telemedicine. These systems make the detecting, monitoring, and recording of biosignals portable, long-term, and comfortable. The development and optimization of wearable health-monitoring systems have focused on advanced materials and system integration, and the number of high-performance wearable systems has been gradually increasing in recent years. However, there are still many challenges in these fields, such as balancing the trade-off between flexibility/stretchability, sensing performance, and the robustness of systems. For this reason, more evolution is required to promote the development of wearable health-monitoring systems. In this regard, this review summarizes some representative achievements and recent progress of wearable systems for health monitoring. Meanwhile, a strategy overview is presented about selecting materials, integrating systems, and monitoring biosignals. The next generation of wearable systems for accurate, portable, continuous, and long-term health monitoring will offer more opportunities for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhiyong Deng
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Nuclear Power Institute of China, Huayang, Shuangliu District, Chengdu 610213, China
| | - Lihao Guo
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Ximeng Chen
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| |
Collapse
|
17
|
Park S, Ban S, Zavanelli N, Bunn AE, Kwon S, Lim HR, Yeo WH, Kim JH. Fully Screen-Printed PI/PEG Blends Enabled Patternable Electrodes for Scalable Manufacturing of Skin-Conformal, Stretchable, Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2092-2103. [PMID: 36594669 DOI: 10.1021/acsami.2c17653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent advances in soft materials and nano-microfabrication have enabled the development of flexible wearable electronics. At the same time, printing technologies have been demonstrated to be efficient and compatible with polymeric materials for manufacturing wearable electronics. However, wearable device manufacturing still counts on a costly, complex, multistep, and error-prone cleanroom process. Here, we present fully screen-printable, skin-conformal electrodes for low-cost and scalable manufacturing of wearable electronics. The screen printing of the polyimide (PI) layer enables facile, low-cost, scalable, high-throughput manufacturing. PI mixed with poly(ethylene glycol) exhibits a shear-thinning behavior, significantly improving the printability of PI. The premixed Ag/AgCl ink is then used for conductive layer printing. The serpentine pattern of the screen-printed electrode accommodates natural deformation under stretching (30%) and bending conditions (180°), which are verified by computational and experimental studies. Real-time wireless electrocardiogram monitoring is also successfully demonstrated using the printed electrodes with a flexible printed circuit. The algorithm developed in this study can calculate accurate heart rates, respiratory rates, and heart rate variability metrics for arrhythmia detection.
Collapse
Affiliation(s)
- Sehyun Park
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington98686, United States
| | - Seunghyeb Ban
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington98686, United States
| | - Nathan Zavanelli
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- IEN Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Andrew E Bunn
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington98686, United States
| | - Shinjae Kwon
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Hyo-Ryoung Lim
- Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan48513, Republic of Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- IEN Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Neural Engineering Center, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington98686, United States
- Department of Mechanical Engineering, University of Washington, Seattle, Washington98195, United States
| |
Collapse
|
18
|
Li BM, Reese BL, Ingram K, Huddleston ME, Jenkins M, Zaets A, Reuter M, Grogg MW, Nelson MT, Zhou Y, Ju B, Sennik B, Farrell ZJ, Jur JS, Tabor CE. Textile-Integrated Liquid Metal Electrodes for Electrophysiological Monitoring. Adv Healthc Mater 2022; 11:e2200745. [PMID: 35734914 DOI: 10.1002/adhm.202200745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Indexed: 01/27/2023]
Abstract
Next generation textile-based wearable sensing systems will require flexibility and strength to maintain capabilities over a wide range of deformations. However, current material sets used for textile-based skin contacting electrodes lack these key properties, which hinder applications such as electrophysiological sensing. In this work, a facile spray coating approach to integrate liquid metal nanoparticle systems into textile form factors for conformal, flexible, and robust electrodes is presented. The liquid metal system employs functionalized liquid metal nanoparticles that provide a simple "peel-off to activate" means of imparting conductivity. The spray coating approach combined with the functionalized liquid metal system enables the creation of long-term reusable textile-integrated liquid metal electrodes (TILEs). Although the TILEs are dry electrodes by nature, they show equal skin-electrode impedances and sensing capabilities with improved wearability compared to commercial wet electrodes. Biocompatibility of TILEs in an in vivo skin environment is demonstrated, while providing improved sensing performance compared to previously reported textile-based dry electrodes. The "spray on dry-behave like wet" characteristics of TILEs opens opportunities for textile-based wearable health monitoring, haptics, and augmented/virtual reality applications that require the use of flexible and conformable dry electrodes.
Collapse
Affiliation(s)
- Braden M Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA.,Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,Air Force Life Cycle Management Center, Human Systems Division, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Brandon L Reese
- Department of Physics, Miami University, Oxford, OH, 45056, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Katherine Ingram
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Mary E Huddleston
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Meghan Jenkins
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Allison Zaets
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew Reuter
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew W Grogg
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - M Tyler Nelson
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Ying Zhou
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Beomjun Ju
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Busra Sennik
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Zachary J Farrell
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Jesse S Jur
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Christopher E Tabor
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| |
Collapse
|
19
|
Lee DH, Lee EK, Kim CH, Yun HJ, Kim YJ, Yoo H. Blended Polymer Dry Electrodes for Reliable Electrocardiogram and Electromyogram Measurements and Their Eco-Friendly Disposal Led by Degradability in Hot Water. Polymers (Basel) 2022; 14:polym14132586. [PMID: 35808632 PMCID: PMC9269162 DOI: 10.3390/polym14132586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
To increase the human lifespan, healthcare monitoring devices that diagnose diseases and check body conditions have attracted considerable interest. Commercial AgCl-based wet electrodes with the advantages of high conductivity and strong adaptability to human skin are considered the most frequently used electrode material for healthcare monitoring. However, commercial AgCl-based wet electrodes, when exposed for a long period, cause an evaporation of organic solvents, which could reduce the signal-to-noise ratio of biosignals and stimulate human skin. In this context, we demonstrate a dry electrode for a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based blended polymer electrode using a combination of PEDOT:PSS, waterborne polyurethane (WPU) and ethylene glycol (EG) that could be reused for a long period of time to detect electrocardiography (ECG) and electromyography (EMG). Both ECG and EMG are reliably detected by the wireless real-time monitoring system. In particular, the proposed dry electrode detects biosignals without deterioration for over 2 weeks. Additionally, a double layer of a polyimide (PI) substrate and fluorinated polymer CYTOP induces the strong waterproof characteristics of external liquids for the proposed dry electrodes, having a low surface energy of 14.49 mN/m. In addition, the proposed electrode has excellent degradability in water; it dissolves in hot water at 60 °C.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University (PKNU), Busan 48513, Korea;
| | - Chae Hyun Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
| | - Hyung Joong Yun
- Advance Nano Research Group, Korea Basic Science Institute (KBSI), Daejeon 34126, Korea;
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
- Correspondence: (Y.-J.K.); (H.Y.)
