1
|
Lu W, Li L, Wang R, Wu Y, Chen Y, Tan B, Zhao Z, Gou M, Li Y. Three-Dimensional Printed Cell-Adaptable Nanocolloidal Hydrogel Induces Endogenous Osteogenesis for Bone Repair. Biomater Res 2025; 29:0146. [PMID: 39958765 PMCID: PMC11825971 DOI: 10.34133/bmr.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Repairing critical bone defects remains a formidable challenge in regenerative medicine. Scaffolds that can fill defects and facilitate bone regeneration have garnered considerable attention. However, scaffolds struggle to provide an ideal microenvironment for cell growth and differentiation at the interior of the bone defect sites. The scaffold's structure must meet specific requirements to support endogenous bone regeneration. Here, we introduce a novel 3D-printed nanocolloidal gelatin methacryloyl (GelMA) hydrogel, namely, the nG hydrogel, that was derived from the self-assembly of GelMA in the presence of Pluronics F68, emphasizing its osteoinductive capability conferred solely by the specific nanocolloidal structure. The nG hydrogel, exhibiting remarkable pore connectivity and cell-adaptable microscopic structure, induced the infiltration and migration of rat bone mesenchymal stem cells (rBMSCs) into the hydrogel with a large spreading area in vitro. Moreover, the nG hydrogel with interconnected nanospheres promoted the osteogenic differentiation of rBMSCs, leading to up-regulated expression of ALP, RUNX2, COL-1, and OCN, as well as augmented formation of calcium nodules. In the critical-sized rat calvarial defect model, the nG hydrogel demonstrated improved repair of bone defects, with enhanced recruitment of endogenous CD29+ and CD90+ stem cells and increased bone regeneration, as indicated by significantly higher bone mineral density (BMD) in vivo. Mechanistically, the integrin β1/focal adhesion kinase (FAK) mechanotransduction signaling pathway was up-regulated in the nG hydrogel group both in vitro and in vivo, which may partially account for its pronounced osteoinductive capability. In conclusion, the cell-adaptable nG hydrogel shows great potential as a near-future clinical translational strategy for the customized repair of critical-sized bone defects.
Collapse
Affiliation(s)
- Wenxin Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
- Sichuan Hospital of Stomatology, Chengdu 610015, Sichuan, China
| | - Li Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Ruyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
2
|
Wang Z, Lin Z, Mei X, Cai L, Lin KC, Rodríguez JF, Ye Z, Parraguez XS, Guajardo EM, García Luna PC, Zhang JYJ, Zhang YS. Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416260. [PMID: 39910847 DOI: 10.1002/adma.202416260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Engineered living systems (ELSs) represent purpose-driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin-based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field.
Collapse
Affiliation(s)
- Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ko-Chih Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jimena Flores Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixin Ye
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Emilio Mireles Guajardo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Pedro Cortés García Luna
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jun Yi Joey Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
3
|
Dudaryeva OY, Cousin L, Krajnovic L, Gröbli G, Sapkota V, Ritter L, Deshmukh D, Cui Y, Style RW, Levato R, Labouesse C, Tibbitt MW. Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410452. [PMID: 39745118 PMCID: PMC11837887 DOI: 10.1002/adma.202410452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/01/2024] [Indexed: 02/20/2025]
Abstract
3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable. Here, a straightforward and reliable method is presented for generating kinetically-controlled macroporous biomaterials using liquid-liquid phase separation between poly(ethylene glycol) (PEG) and dextran. Photopolymerization-induced phase separation resulted in macroporous hydrogels with tunable pore size. Varying light intensity and hydrogel composition controlled polymerization kinetics, time to percolation, and complete gelation, which defined the average pore diameter (Ø = 1-200 µm) and final gel stiffness of the formed hydrogels. Critically, for biological applications, macroporous hydrogels are prepared from aqueous polymer solutions at physiological pH and temperature using visible light, allowing for direct cell encapsulation. Human dermal fibroblasts in a range of macroporous gels are encapsulated with different pore sizes. Porosity improved cell spreading with respect to bulk gels and allowed migration in the porous biomaterials.
Collapse
Affiliation(s)
- Oksana Y. Dudaryeva
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Lucien Cousin
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Leila Krajnovic
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Gian Gröbli
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Virbin Sapkota
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Lauritz Ritter
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Dhananjay Deshmukh
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Yifan Cui
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Robert W. Style
- Laboratory for Soft Materials and InterfacesDepartment of MaterialsETH ZurichZurich8093Switzerland
| | - Riccardo Levato
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht3584Netherlands
- Department of Clinical ScienceFaculty of Veterinary MedicineUtrecht UniversityUtrecht3581CTNetherlands
| | - Céline Labouesse
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| |
Collapse
|
4
|
Lee E, Jo Y, Kim Y, Yoon H, Choi S, Kim BQ, Kim S, Kim K. Processable and controllable all-aqueous gels based on high internal phase water-in-water emulsions. MATERIALS HORIZONS 2025. [PMID: 39780755 DOI: 10.1039/d4mh00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aqueous two-phase systems (ATPSs) have primarily been developed in the form of emulsions to enhance their utilization in green and biocompatible applications. However, numerous challenges have arisen in forming stable and processable water-in-water (W/W) emulsion systems, as well as in fine-tuning the interconnectivity of their internal structure, which can significantly impact their performance. To effectively address these challenges, we elucidate, for the first time, the root cause of the poor stability of W/W emulsions. Leveraging this insight, we successfully stabilize W/W high internal phase emulsions (W/W HIPEs) characterized by an extremely thin continuous phase. This stabilization enables the fine-tuning of interconnectivity between dispersed droplets through photopolymerization of thin continuous phases, resulting in the fabrication of stable and processable all-aqueous gels. This W/W HIPE-based gel fabrication holds promise as a universal technology for a wide range of applications. It facilitates in situ polymerization of the continuous phase of W/W HIPEs, where target molecules are stored in the dispersed phase. Moreover, this method allows easy adjustment of the external release rate or internal transfer rate of target molecules by adjusting the interconnectivity of the internal structures.
Collapse
Affiliation(s)
- EunSuk Lee
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea.
| | - YoungSeon Jo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea.
| | - YeRin Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea.
| | - Hojoon Yoon
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea.
| | - SeoYoung Choi
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea.
| | - Baekmin Q Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Subeen Kim
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - KyuHan Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea.
| |
Collapse
|
5
|
Liu Z, Wu J, Luo Z, Hou Y, Xuan L, Xiao C, Chang J, Zhang D, Zheng G, Guo J, Tang G, Yu X. 3D Biofabrication of Microporous Hydrogels for Tissue Engineering. Adv Healthc Mater 2025; 14:e2403583. [PMID: 39641221 DOI: 10.1002/adhm.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Microporous hydrogels have been utilized in an unprecedented manner in the last few decades, combining materials science, biology, and medicine. Their microporous structure makes them suitable for wide applications, especially as cell carriers in tissue engineering and regenerative medicine. Microporous hydrogel scaffolds provide spatial and platform support for cell growth and proliferation, which can promote cell growth, migration, and differentiation, influencing tissue repair and regeneration. This review gives an overview of recent developments in the fabrication techniques and applications of microporous hydrogels. The fabrication of microporous hydrogels can be classified into two distinct categories: fabrication of non-injectable microporous hydrogels including freeze-drying microporous method, two-phase sacrificial strategy, 3D biofabrication technology, etc., and fabrication of injectable microporous hydrogels mainly including microgel assembly. Then, the biomedical applications of microporous hydrogels in cell carriers for tissue engineering, including but not limited to bone regeneration, nerve regeneration, vascular regeneration, and muscle regeneration are emphasized. Additionally, the ongoing and foreseeable applications and current limitations of microporous hydrogels in biomedical engineering are illustrated. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microporous hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Ziyang Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zeyu Luo
- Department of Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Changyi Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jishuo Chang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Dongyang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
6
|
Zhu S, Liao X, Xu Y, Zhou N, Pan Y, Song J, Zheng T, Zhang L, Bai L, Wang Y, Zhou X, Gou M, Tao J, Liu R. 3D bioprinting of high-performance hydrogel with in-situ birth of stem cell spheroids. Bioact Mater 2025; 43:392-405. [PMID: 39399841 PMCID: PMC11470575 DOI: 10.1016/j.bioactmat.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Digital light processing (DLP)-based bioprinting technology holds immense promise for the advancement of hydrogel constructs in biomedical applications. However, creating high-performance hydrogel constructs with this method is still a challenge, as it requires balancing the physicochemical properties of the matrix while also retaining the cellular activity of the encapsulated cells. Herein, we propose a facile and practical strategy for the 3D bioprinting of high-performance hydrogel constructs through the in-situ birth of stem cell spheroids. The strategy is achieved by loading the cell/dextran microdroplets within gelatin methacryloyl (GelMA) emulsion, where dextran functions as a decoy to capture and aggregate the cells for bioprinting while GelMA enables the mechanical support without losing the structural complexity and fidelity. Post-bioprinting, the leaching of dextran results in a smooth curved surface that promotes in-situ birth of spheroids within hydrogel constructs. This process significant enhances differentiation potential of encapsulated stem cells. As a proof-of-concept, we encapsulate dental pulp stem cells (DPSCs) within hydrogel constructs, showcasing their regenerative capabilities in dentin and neovascular-like structures in vivo. The strategy in our study enables high-performance hydrogel tissue construct fabrication with DLP-based bioprinting, which is anticipated to pave a promising way for diverse biomedical applications.
Collapse
Affiliation(s)
- Shunyao Zhu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xueyuan Liao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yue Xu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Nazi Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yingzi Pan
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Taijing Zheng
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Lin Zhang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Liyun Bai
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yu Wang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xia Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400042, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610065, China
| | - Jie Tao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| |
Collapse
|
7
|
Tripathi S, Dash M, Chakraborty R, Lukman HJ, Kumar P, Hassan S, Mehboob H, Singh H, Nanda HS. Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications. Biomater Sci 2024; 13:93-129. [PMID: 39535021 DOI: 10.1039/d4bm01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over eight million surgical procedures are conducted annually in the United Stats to address organ failure or tissue losses. In response to this pressing need, recent medical advancements have significantly improved patient outcomes, primarily through innovative reconstructive surgeries utilizing tissue grafting techniques. Despite tremendous efforts, repairing damaged tissues remains a major clinical challenge for bioengineers and clinicians. 3D bioprinting is an additive manufacturing technique that holds significant promise for creating intricately detailed constructs of tissues, thereby bridging the gap between engineered and actual tissue constructs. In contrast to non-biological printing, 3D bioprinting introduces added intricacies, including considerations for material selection, cell types, growth, and differentiation factors. However, technical challenges arise, particularly concerning the delicate nature of living cells in bioink for tissue construction and limited knowledge about the cell fate processes in such a complex biomechanical environment. A bioink must have appropriate viscoelastic and rheological properties to mimic the native tissue microenvironment and attain desired biomechanical properties. Hence, the properties of bioink play a vital role in the success of 3D bioprinted substitutes. This review comprehensively delves into the scientific aspects of tissue-centric or tissue-specific bioinks and sheds light on the current challenges of the translation of bioinks and bioprinting.