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
- Correspondence: (Y.-J.K.); (H.Y.)
| |
Collapse
|
20
|
Ohiri KA, Pyles CO, Hamilton LH, Baker MM, McGuire MT, Nguyen EQ, Osborn LE, Rossick KM, McDowell EG, Strohsnitter LM, Currano LJ. E-textile based modular sEMG suit for large area level of effort analysis. Sci Rep 2022; 12:9650. [PMID: 35688946 PMCID: PMC9187645 DOI: 10.1038/s41598-022-13701-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
We present a novel design for an e-textile based surface electromyography (sEMG) suit that incorporates stretchable conductive textiles as electrodes and interconnects within an athletic compression garment. The fabrication and assembly approach is a facile combination of laser cutting and heat-press lamination that provides for rapid prototyping of designs in a typical research environment without need for any specialized textile or garment manufacturing equipment. The materials used are robust to wear, resilient to the high strains encountered in clothing, and can be machine laundered. The suit produces sEMG signal quality comparable to conventional adhesive electrodes, but with improved comfort, longevity, and reusability. The embedded electronics provide signal conditioning, amplification, digitization, and processing power to convert the raw EMG signals to a level-of-effort estimation for flexion and extension of the elbow and knee joints. The approach we detail herein is also expected to be extensible to a variety of other electrophysiological sensors.
Collapse
Affiliation(s)
- Korine A Ohiri
- Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Connor O Pyles
- Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Leslie H Hamilton
- Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Megan M Baker
- Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Matthew T McGuire
- Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Eric Q Nguyen
- Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Luke E Osborn
- Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Katelyn M Rossick
- Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Emil G McDowell
- Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Leah M Strohsnitter
- Air and Missile Defense Sector, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Luke J Currano
- Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, USA.
| |
Collapse
|
21
|
Cho S, Chang T, Yu T, Lee CH. Smart Electronic Textiles for Wearable Sensing and Display. BIOSENSORS 2022; 12:bios12040222. [PMID: 35448282 PMCID: PMC9029731 DOI: 10.3390/bios12040222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.
Collapse
Affiliation(s)
- Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Taehoo Chang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
22
|
Zhang Y, Zhang T, Huang Z, Yang J. A New Class of Electronic Devices Based on Flexible Porous Substrates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105084. [PMID: 35038244 PMCID: PMC8895116 DOI: 10.1002/advs.202105084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Indexed: 05/03/2023]
Abstract
With the advent of the Internet of Things era, the connection between electronic devices and humans is getting closer and closer. New-concept electronic devices including e-skins, nanogenerators, brain-machine interfaces, and implantable medical devices, can work on or inside human bodies, calling for wearing comfort, super flexibility, biodegradability, and stability under complex deformations. However, conventional electronics based on metal and plastic substrates cannot effectively meet these new application requirements. Therefore, a series of advanced electronic devices based on flexible porous substrates (e.g., paper, fabric, electrospun nanofibers, wood, and elastic polymer sponge) is being developed to address these challenges by virtue of their superior biocompatibility, breathability, deformability, and robustness. The porous structure of these substrates can not only improve device performance but also enable new functions, but due to their wide variety, choosing the right porous substrate is crucial for preparing high-performance electronics for specific applications. Herein, the properties of different flexible porous substrates are summarized and their basic principles of design, manufacture, and use are highlighted. Subsequently, various functionalization methods of these porous substrates are briefly introduced and compared. Then, the latest advances in flexible porous substrate-based electronics are demonstrated. Finally, the remaining challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Tengyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Zhandong Huang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Jun Yang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
- Shenzhen Institute for Advanced StudyUniversity of Electronic Science and Technology of ChinaShenzhen518000P. R. China
| |
Collapse
|
23
|
Chang T, Akin S, Kim MK, Murray L, Kim B, Cho S, Huh S, Teke S, Couetil L, Jun MBG, Lee CH. A Programmable Dual-Regime Spray for Large-Scale and Custom-Designed Electronic Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108021. [PMID: 34951073 PMCID: PMC8897238 DOI: 10.1002/adma.202108021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/06/2021] [Indexed: 05/27/2023]
Abstract
Increasing demand for wearable healthcare synergistically advances the field of electronic textiles, or e-textiles, allowing for ambulatory monitoring of vital health signals. Despite great promise, the pragmatic deployment of e-textiles in clinical practice remains challenged due to the lack of a method in producing custom-designed e-textiles at high spatial resolution across a large area. To this end, a programmable dual-regime spray that enables the direct custom writing of functional nanoparticles into arbitrary fabrics at sub-millimeter resolution over meter scale is employed. The resulting e-textiles retain the intrinsic fabric properties in terms of mechanical flexibility, water-vapor permeability, and comfort against multiple uses and laundry cycles. The e-textiles tightly fit various body sizes and shapes to support the high-fidelity recording of physiological and electrophysiological signals on the skin under ambulatory conditions. Pilot field tests in a remote health-monitoring setting with a large animal, such as a horse, demonstrate the scalability and utility of the e-textiles beyond conventional devices. This approach will be suitable for the rapid prototyping of custom e-textiles tailored to meet various clinical needs.
Collapse
Affiliation(s)
- Taehoo Chang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Semih Akin
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Min Ku Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Laura Murray
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Mechanical & System Design Engineering, Hongik University, Seoul, 04066, South Korea
| | - Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sena Huh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sengul Teke
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Secant Group LLC, Telford, PA, 18969, USA
| | - Laurent Couetil
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Martin Byung-Guk Jun
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Indiana Manufacturing Competitiveness Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
24
|
Takakuwa M, Fukuda K, Yokota T, Inoue D, Hashizume D, Umezu S, Someya T. Direct gold bonding for flexible integrated electronics. SCIENCE ADVANCES 2021; 7:eabl6228. [PMID: 34936437 PMCID: PMC8694591 DOI: 10.1126/sciadv.abl6228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Flexible and stable interconnections are critical for the next generation of shape-conformable and wearable electronics. These interconnections should have metal-like conductivity and sufficiently low stiffness that does not compromise the flexibility of the device; moreover, they must be achieved using low-temperature processes to prevent device damage. However, conventional interconnection bonding methods require additional adhesive layers, making it challenging to achieve these characteristics simultaneously. Here, we develop and characterize water vapor plasma–assisted bonding (WVPAB) that enables direct bonding of gold electrodes deposited on ultrathin polymer films. WVPAB bonds rough gold electrodes at room temperature and atmospheric pressure in ambient air. Hydroxyl groups generated by the plasma assist bonding between two gold surfaces, allowing the formation of a strong and stable interface. The applicability of WVPAB-mediated connections to ultrathin electronic systems was also demonstrated, and ultraflexible organic photovoltaics and light-emitting diodes fabricated on separate films were successfully interconnected via ultrathin wiring films.
Collapse
Affiliation(s)
- Masahito Takakuwa
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenjiro Fukuda
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daishi Inoue
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinjiro Umezu
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takao Someya
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
25
|
Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic Textiles for Wearable Point-of-Care Systems. Chem Rev 2021; 122:3259-3291. [PMID: 34939791 DOI: 10.1021/acs.chemrev.1c00502] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional public health systems are suffering from limited, delayed, and inefficient medical services, especially when confronted with the pandemic and the aging population. Fusing traditional textiles with diagnostic, therapeutic, and protective medical devices can unlock electronic textiles (e-textiles) as point-of-care platform technologies on the human body, continuously monitoring vital signs and implementing round-the-clock treatment protocols in close proximity to the patient. This review comprehensively summarizes the research advances on e-textiles for wearable point-of-care systems. We start with a brief introduction to emphasize the significance of e-textiles in the current healthcare system. Then, we describe textile sensors for diagnosis, textile therapeutic devices for medical treatment, and textile protective devices for prevention, by highlighting their working mechanisms, representative materials, and clinical application scenarios. Afterward, we detail e-textiles' connection technologies as the gateway for real-time data transmission and processing in the context of 5G technologies and Internet of Things. Finally, we provide new insights into the remaining challenges and future directions in the field of e-textiles. Fueled by advances in chemistry and materials science, textile-based diagnostic devices, therapeutic devices, protective medical devices, and communication units are expected to interact synergistically to construct intelligent, wearable point-of-care textile platforms, ultimately illuminating the future of healthcare system in the Internet of Things era.
Collapse
Affiliation(s)
- Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael Bick
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Asada J, Usami N, Ota H, Watanabe M, Ueno K. Liquid Metal–Ionic Liquid Composite Gels for Soft, Mixed Electronic–Ionic Conductors. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juri Asada
- Department of Chemistry and Life Science Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
| | - Natsuka Usami
- Department of Chemistry and Life Science Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
| | - Hiroki Ota
- Department of Mechanical Engineering Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
| | - Masayoshi Watanabe
- Advanced Chemical Energy Research Centre (ACERC) Institute of Advanced Sciences Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
- Advanced Chemical Energy Research Centre (ACERC) Institute of Advanced Sciences Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
| |
Collapse
|
27
|
Khan MA, Saibene M, Das R, Brunner IC, Puthusserypady S. Emergence of flexible technology in developing advanced systems for post-stroke rehabilitation: a comprehensive review. J Neural Eng 2021; 18. [PMID: 34736239 DOI: 10.1088/1741-2552/ac36aa] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Stroke is one of the most common neural disorders, which causes physical disabilities and motor impairments among its survivors. Several technologies have been developed for providing stroke rehabilitation and to assist the survivors in performing their daily life activities. Currently, the use of flexible technology (FT) for stroke rehabilitation systems is on a rise that allows the development of more compact and lightweight wearable systems, which stroke survivors can easily use for long-term activities. APPROACH For stroke applications, FT mainly includes the "flexible/stretchable electronics", "e-textile (electronic textile)" and "soft robotics". Thus, a thorough literature review has been performed to report the practical implementation of FT for post-stroke application. MAIN RESULTS In this review, the highlights of the advancement of FT in stroke rehabilitation systems are dealt with. Such systems mainly involve the "biosignal acquisition unit", "rehabilitation devices" and "assistive systems". In terms of biosignals acquisition, electroencephalography (EEG) and electromyography (EMG) are comprehensively described. For rehabilitation/assistive systems, the application of functional electrical stimulation (FES) and robotics units (exoskeleton, orthosis, etc.) have been explained. SIGNIFICANCE This is the first review article that compiles the different studies regarding flexible technology based post-stroke systems. Furthermore, the technological advantages, limitations, and possible future implications are also discussed to help improve and advance the flexible systems for the betterment of the stroke community.