Collapse
Affiliation(s)
- Shivi Tripathi
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Ruchira Chakraborty
- Biodesign and Medical Device Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Harri Junaedi Lukman
- Department of Engineering and Management, College of Engineering, Prince Sultan University, Riyadh 12435, Saudi Arabia
| | - Prasoon Kumar
- Biodesign and Medical Device Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Shabir Hassan
- Department of Biological Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Centre (BTC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hassan Mehboob
- Department of Engineering and Management, College of Engineering, Prince Sultan University, Riyadh 12435, Saudi Arabia
| | - Harpreet Singh
- Dr B R Ambedkar National Institute of Technology Jalandhar, Grand Trunk Road, Barnala Amritsar Bypass Rd, Jalandhar, Punjab 14401111, India
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
- Terasaki Institute for Biomedical Innovation, 21100 Erwin, St Los Angeles, CA 91367, USA
| |
Collapse
|
8
|
Jiang J, Yuan C, Zhang X, Gu L, Yao Y, Wang X, He Y, Shao L. 3D Bioprinting of Liquid High-Cell-Proportion Bioinks in Liquid Granular Bath. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412127. [PMID: 39385640 DOI: 10.1002/adma.202412127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Embedded 3D bioprinting techniques have emerged as a powerful method to fabricate 3D engineered constructs using low strength bioinks; however, there are challenges in simultaneously satisfying the requirements of high-cell-activity, high-cell-proportion, and low-viscosity bioinks. In particular, the printing capacity of embedded 3D bioprinting is limited as two main challenges: spreading and diffusion, especially for liquid, high-cell-activity bioinks that can facilitate high-cell-proportion. Here, a liquid-in-liquid 3D bioprinting (LL3DBP) strategy is developed, which used a liquid granular bath to prevent the spreading of liquid bioinks during 3D printing, and electrostatic interaction between the liquid bioinks and liquid granular baths is found to effectively prevent the diffusion of liquid bioinks. As an example, the printing of positively charged 5% w/v gelatin methacryloyl (GelMA) in a liquid granular bath prepared with negatively charged κ-carrageenan is proved to be achievable. By LL3DBP, printing capacity is greatly advanced and bioinks with over 90% v/v cell can be printed, and printed structures with high-cell-proportion exhibit excellent bioactivity.
Collapse
Affiliation(s)
- Jinhong Jiang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chenhui Yuan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinyu Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lin Gu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yudong Yao
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xueping Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lei Shao
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
9
|
Cao Y, Chao Y, Shum HC. Affinity-Controlled Partitioning of Biomolecules at Aqueous Interfaces and Their Bioanalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409362. [PMID: 39171488 DOI: 10.1002/adma.202409362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 08/23/2024]
Abstract
All-aqueous phase separation systems play essential roles in bioanalytical and biochemical applications. Compared to conventional oil and organic solvent-based systems, these systems are characterized by their rich bulk and interfacial properties, offering superior biocompatibility. In particular, phase separation in all-aqueous systems facilitates the creation of compartments with specific physicochemical properties, and therefore largely enhances the accessibility of the systems. In addition, the all-aqueous compartments have diverse affinities, with an important property known as partitioning, which can concentrate (bio)molecules toward distinct immiscible phases. This partitioning affinity imparts all-aqueous interfaces with selective permeability, enabling the controlled enrichment of target (bio)molecules. This review introduces the basic principles and applications of partitioning-induced interfacial phenomena in a typical all-aqueous system, namely aqueous two-phase systems (ATPSs); these applications include interfacial chemical reactions, bioprinting, and assembly, as well as bio-sensing and detection. The primary challenges associated with designing all-aqueous phase separation systems and several future directions are also discussed, such as the stabilization of aqueous interfaces, the handling of low-volume samples, and exploration of suitable ATPSs compositions with the efficient protocol.
Collapse
Affiliation(s)
- Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Youchuang Chao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
10
|
Chen S, Li J, Zheng L, Huang J, Wang M. Biomimicking trilayer scaffolds with controlled estradiol release for uterine tissue regeneration. EXPLORATION (BEIJING, CHINA) 2024; 4:20230141. [PMID: 39439492 PMCID: PMC11491300 DOI: 10.1002/exp.20230141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/18/2024] [Indexed: 10/25/2024]
Abstract
Scaffold-based tissue engineering provides an efficient approach for repairing uterine tissue defects and restoring fertility. In the current study, a novel trilayer tissue engineering scaffold with high similarity to the uterine tissue in structure was designed and fabricated via 4D printing, electrospinning and 3D bioprinting for uterine regeneration. Highly stretchable poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, "PTMC" in short)/thermoplastic polyurethane (TPU) polymer blend scaffolds were firstly made via 4D printing. To improve the biocompatibility, porous poly(lactic acid-co-glycolic acid) (PLGA)/gelatin methacryloyl (GelMA) fibers incorporated with polydopamine (PDA) particles were produced on PTMC/TPU scaffolds via electrospinning. Importantly, estradiol (E2) was encapsulated in PDA particles. The bilayer scaffolds thus produced could provide controlled and sustained release of E2. Subsequently, bone marrow derived mesenchymal stem cells (BMSCs) were mixed with gelatin methacryloyl (GelMA)-based inks and the formulated bioinks were used to fabricate a cell-laden hydrogel layer on the bilayer scaffolds via 3D bioprinting, forming ultimately biomimicking trilayer scaffolds for uterine tissue regeneration. The trilayer tissue engineering scaffolds thus formed exhibited a shape morphing ability by transforming from the planar shape to tubular structures when immersed in the culture medium at 37°C. The trilayer tissue engineering scaffolds under development would provide new insights for uterine tissue regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Junzhi Li
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Liwu Zheng
- Faculty of DentistryThe University of Hong KongSai Ying PunHong KongChina
| | - Jie Huang
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Min Wang
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| |
Collapse
|
11
|
Gonçalves RC, Oliveira MB, Mano JF. Exploring the potential of all-aqueous immiscible systems for preparing complex biomaterials and cellular constructs. MATERIALS HORIZONS 2024; 11:4573-4599. [PMID: 39010747 DOI: 10.1039/d4mh00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
All-aqueous immiscible systems derived from liquid-liquid phase separation of incompatible hydrophilic agents such as polymers and salts have found increasing interest in the biomedical and tissue engineering fields in the last few years. The unique characteristics of aqueous interfaces, namely their low interfacial tension and elevated permeability, as well as the non-toxic environment and high water content of the immiscible phases, confer to these systems optimal qualities for the development of biomaterials such as hydrogels and soft membranes, as well as for the preparation of in vitro tissues derived from cellular assembly. Here, we overview the main properties of these systems and present a critical review of recent strategies that have been used for the development of biomaterials with increased levels of complexity using all-aqueous immiscible phases and interfaces, and their potential as cell-confining environments for micropatterning approaches and the bioengineering of cell-rich structures. Importantly, due to the relatively recent emergence of these areas, several key design considerations are presented, in order to guide researchers in the field. Finally, the main present challenges, future directions, and adaptability to develop advanced materials with increased biomimicry and new potential applications are briefly evaluated.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Li S, Zhang H, Sun L, Zhang X, Guo M, Liu J, Wang W, Zhao N. 4D printing of biological macromolecules employing handheld bioprinters for in situ wound healing applications. Int J Biol Macromol 2024; 280:135999. [PMID: 39326614 DOI: 10.1016/j.ijbiomac.2024.135999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In situ bioprinting may be preferred over standard in vitro bioprinting in specific cases when de novo tissues are to be created directly on the appropriate anatomical region in the live organism, employing the body as a bioreactor. So far, few efforts have been made to create in situ tissues that can be safely halted and immobilized during printing in preclinical live animals. However, the technique has to be improved significantly in order to manufacture complex tissues in situ, which may be attainable in the future thanks to multidisciplinary advances in tissue engineering. Thanks to the biological macromolecules, natural and synthetic hydrogels and polymers are among the most used biomaterials in in situ bioprinting procedure. Bioprinters, which encounter multiple challenges, including cross-linking the printed structure, adjusting the rheology parameters, and printing various constructs. The introduction of handheld 3D and 4D bioprinters might potentially overcome the difficulties and problems associated with using traditional bioprinters. Studies showed that this technique could be efficient in wound healing and skin tissue regeneration. This study aims to analyze the benefits and difficulties associated with materials in situ 4D printing via handheld bioprinters.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Hongyang Zhang
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Lei Sun
- Department of Thoracic surgery, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Xinyue Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Meiqi Guo
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Jingyang Liu
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Wei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| | - Ning Zhao
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| |
Collapse
|
13
|
Thoma A, Amstad E. Localized Ionic Reinforcement of Double Network Granular Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311092. [PMID: 38747011 DOI: 10.1002/smll.202311092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/19/2024] [Indexed: 10/01/2024]
Abstract
Nature produces soft materials with fascinating combinations of mechanical properties. For example, the mussel byssus embodies a combination of stiffness and toughness, a feature that is unmatched by synthetic hydrogels. Key to enabling these excellent mechanical properties are the well-defined structures of natural materials and their compositions controlled on lengths scales down to tens of nanometers. The composition of synthetic materials can be controlled on a micrometer length scale if processed into densely packed microgels. However, these microgels are typically soft. Microgels can be stiffened by enhancing interactions between particles, for example through the formation of covalent bonds between their surfaces or a second interpenetrating hydrogel network. Nonetheless, changes in the composition of these synthetic materials occur on a micrometer length scale. Here, 3D printable load-bearing granular hydrogels are introduced whose composition changes on the tens of nanometer length scale. The hydrogels are composed of jammed microgels encompassing tens of nm-sized ionically reinforced domains that increase the stiffness of double network granular hydrogels up to 18-fold. The printability of the ink and the local reinforcement of the resulting granular hydrogels are leveraged to 3D print a butterfly with composition and structural changes on a tens of nanometer length scale.