Collapse
Affiliation(s)
- Muhammad Ahmed Khan
- Technical University of Denmark, Ørsteds Plads Building 345C, Room 215, Lyngby, 2800, DENMARK
| | - Matteo Saibene
- Technical University of Denmark, Ørsteds Plads, Building 345C, Lyngby, 2800, DENMARK
| | - Rig Das
- Technical University of Denmark, Ørsteds Plads Building 345C, Room 214, Lyngby, 2800, DENMARK
| | | | | |
Collapse
|
28
|
Ju B, Kim I, Li BM, Knowles CG, Mills A, Grace L, Jur JS. Inkjet Printed Textile Force Sensitive Resistors for Wearable and Healthcare Devices. Adv Healthc Mater 2021; 10:e2100893. [PMID: 34212513 PMCID: PMC8542615 DOI: 10.1002/adhm.202100893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Indexed: 01/21/2023]
Abstract
Pressure sensors for wearable healthcare devices, particularly force sensitive resistors (FSRs) are widely used to monitor physiological signals and human motions. However, current FSRs are not suitable for integration into wearable platforms. This work presents a novel technique for developing textile FSRs (TFSRs) using a combination of inkjet printing of metal-organic decomposition silver inks and heat pressing for facile integration into textiles. The insulating void by a thermoplastic polyurethane (TPU) membrane between the top and bottom textile electrodes creates an architectured piezoresistive structure. The structure functions as a simple logic switch where under a threshold pressure the electrodes make contact to create conductive paths (on-state) and without pressure return to the prior insulated condition (off-state). The TFSR can be controlled by arranging the number of layers and hole diameters of the TPU spacer to specify a wide range of activation pressures from 4.9 kPa to 7.1 MPa. For a use-case scenario in wearable healthcare technologies, the TFSR connected with a readout circuit and a mobile app shows highly stable signal acquisition from finger movement. According to the on/off state of the TFSR with LED bulbs by different weights, it can be utilized as a textile switch showing tactile feedback.
Collapse
Affiliation(s)
- Beomjun Ju
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Inhwan Kim
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Braden M Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Caitlin G Knowles
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Amanda Mills
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Landon Grace
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jesse S Jur
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
29
|
Arquilla K, Devendorf L, Webb AK, Anderson AP. Detection of the Complete ECG Waveform with Woven Textile Electrodes. BIOSENSORS 2021; 11:bios11090331. [PMID: 34562921 PMCID: PMC8471440 DOI: 10.3390/bios11090331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 05/02/2023]
Abstract
Wearable physiological monitoring systems are becoming increasingly prevalent in the push toward autonomous health monitoring and offer new modalities for playful and purposeful interaction within human computer interaction (HCI). Sensing systems that can be integrated into garments and, therefore, daily activities offer promising pathways toward ubiquitous integration. The electrocardiogram (ECG) signal is commonly monitored in healthcare and is increasingly utilized as a method of determining emotional and psychological state; however, the complete ECG waveform with the P, Q, R, S, and T peaks is not commonly used, due to the challenges associated with collecting the full waveform with wearable systems. We present woven textile electrodes as an option for garment-integrated ECG monitoring systems that are capable of capturing the complete ECG waveform. In this work, we present the changes in the peak detection performance caused by different sizes, patterns, and thread types with data from 10 human participants. These testing results provide empirically-derived guidelines for future woven textile electrodes, present a path forward for assessing design decisions, and highlight the importance of testing novel wearable sensor systems with more than a single individual.
Collapse
Affiliation(s)
- Katya Arquilla
- Smead Aerospace Engineering Sciences, University of Colorado Boulder, Bouder, CO 80303, USA;
- Correspondence:
| | - Laura Devendorf
- Department of Information Science, University of Colorado Boulder, Bouder, CO 80303, USA;
| | - Andrea K. Webb
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA 02139, USA;
| | - Allison P. Anderson
- Smead Aerospace Engineering Sciences, University of Colorado Boulder, Bouder, CO 80303, USA;
| |
Collapse
|
30
|
Zhu M, Wang H, Li S, Liang X, Zhang M, Dai X, Zhang Y. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Adv Healthc Mater 2021; 10:e2100646. [PMID: 34050635 DOI: 10.1002/adhm.202100646] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/10/2021] [Indexed: 12/19/2022]
Abstract
A variety of electrophysiological signals (electrocardiography, electromyography, electroencephalography, etc.) are generated during the physiological activities of human bodies, which can be collected by electrodes and thus provide critical insights into health status or facilitate fundamental scientific research. The long-term stable and high-quality recording of electrophysiological signals is the premise for their further applications, leading to demands for flexible electrodes with similar mechanical modulus and minimized irritation to human bodies. This review summarizes the latest advances in flexible electrodes for the acquisition of various electrophysiological signals. First, the concept of electrophysiological signals and the characteristics of different subcategory signals are introduced. Second, the invasive and noninvasive methods are reviewed for electrophysiological signal recording with a highlight on the design of flexible electrodes, followed by a discussion on their material selection. Subsequently, the applications of the electrophysiological signal acquisition in pathological diagnosis and restoration of body functions are discussed, showing the advantages of flexible electrodes. Finally, the main challenges and opportunities in this field are discussed. It is believed that the further exploration of materials for flexible electrodes and the combination of multidisciplinary technologies will boost the applications of flexible electrodes for medical diagnosis and human-machine interface.
Collapse
Affiliation(s)
- Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaochuan Dai
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
31
|
Chen S, Qi J, Fan S, Qiao Z, Yeo JC, Lim CT. Flexible Wearable Sensors for Cardiovascular Health Monitoring. Adv Healthc Mater 2021; 10:e2100116. [PMID: 33960133 DOI: 10.1002/adhm.202100116] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for the highest mortality globally, but recent advances in wearable technologies may potentially change how these illnesses are diagnosed and managed. In particular, continuous monitoring of cardiovascular vital signs for early intervention is highly desired. To this end, flexible wearable sensors that can be comfortably worn over long durations are gaining significant attention. In this review, advanced flexible wearable sensors for monitoring cardiovascular vital signals are outlined and discussed. Specifically, the functional materials, configurations, mechanisms, and recent advances of these flexible sensors for heart rate, blood pressure, blood oxygen saturation, and blood glucose monitoring are highlighted. Different mechanisms in bioelectric, mechano-electric, optoelectric, and ultrasonic wearable sensors are presented to monitor cardiovascular vital signs from different body locations. Present challenges, possible strategies, and future directions of these wearable sensors are also discussed. With rapid development, these flexible wearable sensors will potentially be applicable for both medical diagnosis and daily healthcare use in tackling cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwen Chen
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Jiaming Qi
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Shicheng Fan
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Zheng Qiao
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Joo Chuan Yeo
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Mechanobiology Institute National University of Singapore Singapore 117411 Singapore
| |
Collapse
|
32
|
Hasan MM, Hossain MM. Nanomaterials-patterned flexible electrodes for wearable health monitoring: a review. JOURNAL OF MATERIALS SCIENCE 2021; 56:14900-14942. [PMID: 34219807 PMCID: PMC8237560 DOI: 10.1007/s10853-021-06248-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
ABSTRACT Electrodes fabricated on a flexible substrate are a revolutionary development in wearable health monitoring due to their lightweight, breathability, comfort, and flexibility to conform to the curvilinear body shape. Different metallic thin-film and plastic-based substrates lack comfort for long-term monitoring applications. However, the insulating nature of different polymer, fiber, and textile substrates requires the deposition of conductive materials to render interactive functionality to substrates. Besides, the high porosity and flexibility of fiber and textile substrates pose a great challenge for the homogenous deposition of active materials. Printing is an excellent process to produce a flexible conductive textile electrode for wearable health monitoring applications due to its low cost and scalability. This article critically reviews the current state of the art of different textile architectures as a substrate for the deposition of conductive nanomaterials. Furthermore, recent progress in various printing processes of nanomaterials, challenges of printing nanomaterials on textiles, and their health monitoring applications are described systematically.
Collapse
Affiliation(s)
- Md Mehdi Hasan
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203 Bangladesh
- UNAM – National Nanotechnology Research Center and, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
| | - Md Milon Hossain
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203 Bangladesh
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, 27606 USA
| |
Collapse
|
33
|
Angelucci A, Cavicchioli M, Cintorrino IA, Lauricella G, Rossi C, Strati S, Aliverti A. Smart Textiles and Sensorized Garments for Physiological Monitoring: A Review of Available Solutions and Techniques. SENSORS (BASEL, SWITZERLAND) 2021; 21:814. [PMID: 33530403 PMCID: PMC7865961 DOI: 10.3390/s21030814] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Several wearable devices for physiological and activity monitoring are found on the market, but most of them only allow spot measurements. However, the continuous detection of physiological parameters without any constriction in time or space would be useful in several fields such as healthcare, fitness, and work. This can be achieved with the application of textile technologies for sensorized garments, where the sensors are completely embedded in the fabric. The complete integration of sensors in the fabric leads to several manufacturing techniques that allow dealing with both the technological challenges entailed by the physiological parameters under investigation, and the basic requirements of a garment such as perspiration, washability, and comfort. This review is intended to provide a detailed description of the textile technologies in terms of materials and manufacturing processes employed in the production of sensorized fabrics. The focus is pointed at the technical challenges and the advanced solutions introduced with respect to conventional sensors for recording different physiological parameters, and some interesting textile implementations for the acquisition of biopotentials, respiratory parameters, temperature and sweat are proposed. In the last section, an overview of the main garments on the market is depicted, also exploring some relevant projects under development.
Collapse
Affiliation(s)
- Alessandra Angelucci
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy; (M.C.); (I.A.C.); (G.L.); (C.R.); (S.S.); (A.A.)
| | | | | | | | | | | | | |
Collapse
|
34
|
A Soft Wearable and Fully-Textile Piezoresistive Sensor for Plantar Pressure Capturing. MICROMACHINES 2021; 12:mi12020110. [PMID: 33499134 PMCID: PMC7926843 DOI: 10.3390/mi12020110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The trends of wearable health monitoring systems have led to growing demands for gait-capturing devices. However, comfortability and durability under repeated stress are still challenging to achieve in existing sensor-enabled footwear. Herein, a flexible textile piezoresistive sensor (TPRS) consisting of a reduced graphene oxide (rGO)-cotton) fabric electrode and an Ag fabric circuit electrode is proposed. Based on the mechanical and electrical properties of the two fabric electrodes, the TPRS exhibits superior sensing performance, with a high sensitivity of 3.96 kPa-1 in the lower pressure range of 0-36 kPa, wide force range (0-100 kPa), fast response time (170 ms), remarkable durability stability (1000 cycles) and detection ability in different pressures ranges. For the prac-tical application of capturing plantar pressure, six TPRSs were mounted on a flexible printed circuit board and integrated into an insole. The dynamic plantar pressure distribution during walking was derived in the form of pressure maps. The proposed fully-textile piezoresistive sensor is a strong candidate for next-generation plantar pressure wearable monitoring devices.
Collapse
|
35
|
Wu H, Yang G, Zhu K, Liu S, Guo W, Jiang Z, Li Z. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human-Machine Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001938. [PMID: 33511003 PMCID: PMC7816724 DOI: 10.1002/advs.202001938] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/19/2020] [Indexed: 05/05/2023]
Abstract
On-skin electrodes function as an ideal platform for collecting high-quality electrophysiological (EP) signals due to their unique characteristics, such as stretchability, conformal interfaces with skin, biocompatibility, and wearable comfort. The past decade has witnessed great advancements in performance optimization and function extension of on-skin electrodes. With continuous development and great promise for practical applications, on-skin electrodes are playing an increasingly important role in EP monitoring and human-machine interfaces (HMI). In this review, the latest progress in the development of on-skin electrodes and their integrated system is summarized. Desirable features of on-skin electrodes are briefly discussed from the perspective of performances. Then, recent advances in the development of electrode materials, followed by the analysis of strategies and methods to enhance adhesion and breathability of on-skin electrodes are examined. In addition, representative integrated electrode systems and practical applications of on-skin electrodes in healthcare monitoring and HMI are introduced in detail. It is concluded with the discussion of key challenges and opportunities for on-skin electrodes and their integrated systems.