Collapse
Affiliation(s)
- Alexandra Thoma
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
14
|
Li F, Li X, Dai S, Yang Z, Bao Z, Wang S, Zhang Z, Midgley AC, Fan M, Zhu MF, Dong X, Kong D. Efficient Light-Based Bioprinting via Rutin Nanoparticle Photoinhibitor for Advanced Biomedical Applications. ACS NANO 2024; 18:22104-22121. [PMID: 39102149 DOI: 10.1021/acsnano.4c05380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Digital light processing (DLP) bioprinting, known for its high resolution and speed, enables the precise spatial arrangement of biomaterials and has become integral to advancing tissue engineering and regenerative medicine. Nevertheless, inherent light scattering presents significant challenges to the fidelity of the manufactured structures. Herein, we introduce a photoinhibition strategy based on Rutin nanoparticles (Rnps), attenuating the scattering effect through concurrent photoabsorption and free radical reaction. Compared to the widely utilized biocompatible photoabsorber tartrazine (Tar), Rnps-infused bioink enhanced printing speed (1.9×), interlayer homogeneity (58% less overexposure), resolution (38.3% improvement), and print tolerance (3× high-precision range) to minimize trial-and-error. The biocompatible and antioxidative Rnps significantly improved cytocompatibility and exhibited resistance to oxidative stress-induced damage in printed constructs, as demonstrated with human induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs). The related properties of Rnps facilitate the facile fabrication of multimaterial, heterogeneous, and cell-laden biomimetic constructs with intricate structures. The developed photoinhibitor, with its profound adaptability, promises wide biomedical applications tailored to specific biological requirements.
Collapse
Affiliation(s)
- Feiyi Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Xinyue Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Shuxin Dai
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Zhuangzhuang Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Zheheng Bao
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Shuwei Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Zijian Zhang
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Meng Fan
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Mei Feng Zhu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin 300192, China
| | - Xianhao Dong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin 300192, China
- Institute of Transplantation Medicine, Nankai University, Tianjin 300192, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518045, China
- Xu Rongxiang Regeneration Life Science Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Wang Y, Duan Y, Yang B, Li Y. Nanocomposite Hydrogel Bioinks for 3D Bioprinting of Tumor Models. Biomacromolecules 2024; 25:5288-5299. [PMID: 39083715 DOI: 10.1021/acs.biomac.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In vitro tumor models were successfully constructed by 3D bioprinting; however, bioinks with proper viscosity, good biocompatibility, and tunable biophysical and biochemical properties are highly desirable for tumor models that closely recapitulated the main features of native tumors. Here, we developed a nanocomposite hydrogel bioink that was used to construct ovarian and colon cancer models by 3D bioprinting. The nanocomposite bioink was composed of aldehyde-modified cellulose nanocrystals (aCNCs), aldehyde-modified hyaluronic acid (aHA), and gelatin. The hydrogels possessed tunable gelation time, mechanical properties, and printability by controlling the ratio between aCNCs and gelatin. In addition, ovarian and colorectal cancer cells embedded in hydrogels showed high survival rates and rapid growth. By the combination of 3D bioprinting, ovarian and colorectal tumor models were constructed in vitro and used for drug screening. The results showed that gemcitabine had therapeutic effects on ovarian tumor cells. However, the ovarian tumor model showed drug resistance for oxaliplatin treatment.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yixiong Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061, China
| |
Collapse
|
16
|
Zhu Y, Yu X, Liu H, Li J, Gholipourmalekabadi M, Lin K, Yuan C, Wang P. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives. Bioact Mater 2024; 38:346-373. [PMID: 38764449 PMCID: PMC11101688 DOI: 10.1016/j.bioactmat.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels is a widely used bioink because of its good biological properties and tunable physicochemical properties, which has been widely used in a variety of tissue engineering and tissue regeneration. However, pure GelMA is limited by the weak mechanical strength and the lack of continuous osteogenic induction environment, which is difficult to meet the needs of bone repair. Moreover, GelMA hydrogels are unable to respond to complex stimuli and therefore are unable to adapt to physiological and pathological microenvironments. This review focused on the functionalization strategies of GelMA hydrogel based bioinks for bone regeneration. The synthesis process of GelMA hydrogel was described in details, and various functional methods to meet the requirements of bone regeneration, including mechanical strength, porosity, vascularization, osteogenic differentiation, and immunoregulation for patient specific repair, etc. In addition, the response strategies of smart GelMA-based bioinks to external physical stimulation and internal pathological microenvironment stimulation, as well as the functionalization strategies of GelMA hydrogel to achieve both disease treatment and bone regeneration in the presence of various common diseases (such as inflammation, infection, tumor) are also briefly reviewed. Finally, we emphasized the current challenges and possible exploration directions of GelMA-based bioinks for bone regeneration.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
- Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Xingge Yu
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hao Liu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junjun Li
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran, Iran
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Yang B, Yang C, Liu Y, Chen D, Zhao Q. Independent Configuration and Reprogramming of Porous Characters in Macroporous Hydrogel Enabled by the Orthogonal Dynamic Network. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39045824 DOI: 10.1021/acsami.4c08693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Macroporous hydrogels have attracted much attention in both industry and academia, where the morphological characteristics of pores are essential. Despite significant improvements on regulating porous structures, the independent configuration and reprogramming of porosity and pore size still remain challenging owing to the lack of a chemical design to decouple the mechanism for adjusting each characteristic. Here, we report a strategy to adaptively control porous features relying on an orthogonal dynamic network. Disulfide bonds are employed to relax polymer chains during freezing via UV irradiation, thus, generating pores in hydrogels. On such a basis, the porosity is continuously switched from 0 to 75% by controlling network relaxation ratios. Subsequently, the pore size is further reversibly manipulated through the association or dissociation of dynamic metallic coordination. As a result, the porosity and pore size achieved independent configurations. Meanwhile, the dynamic nature of the network makes it possible to reprogram the porous character of a prepared hydrogel. Beyond these, the photopatterning of pores represents the capability to regulate the third feature. Our strategy provides an effective way to arbitrarily manipulate porous morphologies, which can inspire the design of future functional porous materials.
Collapse
Affiliation(s)
- Biru Yang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315807, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chen Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongqi Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315807, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Di Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315807, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Zhang M, Fan X, Dong L, Jiang C, Weeger O, Zhou K, Wang D. Voxel Design of Grayscale DLP 3D-Printed Soft Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309932. [PMID: 38769665 PMCID: PMC11267290 DOI: 10.1002/advs.202309932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 05/22/2024]
Abstract
Grayscale digital light processing (DLP) printing is a simple yet effective way to realize the variation of material properties by tuning the grayscale value. However, there is a lack of available design methods for grayscale DLP 3D-printed structures due to the complexities arising from the voxel-level grayscale distribution, nonlinear material properties, and intricate structures. Inspired by the dexterous motions of natural organisms, a design and fabrication framework for grayscale DLP-printed soft robots is developed by combining a grayscale-dependent hyperelastic constitutive model and a voxel-based finite-element model. The constitutive model establishes the relationship between the projected grayscale value and the nonlinear mechanical properties, while the voxel-based finite-element model enables fast and efficient calculation of the mechanical performances with arbitrarily distributed material properties. A multiphysics modeling and experimental method is developed to validate the homogenization assumption of the degree of conversion (DoC) variation in a single voxel. The design framework is used to design structures with reduced stress concentration and programmable multimodal motions. This work paves the way for integrated design and fabrication of functional structures using grayscale DLP 3D printing.
Collapse
Affiliation(s)
- Mengjie Zhang
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Xiru Fan
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Le Dong
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Chengru Jiang
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Oliver Weeger
- Cyber‐Physical Simulation Group & Additive Manufacturing CenterDepartment of Mechanical EngineeringTechnical University of DarmstadtDolivostr. 15, Darmstadt64293HessenGermany
| | - Kun Zhou
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Dong Wang
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
19
|
Li L, Liu H, Zhao Y, Liu X, Dong Y, Luo J, Jiang X, Zhang Y, Zhu Q, Yuan X, Pei X, Zhang L, Li B, Yang S, Gou M. 3D Printing of Maturable Tissue Constructs Using a Cell‐Adaptable Nanocolloidal Hydrogel. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202402341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Indexed: 01/06/2025]
Abstract
Abstract3D‐printed cell‐laden hydrogels as tissue constructs show great promise in generating living tissues for medicine. Currently, the maturation of 3D‐printed constructs into living tissues remains challenge, since commonly used hydrogels struggle to provide an ideal microenvironment for the seeded cells. In this study, a cell‐adaptable nanocolloidal hydrogel is created for 3D printing of maturable tissue constructs. The nanocolloidal hydrogel is composed of interconnected nanoparticles, which is prepared by the self‐assembly and subsequent photocrosslinking of the gelatin methacryloyl solutions. Cells can get enough space to grow and migrate within the hydrogel through squeezing the flexible nanocolloidal networks. Meanwhile, the nanostructure can promote the seeded cells to proliferate and produce matrix proteins through mechanotransduction. Using digital light process‐based 3D printing technology, it can rapidly customize cartilage tissue constructs. After implantation, these tissue constructs efficiently matured into cartilage tissues for the articular cartilage defect repair and ear cartilage reconstruction in vivo. The 3D printing of maturable tissue constructs using the nanocolloidal hydrogel shows potential for future clinical applications.