Collapse
Affiliation(s)
- Hao Wu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Ganguang Yang
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Kanhao Zhu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Shaoyu Liu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Wei Guo
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Zhuo Jiang
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Zhuo Li
- Department of Materials ScienceFudan UniversityShanghai200433China
| |
Collapse
|
36
|
Lund A, Wu Y, Fenech-Salerno B, Torrisi F, Carmichael TB, Müller C. Conducting materials as building blocks for electronic textiles. MRS BULLETIN 2021; 46:491-501. [PMID: 34720389 PMCID: PMC8550728 DOI: 10.1557/s43577-021-00117-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 05/07/2023]
Abstract
ABSTRACT To realize the full gamut of functions that are envisaged for electronic textiles (e-textiles) a range of semiconducting, conducting and electrochemically active materials are needed. This article will discuss how metals, conducting polymers, carbon nanotubes, and two-dimensional (2D) materials, including graphene and MXenes, can be used in concert to create e-textile materials, from fibers and yarns to patterned fabrics. Many of the most promising architectures utilize several classes of materials (e.g., elastic fibers composed of a conducting material and a stretchable polymer, or textile devices constructed with conducting polymers or 2D materials and metal electrodes). While an increasing number of materials and devices display a promising degree of wash and wear resistance, sustainability aspects of e-textiles will require greater attention.
Collapse
Affiliation(s)
- Anja Lund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yunyun Wu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Benji Fenech-Salerno
- Molecular Sciences Research Hub, Imperial College London, White City Campus, London, UK
| | - Felice Torrisi
- Molecular Sciences Research Hub, Imperial College London, White City Campus, London, UK
| | | | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
37
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
38
|
Wearable strain sensor for real-time sweat volume monitoring. iScience 2020; 24:102028. [PMID: 33490926 PMCID: PMC7809499 DOI: 10.1016/j.isci.2020.102028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 01/05/2023] Open
Abstract
Reliably monitoring sweat volume has attracted much attention due to its important role in the assessment of physiological health conditions and the prevention of dehydration. Here, we present the first example of wearable strain sensor for real-time sweat volume monitoring. Such sweat volume monitoring sensor is simply fabricated via embedding strain sensing fabric in super-absorbent hydrogels, the hydrogels can wick sweat up off the skin surface to swell and then trigger the strain sensing fabrics response. This sensor can realize real-time detection of sweat volume (0.15-700 μL), shows excellent repeatability and stability against movement or light interference, reliability in the non-pathological range (pH: 4-9 and salinity: 0-100 mM NaCl) in addition. Such sensor combing swellable hydrogels with strain sensing fabrics provides a novel measurement method of wearable devices for sweat volume monitoring.
Collapse
|
39
|
Pei Z, Zhang Q, Liu Y, Zhao Y, Dong X, Zhang Y, Zhang W, Sang S. A high gauge-factor wearable strain sensor array via 3D printed mold fabrication and size optimization of silver-coated carbon nanotubes. NANOTECHNOLOGY 2020; 31:305501. [PMID: 32235078 DOI: 10.1088/1361-6528/ab8592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of 3D print technology provided an opportunity to achieve fast and accurate fabrication of wearable sensor arrays. In this paper, high-sensitivity flexible and stretchable silver-coated carbon nanotube (Ag@CNT) wearable strain sensor arrays are fabricated using 3D printing technology and composite nanomaterial synthesis. Ag@CNTs with uniform and compact particles were synthesized with different sizes of carbon nanotubes (CNTs) using a reduction method. Strain sensor arrays were fabricated accurately and efficiently with the aid of 3D printed molds. Sensors with different Ag@CNTs were then compared comprehensively, and it was found that the Ag@CNT (short) sensor, which had a gauge factor (GF) of 62.8 in the 0% to 14.44% stretch range and a GF of 831.3 in the 14.44% to 21.11% stretch range, can significantly enhance the detection of small movements. These wearable strain sensor arrays were utilized in the application of traditional Chinese medicine pulse diagnosis and gesture recognition.
Collapse
Affiliation(s)
- Zhen Pei
- MicroNano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cai G, Hao B, Luo L, Deng Z, Zhang R, Ran J, Tang X, Cheng D, Bi S, Wang X, Dai K. Highly Stretchable Sheath-Core Yarns for Multifunctional Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29717-29727. [PMID: 32517469 DOI: 10.1021/acsami.0c08840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Flexible electronic devices with strain sensing and energy storage functions integrated simultaneously are urgently desirable to detect human motions for potential wearable applications. This paper reports the fabrication of a cotton/carbon nanotube sheath-core yarn deposited with polypyrrole (PPy) for highly multifunctional stretchable wearable electronics. The microscopic structure and morphology of the prepared sheath-core yarn were characterized by scanning electron microscopy and Fourier transform infrared spectrometry. A mechanical experiment demonstrated its excellent stretchable capacity because of its unique spring-like structure. We demonstrate that the sheath-core yarn can be used as wearable strain sensors, exhibiting an ultrahigh strain sensing range (0-350%) and excellent stability. The sheath-core yarn can be used in highly sensitive real time monitoring toward both subtle and large human motions under different conditions. Furthermore, the electrochemical performance of the sheath-core yarn was characterized by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The measured areal capacitance was 761.2 mF/cm2 at the scanning rate of 1 mV/s. The method of spinning technology may lead to new exploitation of CNTs and PPy in future wearable electronic device applications.