Collapse
Affiliation(s)
- Li Li
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Haofan Liu
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yongchao Zhao
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces College of Pharmacy Hunan University of Chinese Medicine Changsha 410208 P. R. China
| | - Yinchu Dong
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Jing Luo
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Xuebing Jiang
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yi Zhang
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Qi Zhu
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Xin Yuan
- Department of Plastic and Burn Surgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Xuan Pei
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Li Zhang
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Boya Li
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Shuai Yang
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Maling Gou
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
20
|
Ali AS, Wu D, Bannach-Brown A, Dhamrait D, Berg J, Tolksdorf B, Lichtenstein D, Dressler C, Braeuning A, Kurreck J, Hülsemann M. 3D bioprinting of liver models: A systematic scoping review of methods, bioinks, and reporting quality. Mater Today Bio 2024; 26:100991. [PMID: 38558773 PMCID: PMC10978534 DOI: 10.1016/j.mtbio.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
Background Effective communication is crucial for broad acceptance and applicability of alternative methods in 3R biomedical research and preclinical testing. 3D bioprinting is used to construct intricate biological structures towards functional liver models, specifically engineered for deployment as alternative models in drug screening, toxicological investigations, and tissue engineering. Despite a growing number of reviews in this emerging field, a comprehensive study, systematically assessing practices and reporting quality for bioprinted liver models is missing. Methods In this systematic scoping review we systematically searched MEDLINE (Ovid), EMBASE (Ovid) and BioRxiv for studies published prior to June 2nd, 2022. We extracted data on methodological conduct, applied bioinks, the composition of the printed model, performed experiments and model applications. Records were screened for eligibility and data were extracted from included articles by two independent reviewers from a panel of seven domain experts specializing in bioprinting and liver biology. We used RAYYAN for the screening process and SyRF for data extraction. We used R for data analysis, and R and Graphpad PRISM for visualization. Results Through our systematic database search we identified 1042 records, from which 63 met the eligibility criteria for inclusion in this systematic scoping review. Our findings revealed that extrusion-based printing, in conjunction with bioinks composed of natural components, emerged as the predominant printing technique in the bioprinting of liver models. Notably, the HepG2 hepatoma cell line was the most frequently employed liver cell type, despite acknowledged limitations. Furthermore, 51% of the printed models featured co-cultures with non-parenchymal cells to enhance their complexity. The included studies offered a variety of techniques for characterizing these liver models, with their primary application predominantly focused on toxicity testing. Among the frequently analyzed liver markers, albumin and urea stood out. Additionally, Cytochrome P450 (CYP) isoforms, primarily CYP3A and CYP1A, were assessed, and select studies employed nuclear receptor agonists to induce CYP activity. Conclusion Our systematic scoping review offers an evidence-based overview and evaluation of the current state of research on bioprinted liver models, representing a promising and innovative technology for creating alternative organ models. We conducted a thorough examination of both the methodological and technical facets of model development and scrutinized the reporting quality within the realm of bioprinted liver models. This systematic scoping review can serve as a valuable template for systematically evaluating the progress of organ model development in various other domains. The transparently derived evidence presented here can provide essential support to the research community, facilitating the adaptation of technological advancements, the establishment of standards, and the enhancement of model robustness. This is particularly crucial as we work toward the long-term objective of establishing new approach methods as reliable alternatives to animal testing, with extensive and versatile applications.
Collapse
Affiliation(s)
- Ahmed S.M. Ali
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Alexandra Bannach-Brown
- Berlin Institute of Health (BIH) @Charité, QUEST Center for Responsible Research, Berlin, Germany
| | - Diyal Dhamrait
- Berlin Institute of Health (BIH) @Charité, QUEST Center for Responsible Research, Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Beatrice Tolksdorf
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment (BfR), Department Food Safety, Berlin, Germany
| | - Corinna Dressler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Medical Library, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Department Food Safety, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Maren Hülsemann
- Berlin Institute of Health (BIH) @Charité, QUEST Center for Responsible Research, Berlin, Germany
| |
Collapse
|
21
|
Lin W, Li Q, Liu L, Wang Q, Zhang D, Wang F, Xu R, Fan Y, Xing M, Zhou C, Yuan Q. Early infiltrating NKT lymphocytes attenuate bone regeneration through secretion of CXCL2. SCIENCE ADVANCES 2024; 10:eadl6343. [PMID: 38758783 PMCID: PMC11100573 DOI: 10.1126/sciadv.adl6343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Trauma rapidly mobilizes the immune response of surrounding tissues and activates regeneration program. Manipulating immune response to promote tissue regeneration shows a broad application prospect. However, the understanding of bone healing dynamics at cellular level remains limited. Here, we characterize the landscape of immune cells after alveolar bone injury and reveal a pivotal role of infiltrating natural killer T (NKT) cells. We observe a rapid increase in NKT cells after injury, which inhibit osteogenic differentiation of mesenchymal stem cells (MSCs) and impair alveolar bone healing. Cxcl2 is up-regulated in NKT cells after injury. Systemic administration of CXCL2-neutralizing antibody or genetic deletion of Cxcl2 improves the bone healing process. In addition, we fabricate a gelatin-based porous hydrogel to deliver NK1.1 depletion antibody, which successfully promotes alveolar bone healing. In summary, our study highlights the importance of NKT cells in the early stage of bone healing and provides a potential therapeutic strategy for accelerating bone regeneration.
Collapse
Affiliation(s)
- Weimin Lin
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Linfeng Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Feiyu Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 610041 Chengdu, Sichuan, China
| |
Collapse
|
22
|
Bupphathong S, Lim J, Fang HW, Tao HY, Yeh CE, Ku TA, Huang W, Kuo TY, Lin CH. Enhanced Vascular-like Network Formation of Encapsulated HUVECs and ADSCs Coculture in Growth Factors Conjugated GelMA Hydrogels. ACS Biomater Sci Eng 2024; 10:3306-3315. [PMID: 38634810 PMCID: PMC11094682 DOI: 10.1021/acsbiomaterials.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.
Collapse
Affiliation(s)
- Sasinan Bupphathong
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Joshua Lim
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Hsu-Wei Fang
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Hsuan-Ya Tao
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chen-En Yeh
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Tian-An Ku
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Wei Huang
- Department
of Orthodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| | - Ting-Yu Kuo
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
23
|
Xu KL, Di Caprio N, Fallahi H, Dehghany M, Davidson MD, Laforest L, Cheung BCH, Zhang Y, Wu M, Shenoy V, Han L, Mauck RL, Burdick JA. Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration. Nat Commun 2024; 15:2766. [PMID: 38553465 PMCID: PMC10980809 DOI: 10.1038/s41467-024-46774-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Cell migration is critical for tissue development and regeneration but requires extracellular environments that are conducive to motion. Cells may actively generate migratory routes in vivo by degrading or remodeling their environments or instead utilize existing extracellular matrix microstructures or microtracks as innate pathways for migration. While hydrogels in general are valuable tools for probing the extracellular regulators of 3-dimensional migration, few recapitulate these natural migration paths. Here, we develop a biopolymer-based bicontinuous hydrogel system that comprises a covalent hydrogel of enzymatically crosslinked gelatin and a physical hydrogel of guest and host moieties bonded to hyaluronic acid. Bicontinuous hydrogels form through controlled solution immiscibility, and their continuous subdomains and high micro-interfacial surface area enable rapid 3D migration, particularly when compared to homogeneous hydrogels. Migratory behavior is mesenchymal in nature and regulated by biochemical and biophysical signals from the hydrogel, which is shown across various cell types and physiologically relevant contexts (e.g., cell spheroids, ex vivo tissues, in vivo tissues). Our findings introduce a design that leverages important local interfaces to guide rapid cell migration.
Collapse
Affiliation(s)
- Karen L Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Nikolas Di Caprio
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hooman Fallahi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, 19104, PA, USA
| | - Mohammad Dehghany
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew D Davidson
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Lorielle Laforest
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Yuqi Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Vivek Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, 19104, PA, USA
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA.
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
| |
Collapse
|
24
|
Song P, Gui X, Wu L, Su X, Zhou W, Luo Z, Zhang B, Feng P, Wei W, Fan C, Wu Y, Zeng W, Zhou C, Fan Y, Zhou Z. DLP Fabrication of Multiple Hierarchical Biomimetic GelMA/SilMA/HAp Scaffolds for Enhancing Bone Regeneration. Biomacromolecules 2024; 25:1871-1886. [PMID: 38324764 DOI: 10.1021/acs.biomac.3c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Severe bone defects resulting from trauma and diseases remain a persistent clinical challenge. In this study, a hierarchical biomimetic microporous hydrogel composite scaffold was constructed by mimicking the hierarchical structure of bone. Initially, gelatin methacrylamide (GelMA) and methacrylic anhydride silk fibroin (SilMA) were synthesized, and GelMA/SilMA inks with suitable rheological and mechanical properties were prepared. Biomimetic micropores were then generated by using an aqueous two-phase emulsification method. Subsequently, biomimetic microporous GelMA/SilMA was mixed with hydroxyapatite (HAp) to prepare biomimetic microporous GelMA/SilMA/HAp ink. Hierarchical biomimetic microporous GelMA/SilMA/HAp (M-GSH) scaffolds were then fabricated through digital light processing (DLP) 3D printing. Finally, in vitro experiments were conducted to investigate cell adhesion, proliferation, and inward migration as well as osteogenic differentiation and vascular regeneration effects. In vivo experiments indicated that the biomimetic microporous scaffold significantly promoted tissue integration and bone regeneration after 12 weeks of implantation, achieving 42.39% bone volume fraction regeneration. In summary, this hierarchical biomimetic microporous scaffold provides a promising strategy for the repair and treatment of bone defects.
Collapse
Affiliation(s)
- Ping Song
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xinyu Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenzheng Zhou
- Department of Orthopaedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Zeyu Luo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Pin Feng
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu 610041, China
| | - Wei Wei
- Department of Emergency, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chen Fan
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu 610041, China
| | - Yunhong Wu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu 610041, China
| | - Weinan Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zongke Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Shi J, Yao H, Wang B, Yang J, Liu D, Shang X, Chong H, Fei W, Wang DA. Construction of a Decellularized Multicomponent Extracellular Matrix Interpenetrating Network Scaffold by Gelatin Microporous Hydrogel 3D Cell Culture System. Macromol Rapid Commun 2024; 45:e2300508. [PMID: 38049086 DOI: 10.1002/marc.202300508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Interface tissue repair requires the construction of biomaterials with integrated structures of multiple protein types. Hydrogels that modulate internal porous structures provide a 3D microenvironment for encapsulated cells, making them promise for interface tissue repair. Currently, reduction of intrinsic immunogenicity and increase of bioactive extracellular matrix (ECM) secretion are issues to be considered in these materials. In this study, gelatin methacrylate (GelMA) hydrogel is used to encapsulate chondrocytes and construct a phase transition 3D cell culture system (PTCC) by utilizing the thermosensitivity of gelatin microspheres to create micropores within the hydrogel. The types of bioactive extracellular matrix protein formation by chondrocytes encapsulated in hydrogels are investigated in vitro. After 28 days of culture, GelMA PTCC forms an extracellular matrix predominantly composed of collagen type II, collagen type I, and fibronectin. After decellularization, the protein types and mechanical properties are well preserved, fabricating a decellularized tissue-engineered extracellular matrix and GelMA hydrogel interpenetrating network hydrogel (dECM-GelMA IPN) consisting of GelMA hydrogel as the first-level network and the ECM secreted by chondrocytes as the second-level network. This material has the potential to mediate the repair and regeneration of tendon-bone interface tissues with multiple protein types.