Collapse
Affiliation(s)
- Guangming Cai
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Baowei Hao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Lei Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Zhongming Deng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Jianhua Ran
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoning Tang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Deshan Cheng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Shuguang Bi
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xin Wang
- Centre for Materials Innovation and Future Fashion, School of Fashion and Textiles, RMIT University, Brunswick 3056, Australia
| | - Kun Dai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
41
|
Fu Y, Zhao J, Dong Y, Wang X. Dry Electrodes for Human Bioelectrical Signal Monitoring. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3651. [PMID: 32610658 PMCID: PMC7374322 DOI: 10.3390/s20133651] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can't meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies.
Collapse
Affiliation(s)
- Yulin Fu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; (Y.F.); (X.W.)
| | - Jingjing Zhao
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China;
| | - Ying Dong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; (Y.F.); (X.W.)
| | - Xiaohao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; (Y.F.); (X.W.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China;
| |
Collapse
|
42
|
Pauliukaite R, Voitechovič E. Multisensor Systems and Arrays for Medical Applications Employing Naturally-Occurring Compounds and Materials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3551. [PMID: 32585936 PMCID: PMC7349305 DOI: 10.3390/s20123551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
The significant improvement of quality of life achieved over the last decades has stimulated the development of new approaches in medicine to take into account the personal needs of each patient. Precision medicine, providing healthcare customization, opens new horizons in the diagnosis, treatment and prevention of numerous diseases. As a consequence, there is a growing demand for novel analytical devices and methods capable of addressing the challenges of precision medicine. For example, various types of sensors or their arrays are highly suitable for simultaneous monitoring of multiple analytes in complex biological media in order to obtain more information about the health status of a patient or to follow the treatment process. Besides, the development of sustainable sensors based on natural chemicals allows reducing their environmental impact. This review is concerned with the application of such analytical platforms in various areas of medicine: analysis of body fluids, wearable sensors, drug manufacturing and screening. The importance and role of naturally-occurring compounds in the development of electrochemical multisensor systems and arrays are discussed.
Collapse
Affiliation(s)
- Rasa Pauliukaite
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania;
| | | |
Collapse
|
43
|
Hales S, Tokita E, Neupane R, Ghosh U, Elder B, Wirthlin D, Kong YL. 3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. NANOTECHNOLOGY 2020; 31:172001. [PMID: 31805540 DOI: 10.1088/1361-6528/ab5f29] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability to seamlessly integrate functional materials into three-dimensional (3D) constructs has been of significant interest, as it can enable the creation of multifunctional devices. Such integration can be achieved with a multiscale, multi-material 3D printing strategy. This technology has enabled the creation of unique devices such as personalized tissue regenerative scaffolds, biomedical implants, 3D electronic devices, and bionic constructs which are challenging to realize with conventional manufacturing processes. In particular, the incorporation of nanomaterials into 3D printed devices can endow a wide range of constructs with tailorable mechanical, chemical, and electrical functionalities. This review highlights the advances and unique possibilities in the fabrication of novel electronic, biomedical, and bioelectronic devices that are realized by the synergistic integration of nanomaterials with 3D printing technologies.
Collapse
Affiliation(s)
- Samuel Hales
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | | | | | | | | | | | | |
Collapse
|
44
|
Arquilla K, Webb AK, Anderson AP. Textile Electrocardiogram (ECG) Electrodes for Wearable Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1013. [PMID: 32069937 PMCID: PMC7070603 DOI: 10.3390/s20041013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
Wearable health-monitoring systems should be comfortable, non-stigmatizing, and able to achieve high data quality. Smart textiles with electronic elements integrated directly into fabrics offer a way to embed sensors into clothing seamlessly to serve these purposes. In this work, we demonstrate the feasibility of electrocardiogram (ECG) monitoring with sewn textile electrodes instead of traditional gel electrodes in a 3-lead, chest-mounted configuration. The textile electrodes are sewn with silver-coated thread in an overlapping zig zag pattern into an inextensible fabric. Sensor validation included ECG monitoring and comfort surveys with human subjects, stretch testing, and wash cycling. The electrodes were tested with the BIOPAC MP160 ECG data acquisition module. Sensors were placed on 8 subjects (5 males and 3 females) with double-sided tape. To detect differences in R peak detectability between traditional and sewn sensors, effect size was set at 10% of a sample mean for heart rate (HR) and R-R interval. Paired student's t-tests were run between adhesive and sewn electrode data for R-R interval and average HR, and a Wilcoxon signed-rank test was run for comfort. No statistically significant difference was found between the traditional and textile electrodes (R-R interval: t = 1.43, p > 0.1; HR: t = - 0.70, p > 0.5; comfort: V = 15,p > 0.5).
Collapse
Affiliation(s)
- Katya Arquilla
- Ann and H. J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 80303, USA;
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA 02139, USA;
| | - Andrea K. Webb
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA 02139, USA;
| | - Allison P. Anderson
- Ann and H. J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 80303, USA;
| |
Collapse
|
45
|
Yuan Z, Pei Z, Shahbaz M, Zhang Q, Zhuo K, Zhao C, Zhang W, Ma X, Sang S. Wrinkle Structured Network of Silver-Coated Carbon Nanotubes for Wearable Sensors. NANOSCALE RESEARCH LETTERS 2019; 14:356. [PMID: 31784841 PMCID: PMC6884602 DOI: 10.1186/s11671-019-3186-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/17/2019] [Indexed: 05/20/2023]
Abstract
Soft-strain-based sensors are being increasingly used across various fields, including wearable sensing, behavior monitoring, and electrophysiological diagnostics. However, throughout all applications, the function of these sensors is limited because of high sensitivity, high-dynamic range, and low-power consumption. In this paper, we focus on improving the sensitivity and strain range of the soft-strain-based sensor through structure, surface, and sensitive unit treatment. Nanosilver (Ag)-coated hydroxyl-functionalized multi-walled carbon nanotubes (OH-f MWCNTs) were explored for highly acute sensing. With stretching and depositing methods, Ag@OH-f MWCNTs and polydimethylsiloxane (PDMS) are fabricated into a wrinkled and sandwich structure for a soft-strain-based sensor. The electronic properties were characterized in that the gauge factor (GF) = ΔR/R0 was 412.32, and the strain range was 42.2%. Moreover, our soft-strain-based sensor exhibits features including flexibility, ultra-lightweight and a highly comfortable experience in terms of wearability. Finally, some physiological and behavioral features can be sampled by testing the exceptional resistance change, including the detection of breath, as well as facial and hand movement recognition. The experiment exhibits its superiority in terms of being highly sensitive and having an extensive range of sensing.
Collapse
Affiliation(s)
- Zhongyun Yuan
- MicroNano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Information & Computer Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Zhen Pei
- MicroNano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Information & Computer Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | | | - Qiang Zhang
- MicroNano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Information & Computer Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Kai Zhuo
- MicroNano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Information & Computer Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Chun Zhao
- College of Information and Communication, Sungkyunkwan University, Chunchun-Dong, Changan-Ku, Suwon, 440-746 Korea
| | - Wendong Zhang
- MicroNano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Information & Computer Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Xingyi Ma
- MicroNano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Information & Computer Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
- Institute of Convergence Chemical Engineering Systems, Korea University, Seoul, 136713 Korea
| | - Shengbo Sang
- MicroNano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, College of Information & Computer Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| |
Collapse
|
46
|
Xu K, Zhou R, Takei K, Hong M. Toward Flexible Surface-Enhanced Raman Scattering (SERS) Sensors for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900925. [PMID: 31453071 PMCID: PMC6702763 DOI: 10.1002/advs.201900925] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/26/2019] [Indexed: 05/18/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy provides a noninvasive and highly sensitive route for fingerprint and label-free detection of a wide range of molecules. Recently, flexible SERS has attracted increasingly tremendous research interest due to its unique advantages compared to rigid substrate-based SERS. Here, the latest advances in flexible substrate-based SERS diagnostic devices are investigated in-depth. First, the intriguing prospect of point-of-care diagnostics is briefly described, followed by an introduction to the cutting-edge SERS technique. Then, the focus is moved from conventional rigid substrate-based SERS to the emerging flexible SERS technique. The main part of this report highlights the recent three categories of flexible SERS substrates, including actively tunable SERS, swab-sampling strategy, and the in situ SERS detection approach. Furthermore, other promising means of flexible SERS are also introduced. The flexible SERS substrates with low-cost, batch-fabrication, and easy-to-operate characteristics can be integrated into portable Raman spectroscopes for point-of-care diagnostics, which are conceivable to penetrate global markets and households as next-generation wearable sensors in the near future.
Collapse
Affiliation(s)
- Kaichen Xu
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Department of Physics and ElectronicsOsaka Prefecture University SakaiOsaka599‐8531Japan
| | - Rui Zhou
- School of Aerospace EngineeringXiamen University422 Siming South Road, Siming DistrictXiamenFujian361005P. R. China
| | - Kuniharu Takei
- Department of Physics and ElectronicsOsaka Prefecture University SakaiOsaka599‐8531Japan
| | - Minghui Hong
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
| |
Collapse
|
47
|
Wang B, Facchetti A. Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901408. [PMID: 31106490 DOI: 10.1002/adma.201901408] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/24/2019] [Indexed: 05/23/2023]
Abstract
Considerable progress in materials development and device integration for mechanically bendable and stretchable optoelectronics will broaden the application of "Internet-of-Things" concepts to a myriad of new applications. When addressing the needs associated with the human body, such as the detection of mechanical functions, monitoring of health parameters, and integration with human tissues, optoelectronic devices, interconnects/circuits enabling their functions, and the core passive components from which the whole system is built must sustain different degrees of mechanical stresses. Herein, the basic characteristics and performance of several of these devices are reported, particularly focusing on the conducting element constituting them. Among these devices, strain sensors of different types, energy storage elements, and power/energy storage and generators are included. Specifically, the advances during the past 3 years are reported, wherein mechanically flexible conducting elements are fabricated from (0D, 1D, and 2D) conducting nanomaterials from metals (e.g., Au nanoparticles, Ag flakes, Cu nanowires), carbon nanotubes/nanofibers, 2D conductors (e.g., graphene, MoS2 ), metal oxides (e.g., Zn nanorods), and conducting polymers (e.g., poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate), polyaniline) in combination with passive fibrotic and elastomeric materials enabling, after integration, the so-called electronic skins and electronic textiles.
Collapse
Affiliation(s)
- Binghao Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077, USA
| |
Collapse
|
48
|
Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review. ELECTRONICS 2019. [DOI: 10.3390/electronics8050479] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wearable electronics is a rapidly growing field that recently started to introduce successful commercial products into the consumer electronics market. Employment of biopotential signals in wearable systems as either biofeedbacks or control commands are expected to revolutionize many technologies including point of care health monitoring systems, rehabilitation devices, human–computer/machine interfaces (HCI/HMIs), and brain–computer interfaces (BCIs). Since electrodes are regarded as a decisive part of such products, they have been studied for almost a decade now, resulting in the emergence of textile electrodes. This study presents a systematic review of wearable textile electrodes in physiological signal monitoring, with discussions on the manufacturing of conductive textiles, metrics to assess their performance as electrodes, and an investigation of their application in the acquisition of critical biopotential signals for routine monitoring, assessment, and exploitation of cardiac (electrocardiography, ECG), neural (electroencephalography, EEG), muscular (electromyography, EMG), and ocular (electrooculography, EOG) functions.
Collapse
|