Collapse
Affiliation(s)
- Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Bowen Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Jian Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225001, P. R. China
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Dianwei Liu
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225001, P. R. China
| | - Xianfeng Shang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hui Chong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Wenyong Fei
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225001, P. R. China
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
26
|
Chen ZX, Zha XJ, Xia YK, Ling TX, Xiong J, Huang JG. 3D Foaming Printing Biomimetic Hierarchically Macro-Micronanoporous Hydrogels for Enhancing Cell Growth and Proliferation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10813-10821. [PMID: 38359411 DOI: 10.1021/acsami.3c19556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Hydrogel, recognized as a promising biomaterial for tissue engineering, possesses notable characteristics, including high water uptake, an interconnected porous structure, and excellent permeability. However, the intricate task of fabricating a hierarchically macro-micronanoporous structure, essential for providing adequate space for nutrient diffusion and cell growth within hydrogels, remains a formidable challenge. In response to these challenges, this study introduces a sustainable and straightforward three-dimensional (3D) foaming printing strategy to produce hierarchically macro-micronanoporous hydrogels (HPHs) without the utilization of porogens and post-etching process. This method entails the controlled generation of air bubbles within the hydrogels through the application of optimal mechanical stirring rates. Subsequent ultraviolet (UV) cross-linking serves to effectively stabilize the macropores within the HPHs. The resulting hierarchically macro-micronanoporous structures demonstrate a substantial improvement in the viability, adhesion, and proliferation of human umbilical vein endothelial cells (HUVECs) when incubated with the hydrogels. These findings present a significant advancement in the fabrication of hierarchically macro-micronanoporous hydrogels, with potential applications in the fields of tissue engineering and organoid development.
Collapse
Affiliation(s)
- Zhuo-Xi Chen
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiang-Jun Zha
- Liver Transplant center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yong-Kang Xia
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ting-Xian Ling
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Xiong
- Institute of Advance Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ji-Gang Huang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
27
|
Avnet S, Pompo GD, Borciani G, Fischetti T, Graziani G, Baldini N. Advantages and limitations of using cell viability assays for 3D bioprinted constructs. Biomed Mater 2024; 19:025033. [PMID: 38306683 DOI: 10.1088/1748-605x/ad2556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Bioprinting shows promise for bioengineered scaffolds and three-dimensional (3D) disease models, but assessing the viability of embedded cells is challenging. Conventional assays are limited by the technical problems that derive from using multi-layered bioink matrices dispersing cells in three dimensions. In this study, we tested bioprinted osteogenic bioinks as a model system. Alginate- or gelatin-based bioinks were loaded with/without ceramic microparticles and osteogenic cells (bone tumor cells, with or without normal bone cells). Despite demonstrating 80%-90% viability through manual counting and live/dead staining, this was time-consuming and operator-dependent. Moreover, for the alginate-bioprinted scaffold, cell spheroids could not be distinguished from single cells. The indirect assay (alamarBlue), was faster but less accurate than live/dead staining due to dependence on hydrogel permeability. Automated confocal microscope acquisition and cell counting of live/dead staining was more reproducible, reliable, faster, efficient, and avoided overestimates compared to manual cell counting by optical microscopy. Finally, for 1.2 mm thick 3D bioprints, dual-photon confocal scanning with vital staining greatly improved the precision of the evaluation of cell distribution and viability and cell-cell interactions through thez-axis. In summary, automated confocal microscopy and cell counting provided superior accuracy for the assessment of cell viability and interactions in 3D bioprinted models compared to most commonly and currently used techniques.
Collapse
Affiliation(s)
- Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Gemma Di Pompo
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giorgia Borciani
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tiziana Fischetti
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriela Graziani
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
28
|
Paula CTB, Leandro A, Pereira P, Coelho JFJ, Fonseca AC, Serra AC. Fast-Gelling Polyethylene Glycol/Polyethyleneimine Hydrogels Degradable by Visible-Light. Macromol Biosci 2024; 24:e2300289. [PMID: 37717210 DOI: 10.1002/mabi.202300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The treatment of burn wounds remains a clinical challenge due to the need for repeated dressings changes. Therefore, the development of a dressing system that can be atraumatically removed from the wound bed can be considered a breakthrough and improve treatment times. In this work, the development of an injectable, fast-gelling hydrogel is proposed that can change its mechanical properties when exposed to visible light. The hydrogels are prepared by a "click" amino-yne reaction between poly(ethylene glycol) (PEG) functionalized with propiolic acid and the amino groups of poly(ethyleneimine) (PEI). The hydrogels exhibit a fast gelation time, which can be adjusted by changing the weight percentage and molecular weight of the precursors. They also exhibit good swelling ability and adhesion to living tissues. More importantly, their mechanical properties changed upon irradiation with green light. This loss of properties is achieved by a 1 O2 -mediated mechanism, as confirmed by the degradation of the β-aminoacrylate linker. Moreover, the in vitro cell compatibility results of the hydrogels and their degradation products show good cytocompatibility. Therefore, it is believed that these hydrogels can be considered as materials with great potential for an innovative strategy for the treatment of burn wounds.
Collapse
Affiliation(s)
- Carlos T B Paula
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Ana Leandro
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| | - Patrícia Pereira
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| | - Arménio C Serra
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| |
Collapse
|
29
|
Wu Q, Huang X, Liu R, Yang X, Xiao G, Jiang N, Weitz DA, Song Y. Multichannel Multijunction Droplet Microfluidic Device to Synthesize Hydrogel Microcapsules with Different Core-Shell Structures and Adjustable Core Positions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1950-1960. [PMID: 37991242 DOI: 10.1021/acs.langmuir.3c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Core-shell hydrogel microcapsules have sparked great interest due to their unique characteristics and prospective applications in the medical, pharmaceutical, and cosmetic fields. However, complex synthetic procedures and expensive costs have limited their practical application. Herein, we designed and prepared several multichannel and multijunctional droplet microfluidic devices based on soft lithography for the effective synthesis of core-shell hydrogel microcapsules for different purposes. Additionally, two different cross-linking processes (ultraviolet (UV) exposure and interfacial polymerization) were used to synthesize different types of core-shell structured hydrogel microcapsules. Hydrogel microcapsules with gelatin methacryloyl (GelMA) as the core and polyacrylamide (PAM) as the thin shell were synthesized using UV cross-linking. Using an interfacial polymerization process, another core-shell structured microcapsule with GelMA as the core and Ca2+ cross-linked alginate with polyethylenimine (PEI) as the shell was constructed, and the core diameter and total droplet diameter were flexibly controlled by carving. Noteworthy, these hydrogel microcapsules exhibit stimuli-responsiveness and controlled release ability. Overall, a novel technique was developed to successfully synthesize various hydrogel microcapsules with core-shell microstructures. The hydrogel microcapsules possess a multilayered structure that facilitates the coassembly of cells and drugs, as well as the layered assembly of multiple drugs, to develop synergistic therapeutic regimens. These adaptable and controllable hydrogel microdroplets shall held great promise for multicell or multidrug administration as well as for high-throughput drug screening.
Collapse
Affiliation(s)
- Qiong Wu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xing Huang
- Physics Department, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Mechanical Engineering, Hangzhou City University, Hangzhou 310015, China
- Zhejiang Provincial Engineering Center of Integrated Manufacturing Technology and Intelligent Equipment, Hangzhou City University, Hangzhou 310015, China
| | - Ran Liu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Zhengzhou Tianzhao Biomedical Technology Company Ltd., Zhengzhou 451450, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou 310003, China
| | - Xinzhu Yang
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Zhengzhou Tianzhao Biomedical Technology Company Ltd., Zhengzhou 451450, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou 310003, China
| | - Gao Xiao
- Physics Department, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Science and Engineering, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Nan Jiang
- Physics Department, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- JinFeng Laboratory, Chongqing 401329, China
| | - David A Weitz
- Physics Department, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yujun Song
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Physics Department, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
- Zhengzhou Tianzhao Biomedical Technology Company Ltd., Zhengzhou 451450, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
30
|
Walejewska E, Melchels FPW, Paradiso A, McCormack A, Szlazak K, Olszewska A, Srebrzynski M, Swieszkowski W. Tuning Physical Properties of GelMA Hydrogels through Microarchitecture for Engineering Osteoid Tissue. Biomacromolecules 2024; 25:188-199. [PMID: 38102990 PMCID: PMC11106746 DOI: 10.1021/acs.biomac.3c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have gained significant attention due to their biocompatibility and tunable properties. Here, a new approach to engineer GelMA-based matrices to mimic the osteoid matrix is provided. Two cross-linking methods were employed to mimic the tissue stiffness: standard cross-linking (SC) based on visible light exposure (VL) and dual cross-linking (DC) involving physical gelation, followed by VL. It was demonstrated that by reducing the GelMA concentration from 10% (G10) to 5% (G5), the dual-cross-linked G5 achieved a compressive modulus of ∼17 kPa and showed the ability to support bone formation, as evidenced by alkaline phosphatase detection over 3 weeks of incubation in osteogenic medium. Moreover, incorporating poly(ethylene) oxide (PEO) into the G5 and G10 samples was found to hinder the fabrication of highly porous hydrogels, leading to compromised cell survival and reduced osteogenic differentiation, as a consequence of incomplete PEO removal.
Collapse
Affiliation(s)
- Ewa Walejewska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, Warsaw 02-507, Poland
- Centre
for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, Warsaw 02-822, Poland
| | - Ferry P. W. Melchels
- Institute
of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, Scotland
- Future
Industries Institute, University of South
Australia, Adelaide, South Australia 5095, Australia
| | - Alessia Paradiso
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Andrew McCormack
- Institute
of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, Scotland
| | - Karol Szlazak
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Alicja Olszewska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Michal Srebrzynski
- Department
of Transplantology and Central Tissue Bank, Medical University of Warsaw, Chalubinskiego 5, Warsaw 02-004, Poland
- National
Centre for Tissue and Cell Banking, Chalubinskiego 5, Warsaw 02-004, Poland
| | - Wojciech Swieszkowski
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, Warsaw 02-507, Poland
| |
Collapse
|
31
|
Linfeng L, Xiaowei Z, Xueqin C, Xianfeng Z. Simvastatin-loaded 3D aerogel scaffolds promote bone regeneration. Biomed Mater Eng 2024; 35:153-163. [PMID: 38363602 DOI: 10.3233/bme-230068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
BACKGROUND It is imperative to design a suitable material for bone regeneration that emulates the microstructure and compositional framework of natural bone while mitigating the shortcomings of current repair materials. OBJECTIVE The aim of the study is to synthesize a 3D aerogel scaffold composed of PLCL/gelatin electro-spun nanofiber loaded with Simvastatin and investigate its biocompatibility as well as its performance in cell proliferation and ossification differentiation. METHODS PLCL/gelatin nanofibers were fabricated in coaxial electrospinning with simvastatin added. Fibers were fragmented, pipetted into molds, frozen, and dried. The morphology of fibers and contact angles in 4 groups of PLCL, PLCL@S, 3D-PLCL, and 3D-PLCL@S was observed and compared. MC3T3-E1 cells were planted at the four materials to observe cell growth status, and ALP and ARS tests were conducted to compare the ossification of cells. RESULTS TEM scanning showed the coaxial fiber of the inner PLCL and outer gelatin. The mean diameter of the PLCL/gelatin fibers is 561 ± 95 nm and 631 ± 103 nm after the drug loading. SEM showed the fibers in the 3D-PLCL@S group were more curled and loose with more space interlaced. The contact angle in this group was 27.1°, the smallest one. Drug release test demonstrated that simvastatin concentration in the 3D-PLCL@S could remain at a relatively high level compared to the control group. The cell proliferation test showed that MC3T3-EI cells could embed into the scaffold deeply and exhibit higher viability in the 3D-PLCL@S group than other groups. The ossification tests of ALP and ARS also inferred that the 3D-PLCL@S scaffold could offer a better osteogenic differentiation matrix. CONCLUSION The PLCL/gelatin aerogel scaffold, when loaded with Simvastatin, demonstrates a more pronounced potential in enhancing osteoblast proliferation and osteogenic differentiation. We hypothesize that this scaffold could serve as a promising material for addressing bone defects.
Collapse
Affiliation(s)
- Lai Linfeng
- Dingling Clinical College, Wenzhou Medical University, Wenzhou, China
- Wenzhou Central Hospital, Wenzhou, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Zhou Xiaowei
- Dingling Clinical College, Wenzhou Medical University, Wenzhou, China
- Wenzhou Central Hospital, Wenzhou, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, China
- Wenzhou Renmin Hospital, Wenzhou, China
| | - Chen Xueqin
- Dingling Clinical College, Wenzhou Medical University, Wenzhou, China
- Wenzhou Central Hospital, Wenzhou, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Zhu Xianfeng
- Dingling Clinical College, Wenzhou Medical University, Wenzhou, China
- Wenzhou Central Hospital, Wenzhou, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| |
Collapse
|
32
|
Wang Y, Guo J, Luo Z, Shen Y, Wang J, Yu Y, Zhao Y. Biopolymer-Assembled Porous Hydrogel Microfibers from Microfluidic Spinning for Wound Healing. Adv Healthc Mater 2024; 13:e2302170. [PMID: 37921989 DOI: 10.1002/adhm.202302170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/26/2023] [Indexed: 11/05/2023]
Abstract
Hydrogels are considered as a promising medical patch for wound healing. Researches in this aspect are focused on improving their compositions and permeability to enhance the effectiveness of wound healing. Here, novel prolamins-assembled porous hydrogel microfibers with the desired merits for treating diabetes wounds are presented. Such microfibers are continuously generated by one-step microfluidic spinning technology with acetic acid solution of prolamins as the continuous phase and deionized water as the dispersed phase. By adjusting the prolamin concentration and flow rates of microfluidics, the porous structure and morphology as well as diameters of microfibers can be well tailored. Owing to their porosity, the resultant microfibers can be employed as flexible delivery systems for wound healing actives, such as bacitracin and vascular endothelial growth factor (VEGF). It is demonstrated that the resultant hydrogel microfibers are with good cell-affinity and effective drug release efficiency, and their woven patches display superior in vivo capability in treating diabetes wounds. Thus, it is believed that the proposed prolamins-assembled porous hydrogel microfibers will show important values in clinic wound treatments.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision, and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jiahui Guo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yingbo Shen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision, and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision, and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
33
|
Zhang Y, Luo Y, Zhao J, Zheng W, Zhan J, Zheng H, Luo F. Emerging delivery systems based on aqueous two-phase systems: A review. Acta Pharm Sin B 2024; 14:110-132. [PMID: 38239237 PMCID: PMC10792979 DOI: 10.1016/j.apsb.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 01/22/2024] Open
Abstract
The aqueous two-phase system (ATPS) is an all-aqueous system fabricated from two immiscible aqueous phases. It is spontaneously assembled through physical liquid-liquid phase separation (LLPS) and can create suitable templates like the multicompartment of the intracellular environment. Delicate structures containing multiple compartments make it possible to endow materials with advanced functions. Due to the properties of ATPSs, ATPS-based drug delivery systems exhibit excellent biocompatibility, extraordinary loading efficiency, and intelligently controlled content release, which are particularly advantageous for delivering drugs in vivo . Therefore, we will systematically review and evaluate ATPSs as an ideal drug delivery system. Based on the basic mechanisms and influencing factors in forming ATPSs, the transformation of ATPSs into valuable biomaterials is described. Afterward, we concentrate on the most recent cutting-edge research on ATPS-based delivery systems. Finally, the potential for further collaborations between ATPS-based drug-carrying biomaterials and disease diagnosis and treatment is also explored.
Collapse
Affiliation(s)
- Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingqi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Lemarié L, Dargar T, Grosjean I, Gache V, Courtial EJ, Sohier J. Human Induced Pluripotent Spheroids' Growth Is Driven by Viscoelastic Properties and Macrostructure of 3D Hydrogel Environment. Bioengineering (Basel) 2023; 10:1418. [PMID: 38136009 PMCID: PMC10740696 DOI: 10.3390/bioengineering10121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Stem cells, particularly human iPSCs, constitute a powerful tool for tissue engineering, notably through spheroid and organoid models. While the sensitivity of stem cells to the viscoelastic properties of their direct microenvironment is well-described, stem cell differentiation still relies on biochemical factors. Our aim is to investigate the role of the viscoelastic properties of hiPSC spheroids' direct environment on their fate. To ensure that cell growth is driven only by mechanical interaction, bioprintable alginate-gelatin hydrogels with significantly different viscoelastic properties were utilized in differentiation factor-free culture medium. Alginate-gelatin hydrogels of varying concentrations were developed to provide 3D environments of significantly different mechanical properties, ranging from 1 to 100 kPa, while allowing printability. hiPSC spheroids from two different cell lines were prepared by aggregation (⌀ = 100 µm, n > 1 × 104), included and cultured in the different hydrogels for 14 days. While spheroids within dense hydrogels exhibited limited growth, irrespective of formulation, porous hydrogels prepared with a liquid-liquid emulsion method displayed significant variations of spheroid morphology and growth as a function of hydrogel mechanical properties. Transversal culture (adjacent spheroids-laden alginate-gelatin hydrogels) clearly confirmed the separate effect of each hydrogel environment on hiPSC spheroid behavior. This study is the first to demonstrate that a mechanically modulated microenvironment induces diverse hiPSC spheroid behavior without the influence of other factors. It allows one to envision the combination of multiple formulations to create a complex object, where the fate of hiPSCs will be independently controlled by their direct microenvironment.
Collapse
Affiliation(s)
- Lucas Lemarié
- SEGULA Technologies, 69100 Villeurbanne, France;
- 3d.FAB, CNRS UMR 5246, ICBMS (Institute of Molecular and Supramolecular Chemistry and Biochemistry), Université Lyon 1, 69622 Villeurbanne, France;
- CNRS UMR 5305, LBTI (Tissue Biology and Therapeutic Engineering Laboratory), 69007 Lyon, France
| | - Tanushri Dargar
- CNRS UMR5261, INSERM U1315, INMG-PNMG (NeuroMyoGene Institute, Physiopathology and Genetics of the Neuron and the Muscle), Université Lyon 1, 69008 Lyon, France; (T.D.); (I.G.); (V.G.)
| | - Isabelle Grosjean
- CNRS UMR5261, INSERM U1315, INMG-PNMG (NeuroMyoGene Institute, Physiopathology and Genetics of the Neuron and the Muscle), Université Lyon 1, 69008 Lyon, France; (T.D.); (I.G.); (V.G.)
| | - Vincent Gache
- CNRS UMR5261, INSERM U1315, INMG-PNMG (NeuroMyoGene Institute, Physiopathology and Genetics of the Neuron and the Muscle), Université Lyon 1, 69008 Lyon, France; (T.D.); (I.G.); (V.G.)
| | - Edwin J. Courtial
- 3d.FAB, CNRS UMR 5246, ICBMS (Institute of Molecular and Supramolecular Chemistry and Biochemistry), Université Lyon 1, 69622 Villeurbanne, France;
| | - Jérôme Sohier
- CNRS UMR 5305, LBTI (Tissue Biology and Therapeutic Engineering Laboratory), 69007 Lyon, France
| |
Collapse
|
35
|
Zhu Y, Chen J, Liu H, Zhang W. Photo-cross-linked Hydrogels for Cartilage and Osteochondral Repair. ACS Biomater Sci Eng 2023; 9:6567-6585. [PMID: 37956022 DOI: 10.1021/acsbiomaterials.3c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Photo-cross-linked hydrogels, which respond to light and induce structural or morphological transitions, form a microenvironment that mimics the extracellular matrix of native tissue. In the last decades, photo-cross-linked hydrogels have been widely used in cartilage and osteochondral tissue engineering due to their good biocompatibility, ease of fabrication, rapid in situ gel-forming ability, and tunable mechanical and degradable properties. In this review, we systemically summarize the different types and physicochemical properties of photo-cross-linked hydrogels (including the materials and photoinitiators) and explore the biological properties modulated through the incorporation of additives, including cells, biomolecules, genes, and nanomaterials, into photo-cross-linked hydrogels. Subsequently, we compile the applications of photo-cross-linked hydrogels with a specific focus on cartilage and osteochondral repair. Finally, current limitations and future perspectives of photo-cross-linked hydrogels are also discussed.
Collapse
Affiliation(s)
- Yue Zhu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
36
|
Tigner T, Scull G, Brown AC, Alge DL. Microparticle Hydrogel Material Properties Emerge from Mixing-Induced Homogenization in a Poly(ethylene glycol) and Dextran Aqueous Two-Phase System. Macromolecules 2023; 56:8518-8528. [PMID: 38357014 PMCID: PMC10863057 DOI: 10.1021/acs.macromol.3c00557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 02/16/2024]
Abstract
Polymer-polymer aqueous two-phase systems (ATPSs) are attractive for microgel synthesis, but given the complexity of phase separation, predicting microgel material properties from ATPS formulations is not trivial. The objective of this study was to determine how the phase diagram of a poly(ethylene glycol) (PEG) and dextran ATPS is related to the material properties of PEG microgel products. PEG-dextran ATPSs were prepared from four-arm 20 kDa PEG-norbornene and 40 kDa dextran in phosphate buffered saline (PBS), and the phase diagram was constructed. PEG microgels were synthesized from five ATPS formulations using an oligopeptide cross-linker and thiol-norbornene photochemistry. Thermogravimetric analysis (TGA) revealed that the polymer concentration of microgel pellets linearly correlates with the average concentration of PEG in the ATPS rather than the separated phase compositions, as determined from the phase diagram. Atomic force microscopy (AFM) and bulk rheology studies demonstrated that the mechanical properties of microgels rely on both the average concentration of PEG in the ATPS and the ATPS volume ratio as determined from the phase diagram. These findings suggest that PEG-dextran ATPSs undergo homogenization upon mixing, which principally determines the material properties of the microgels upon gelation.
Collapse
Affiliation(s)
- Thomas
J. Tigner
- Department
of Biomedical Engineering, Texas A&M
University, College of Engineering, College Station, Texas 77845, United States
| | - Grant Scull
- Joint
Department of Biomedical Engineering, North
Carolina State University and University of North Carolina at Chapel
Hill, College of Engineering, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Ashley C. Brown
- Joint
Department of Biomedical Engineering, North
Carolina State University and University of North Carolina at Chapel
Hill, College of Engineering, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Daniel L. Alge
- Department
of Biomedical Engineering, Texas A&M
University, College of Engineering, College Station, Texas 77845, United States
- Department of Material Science and Engineering, Texas A&M University, College of Engineering, College Station, Texas 77845, United States
| |
Collapse
|
37
|
Ben Messaoud G, Aveic S, Wachendoerfer M, Fischer H, Richtering W. 3D Printable Gelatin Methacryloyl (GelMA)-Dextran Aqueous Two-Phase System with Tunable Pores Structure and Size Enables Physiological Behavior of Embedded Cells In Vitro. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208089. [PMID: 37403299 DOI: 10.1002/smll.202208089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/23/2023] [Indexed: 07/06/2023]
Abstract
The restricted porosity of most hydrogels established for in vitro 3D tissue engineering applications limits embedded cells with regard to their physiological spreading, proliferation, and migration behavior. To overcome these confines, porous hydrogels derived from aqueous two-phase systems (ATPS) are an interesting alternative. However, while developing hydrogels with trapped pores is widespread, the design of bicontinuous hydrogels is still challenging. Herein, an ATPS consisting of photo-crosslinkable gelatin methacryloyl (GelMA) and dextran is presented. The phase behavior, monophasic or biphasic, is tuned via the pH and dextran concentration. This, in turn, allows the formation of hydrogels with three distinct microstructures: homogenous nonporous, regular disconnected-pores, and bicontinuous with interconnected-pores. The pore size of the latter two hydrogels can be tuned from ≈4 to 100 µm. Cytocompatibility of the generated ATPS hydrogels is confirmed by testing the viability of stromal and tumor cells. Their distribution and growth pattern are cell-type specific but are also strongly defined by the microstructure of the hydrogel. Finally, it is demonstrated that the unique porous structure is sustained when processing the bicontinuous system by inkjet and microextrusion techniques. The proposed ATPS hydrogels hold great potential for 3D tissue engineering applications due to their unique tunable interconnected porosity.
Collapse
Affiliation(s)
- Ghazi Ben Messaoud
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, European Union, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, European Union, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Mattis Wachendoerfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, European Union, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, European Union, 52074, Aachen, Germany
| |
Collapse
|
38
|
Zhang H, Wang M, Wu R, Guo J, Sun A, Li Z, Ye R, Xu G, Cheng Y. From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Phys Chem Chem Phys 2023; 25:24244-24263. [PMID: 37698006 DOI: 10.1039/d3cp00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Osteoarthritis caused by articular cartilage defects is a particularly common orthopedic disease that can involve the entire joint, causing great pain to its sufferers. A global patient population of approximately 250 million people has an increasing demand for new therapies with excellent results, and tissue engineering scaffolds have been proposed as a potential strategy for the repair and reconstruction of cartilage defects. The precise control and high flexibility of 3D printing provide a platform for subversive innovation. In this perspective, cartilage tissue engineering (CTE) scaffolds manufactured using different biomaterials are summarized from the perspective of 3D printing strategies, the bionic structure strategies and special functional designs are classified and discussed, and the advantages and limitations of these CTE scaffold preparation strategies are analyzed in detail. Finally, the application prospect and challenges of 3D printed CTE scaffolds are discussed, providing enlightening insights for their current research.
Collapse
Affiliation(s)
- Hewen Zhang
- School of the Faculty of Mechanical Engineering and Mechanic, Ningbo University, Ningbo, Zhejiang Province, 315211, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Meng Wang
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Rui Wu
- Department of Orthopedics, Ningbo First Hospital Longshan Hospital Medical and Health Group, Ningbo 315201, P. R. China
| | - Jianjun Guo
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Aihua Sun
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Li
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ruqing Ye
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
39
|
Zhang X, Yang X, Wu W, Jiang X, Dong Y, Yang S, Gou M. Improving the mechanical properties of 3D printed GelMA composite hydrogels by tannic acid. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2023; 2. [DOI: 10.1002/mba2.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe lack of advanced biomaterials is a major challenge in bio‐printing. Gelatin‐methacryloyl (GelMA) hydrogel, as one of the most commonly used biomaterials in 3D printing, has limited the applications of medicine because of its low mechanical properties. In this study, to enhance the mechanical strength of GelMA hydrogels, we prepared a composite hydrogel based on F127 diacrylate (F127DA) and GelMA, followed by lyophilization and tannic acid (TA) treatment. In this composite hydrogel, the F127DA could self‐assemble into nanomicelles as crosslinking centers for monomer polymerization, which provides additional energy dissipation in hydrogels due to the synergistic deformation of micelles and internal rearrangement of physical binding. After lyophilization of the composite hydrogel, the porous hydrogel was formed. The subsequent treatment of TA could diffuse into the inner of the hydrogel and react with the hydrogel via hydrogen bonds, resulting in the significant enhancement of mechanical properties. The maximum tensile deformation of the obtained hydrogel was about 11 times higher than that of GelMA. This work demonstrates a method to enhance the mechanical properties of 3D‐printed GelMA hydrogel with promising application in bioprinting.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Xiong Yang
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Xuebing Jiang
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yingchu Dong
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Shuai Yang
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Maling Gou
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
40
|
He J, Sun Y, Gao Q, He C, Yao K, Wang T, Xie M, Yu K, Nie J, Chen Y, He Y. Gelatin Methacryloyl Hydrogel, from Standardization, Performance, to Biomedical Application. Adv Healthc Mater 2023; 12:e2300395. [PMID: 37115708 DOI: 10.1002/adhm.202300395] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/23/2023] [Indexed: 04/29/2023]
Abstract
Gelatin methacryloyl (GelMA), a photocurable hydrogel, is widely used in 3D culture, particularly in 3D bioprinting, due to its high biocompatibility, tunable physicochemical properties, and excellent formability. However, as the properties and performances of GelMA vary under different synthetic conditions, there is a lack of standardization, leading to conflicting results. In this study, a uniform standard is established to understand and enhance GelMA applications. First, the basic concept of GelMA and the density of the molecular network (DMN) are defined. Second, two properties, degrees of substitution and ratio of solid content, as the main measurable parameters determining the DMN are used. Third, the mechanisms and relationships between DMN and its performance in various applications in terms of porosity, viscosity, formability, mechanical strength, swelling, biodegradation, and cytocompatibility are theoretically explained. The main questions that are answered: what does performance mean, why is it important, how to optimize the basic parameters to improve the performance, and how to characterize it reasonably and accurately? Finally, it is hoped that this knowledge will eliminate the need for researchers to conduct tedious and repetitive pre-experiments, enable easy communication for achievements between groups under the same standard, and fully explore the potential of the GelMA hydrogel.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Engineering for Life Group (EFL), Suzhou, 215101, China
| | - Chanfan He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tongyao Wang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Engineering for Life Group (EFL), Suzhou, 215101, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
41
|
Xue W, Lee D, Kong Y, Kuss M, Huang Y, Kim T, Chung S, Dudley AT, Ro SH, Duan B. A Facile Strategy for the Fabrication of Cell-laden Porous Alginate Hydrogels Based on Two-phase Aqueous Emulsions. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2214129. [PMID: 38131003 PMCID: PMC10732541 DOI: 10.1002/adfm.202214129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 12/23/2023]
Abstract
Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 μm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling.
Collapse
Affiliation(s)
- Wen Xue
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Donghee Lee
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Yunfan Kong
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Mitchell Kuss
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Ying Huang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Taesung Kim
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Andrew T Dudley
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Seung-Hyun Ro
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Bin Duan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
42
|
Reynolds DS, de Lázaro I, Blache ML, Liu Y, Jeffreys NC, Doolittle RM, Grandidier E, Olszewski J, Dacus MT, Mooney DJ, Lewis JA. Microporogen-Structured Collagen Matrices for Embedded Bioprinting of Tumor Models for Immuno-Oncology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210748. [PMID: 37163476 DOI: 10.1002/adma.202210748] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Embedded bioprinting enables the rapid design and fabrication of complex tissues that recapitulate in vivo microenvironments. However, few biological matrices enable good print fidelity, while simultaneously facilitate cell viability, proliferation, and migration. Here, a new microporogen-structured (µPOROS) matrix for embedded bioprinting is introduced, in which matrix rheology, printing behavior, and porosity are tailored by adding sacrificial microparticles composed of a gelatin-chitosan complex to a prepolymer collagen solution. To demonstrate its utility, a 3D tumor model is created via embedded printing of a murine melanoma cell ink within the µPOROS collagen matrix at 4 °C. The collagen matrix is subsequently crosslinked around the microparticles upon warming to 21 °C, followed by their melting and removal at 37 °C. This process results in a µPOROS matrix with a fibrillar collagen type-I network akin to that observed in vivo. Printed tumor cells remain viable and proliferate, while antigen-specific cytotoxic T cells incorporated in the matrix migrate to the tumor site, where they induce cell death. The integration of the µPOROS matrix with embedded bioprinting opens new avenues for creating complex tissue microenvironments in vitro that may find widespread use in drug discovery, disease modeling, and tissue engineering for therapeutic use.
Collapse
Affiliation(s)
- Daniel S Reynolds
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Manon L Blache
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Nicholas C Jeffreys
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Ramsey M Doolittle
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Estée Grandidier
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- École Normale Supérieure de Lyon, Lyon, 69007, France
| | - Jason Olszewski
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mason T Dacus
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
43
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
44
|
Merotto E, Pavan PG, Piccoli M. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023; 11:1742. [PMID: 37371837 DOI: 10.3390/biomedicines11061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional bioprinting is the process of manipulating cell-laden bioinks to fabricate living structures. Three-dimensional bioprinting techniques have brought considerable innovation in biomedicine, especially in the field of tissue engineering, allowing the production of 3D organ and tissue models for in vivo transplantation purposes or for in-depth and precise in vitro analyses. Naturally derived hydrogels, especially those obtained from the decellularization of biological tissues, are promising bioinks for 3D printing purposes, as they present the best biocompatibility characteristics. Despite this, many natural hydrogels do not possess the necessary mechanical properties to allow a simple and immediate application in the 3D printing process. In this review, we focus on the bioactive and mechanical characteristics that natural hydrogels may possess to allow efficient production of organs and tissues for biomedical applications, emphasizing the reinforcement techniques to improve their biomechanical properties.
Collapse
Affiliation(s)
- Elena Merotto
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Piero G Pavan
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
| |
Collapse
|
45
|
McKenzie T, Ayres N. Synthesis and Applications of Elastomeric Polymerized High Internal Phase Emulsions (PolyHIPEs). ACS OMEGA 2023; 8:20178-20195. [PMID: 37323392 PMCID: PMC10268022 DOI: 10.1021/acsomega.3c01265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Polymer foams (PFs) are among the most industrially produced polymeric materials, and they are found in applications including aerospace, packaging, textiles, and biomaterials. PFs are predominantly prepared using gas-blowing techniques, but PFs can also be prepared from templating techniques such as polymerized high internal phase emulsions (polyHIPEs). PolyHIPEs have many experimental design variables which control the physical, mechanical, and chemical properties of the resulting PFs. Both rigid and elastic polyHIPEs can be prepared, but while elastomeric polyHIPEs are less commonly reported than hard polyHIPEs, elastomeric polyHIPEs are instrumental in the realization of new materials in applications including flexible separation membranes, energy storage in soft robotics, and 3D-printed soft tissue engineering scaffolds. Furthermore, there are few limitations to the types of polymers and polymerization methods that have been used to prepare elastic polyHIPEs due to the wide range of polymerization conditions that are compatible with the polyHIPE method. In this review, an overview of the chemistry used to prepare elastic polyHIPEs from early reports to modern polymerization methods is provided, focusing on the applications that flexible polyHIPEs are used in. The review consists of four sections organized around polymer classes used in the preparation of polyHIPEs: (meth)acrylics and (meth)acrylamides, silicones, polyesters and polyurethanes, and naturally occurring polymers. Within each section, the common properties, current challenges, and an outlook is suggested on where elastomeric polyHIPEs can be expected to continue to make broad, positive impacts on materials and technology for the future.
Collapse
Affiliation(s)
| | - Neil Ayres
- N.A.:
email, ; tel, +01 513 556 9280; fax, +01 513 556 9239
| |
Collapse
|
46
|
Chen G, Wang F, Zhang X, Shang Y, Zhao Y. Living microecological hydrogels for wound healing. SCIENCE ADVANCES 2023; 9:eadg3478. [PMID: 37224242 DOI: 10.1126/sciadv.adg3478] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Chronic hard-to-heal wounds draw great attention worldwide, as their treatments are limited by infections and hypoxia. Inspired by the natural oxygen production capacity of algae and the competitive advantage of beneficial bacteria over other microbes, we presented a living microecological hydrogel (LMH) with functionalized Chlorella and Bacillus subtilis encapsulation to realize continuous oxygen delivery and anti-infections for promoting chronic wound healing. As the hydrogel consisted of thermosensitive Pluronic F-127 and wet-adhesive polydopamine, the LMH could keep liquid at a low temperature while quickly solidifying and tightly adhering to the wound bed. It was demonstrated that by optimizing the proportion of the encapsulated microorganism, the Chlorella could continuously produce oxygen to relieve hypoxia and support the proliferation of B. subtilis, while B. subtilis could eliminate the colonized pathogenic bacteria. Thus, the LMH substantially promoted the healing of infected diabetic wounds. These features make the LMH valuable for practical clinical applications.
Collapse
Affiliation(s)
- Guopu Chen
- Department of Burns and Plastic Surgery, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Fengyuan Wang
- Department of Dermatology, Zhongda Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Department of Dermatology, Zhongda Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yixuan Shang
- Department of Burns and Plastic Surgery, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Yuanjin Zhao
- Department of Burns and Plastic Surgery, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- Department of Dermatology, Zhongda Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
47
|
Chen F, Li X, Yu Y, Li Q, Lin H, Xu L, Shum HC. Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel. Nat Commun 2023; 14:2793. [PMID: 37193701 DOI: 10.1038/s41467-023-38394-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
Engineering heterogeneous hydrogels with distinct phases at various lengths, which resemble biological tissues with high complexity, remains challenging by existing fabricating techniques that require complicated procedures and are often only applicable at bulk scales. Here, inspired by ubiquitous phase separation phenomena in biology, we present a one-step fabrication method based on aqueous phase separation to construct two-aqueous-phase gels that comprise multiple phases with distinct physicochemical properties. The gels fabricated by this approach exhibit enhanced interfacial mechanics compared with their counterparts obtained from conventional layer-by-layer methods. Moreover, two-aqueous-phase gels with programmable structures and tunable physicochemical properties can be conveniently constructed by adjusting the polymer constituents, gelation conditions, and combining different fabrication techniques, such as 3D-printing. The versatility of our approach is demonstrated by mimicking the key features of several biological architectures at different lengths: macroscale muscle-tendon connections; mesoscale cell patterning; microscale molecular compartmentalization. The present work advances the fabrication approach for designing heterogeneous multifunctional materials for various technological and biomedical applications.
Collapse
Affiliation(s)
- Feipeng Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Yafeng Yu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Qingchuan Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Haisong Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China.
| |
Collapse
|
48
|
Liu Q, Yang J, Wang Y, Wu T, Liang Y, Deng K, Luan G, Chen Y, Huang Z, Yue K. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Biomacromolecules 2023. [PMID: 37115848 DOI: 10.1021/acs.biomac.3c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Three-dimensional (3D) extrusion bioprinting has emerged as one of the most promising biofabrication technologies for preparing biomimetic tissue-like constructs. The successful construction of cell-laden constructs majorly relies on the development of proper bioinks with excellent printability and cytocompatibility. Bioinks based on gelatin methacryloyl (GelMA) have been widely explored due to the excellent biocompatibility and biodegradability and the presence of the arginine-glycine-aspartic acid (RGD) sequences for cell adhesion. However, such bioinks usually require low-temperature or ionic cross-linking systems to solidify the extruded hydrogel structures, which results in complex processes and limitations to certain applications. Moreover, many current hydrogel-based bioinks, even after chemical cross-linking, hardly possess the required strength to resist the mechanical loads during the implantation procedure. Herein, we report a self-healing hydrogel bioink based on GelMA and oxidized dextran (OD) for the direct printing of tough and fatigue-resistant cell-laden constructs at room temperature without any template or cross-linking agents. Enabled by dynamic Schiff base chemistry, the mixed GelMA/OD solution showed the characteristics of a dynamic hydrogel with shear-thinning and self-supporting behavior, which allows bridging the 5 mm gap and efficient direct bioprinting of complex constructs with high shape fidelity. After photo-cross-linking, the resulting tissue constructs exhibited excellent low cell damage, high cell viability, and enhanced mechanical strength. Moreover, the GelMA/OD construct could resist up to 95% compressive deformation without any breakage and was able to maintain 80% of the original Young's modulus during long-term loading (50 cycles). It is believed that our GelMA/OD bioink would expand the potential of GelMA-based bioinks in applications such as tissue engineering and pharmaceutical screening.
Collapse
Affiliation(s)
- Qi Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Jingzhou Yang
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, Guangdong 518000, China
| | - Yingjie Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tianhao Wu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yuting Liang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Keqi Deng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Guifang Luan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yutong Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhenkai Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, Guangdong 518000, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
49
|
Mi X, Su Z, Yue X, Ren Y, Yang X, Qiang L, Kong W, Ma Z, Zhang C, Wang J. 3D bioprinting tumor models mimic the tumor microenvironment for drug screening. Biomater Sci 2023; 11:3813-3827. [PMID: 37052182 DOI: 10.1039/d3bm00159h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cancer is a severe threat to human life and health and represents the main cause of death globally. Drug therapy is one of the primary means of treating cancer; however, most anticancer medications do not proceed beyond preclinical testing because the conditions of actual human tumors are not effectively mimicked by traditional tumor models. Hence, bionic in vitro tumor models must be developed to screen for anticancer drugs. Three-dimensional (3D) bioprinting technology can produce structures with built-in spatial and chemical complexity and models with accurately controlled structures, a homogeneous size and morphology, less variation across batches, and a more realistic tumor microenvironment (TME). This technology can also rapidly produce such models for high-throughput anticancer medication testing. This review describes 3D bioprinting methods, the use of bioinks in tumor models, and in vitro tumor model design strategies for building complex tumor microenvironment features using biological 3D printing technology. Moreover, the application of 3D bioprinting in vitro tumor models in drug screening is also discussed.
Collapse
Affiliation(s)
- Xuelian Mi
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Zhi Su
- School of Kinesiology, Shanghai University of Sport, 399 Chang Hai Road, Shanghai, 200438, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Ya Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xue Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Lei Qiang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Weiqing Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong Province, 266000, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jinwu Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
50
|
Heran W, Xin L, Qi G, Xiongfei Z. Vascularized organ bioprinting: From strategy to paradigm. Cell Prolif 2023; 56:e13453. [PMID: 36929675 DOI: 10.1111/cpr.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Over the past two decades, bioprinting has become a popular research topic worldwide, as it is the most promising approach for manufacturing vascularized organ in vitro. However, transitioning bioprinting from simple tissue models to real biomedical applications is still a challenge due to the lack of interdisciplinary theoretical knowledge and perfect multitechnology integration. This review examines the goals of vasculature manufacturing and proposes the objectives in three stages. We then outline a bidirectional manufacturing strategy consisting of top-down reproduction (bioprinting) and bottom-up regeneration (cellular behaviour). We also provide an in-depth analysis of the views from the four aspects of design, ink, printing, and culture. Furthermore, we present the 'constructing-comprehension cycle' research paradigm in Strategic Priority Research Program and the 'math-model-based batch insights generator' research paradigm for the future, which have the potential to revolutionize the biomedical field.
Collapse
Affiliation(s)
- Wang Heran
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gu Qi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Xiongfei
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| |
Collapse
|