1
|
Tsakiris DA, Gavriilaki E, Chanou I, Meyer SC. Hemostasis and complement in allogeneic hematopoietic stem cell transplantation: clinical significance of two interactive systems. Bone Marrow Transplant 2024; 59:1349-1359. [PMID: 39004655 PMCID: PMC11452340 DOI: 10.1038/s41409-024-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Hematopoietic stem cell transplantation (HCT) represents a curative treatment option for certain malignant and nonmalignant hematological diseases. Conditioning regimens before HCT, the development of graft-versus-host disease (GVHD) in the allogeneic setting, and delayed immune reconstitution contribute to early and late complications by inducing tissue damage or humoral alterations. Hemostasis and/or the complement system are biological regulatory defense systems involving humoral and cellular reactions and are variably involved in these complications after allogeneic HCT. The hemostasis and complement systems have multiple interactions, which have been described both under physiological and pathological conditions. They share common tissue targets, such as the endothelium, which suggests interactions in the pathogenesis of several serious complications in the early or late phase after HCT. Complications in which both systems interfere with each other and thus contribute to disease pathogenesis include transplant-associated thrombotic microangiopathy (HSCT-TMA), sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), and GVHD. Here, we review the current knowledge on changes in hemostasis and complement after allogeneic HCT and how these changes may define clinical impact.
Collapse
Affiliation(s)
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chanou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
| | - Sara C Meyer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Fageräng B, Cyranka L, Schjalm C, McAdam KE, Larsen CS, Heinzelbecker J, Gedde-Dahl T, Würzner R, Espevik T, Tjønnfjord GE, Garred P, Barratt-Due A, Tvedt THA, Mollnes TE. The function of the complement system remains fully intact throughout the course of allogeneic stem cell transplantation. Front Immunol 2024; 15:1422370. [PMID: 38938578 PMCID: PMC11208304 DOI: 10.3389/fimmu.2024.1422370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Hematopoietic stem cell transplantation (HSCT) is associated with immune complications and endothelial dysfunction due to intricate donor-recipient interactions, conditioning regimens, and inflammatory responses. Methods This study investigated the role of the complement system during HSCT and its interaction with the cytokine network. Seventeen acute myeloid leukemia patients undergoing HSCT were monitored, including blood sampling from the start of the conditioning regimen until four weeks post-transplant. Clinical follow-up was 200 days. Results Total complement functional activity was measured by WIELISA and the degree of complement activation by ELISA measurement of sC5b-9. Cytokine release was measured using a 27-multiplex immuno-assay. At all time-points during HSCT complement functional activity remained comparable to healthy controls. Complement activation was continuously stable except for two patients demonstrating increased activation, consistent with severe endotheliopathy and infections. In vitro experiments with post-HSCT whole blood challenged with Escherichia coli, revealed a hyperinflammatory cytokine response with increased TNF, IL-1β, IL-6 and IL-8 formation. Complement C3 inhibition markedly reduced the cytokine response induced by Staphylococcus aureus, Aspergillus fumigatus, and cholesterol crystals. Discussion In conclusion, HSCT patients generally retained a fully functional complement system, whereas activation occurred in patients with severe complications. The complement-cytokine interaction indicates the potential for new complement-targeting therapeutic strategies in HSCT.
Collapse
Affiliation(s)
- Beatrice Fageräng
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Leon Cyranka
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Karin Ekholt McAdam
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Julia Heinzelbecker
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tobias Gedde-Dahl
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Terje Espevik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Erland Tjønnfjord
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Garred
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Andreas Barratt-Due
- Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | | | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| |
Collapse
|
3
|
Meuleman MS, Duval A, Grunenwald A, Rezola Artero M, Dermani M, Peliconi J, Revel M, Vieira-Martins P, Courbebaisse M, Parfait B, Lebeaux D, Friedlander G, Roumenina L, Chauvet S, Frémeaux-Bacchi V, Dragon-Durey MA. Usefulness and analytical performances of complement multiplex assay for measuring complement biomarkers in plasma. Clin Chim Acta 2024; 554:117750. [PMID: 38176523 DOI: 10.1016/j.cca.2023.117750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION The complement system is involved in numerous diseases, through diverse mechanisms and degree of activation. With the emergence of complement targeting therapeutic, simple and accessible tools to evaluate the extent of complement activation are strongly needed. METHODS We evaluated two multiplex panels, measuring complement activation fragments (C4a, C3a, C5a, Bb, Ba, sC5b9) and intact components or regulators (C1q, C2, C3, C4, C5, FD, FP, FH, FI). The specificity of each measurement was assessed by using complement proteins depleted sera and plasma collected from patients with complement deficiencies. Normal values distribution was estimated using 124 plasma samples from healthy donors and complement activation profile was assessed in plasma collected from 31 patients with various complement-mediated disorders. RESULTS We observed good inter-assay variation. All tested protein deficiencies were accurately detected. We established assay-specific reference values for each analyte. Except for C3, C4 and C4a, the majority of the measurements were in good agreement with references methods or published data. CONCLUSION Our study substantiates the utility of the Complement Multiplex assay as a tool for measuring complement activation and deficiencies. Quantifying complement cleavage fragments in patients exhibiting classical or alternative pathway activation allowed evaluating the activation state of the whole cascade.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Laboratory of Immunology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Anna Duval
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Department of Nephrology, Strasbourg University Hospital, Strasbourg, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Department of Nephrology, Poissy Intercommunal Hospital, Poissy, France
| | - Mikel Rezola Artero
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France
| | - Mohamed Dermani
- Laboratory of Immunology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Julie Peliconi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France
| | - Paula Vieira-Martins
- Laboratory of Immunology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Marie Courbebaisse
- Paris Cité University, Physiology Department, European Georges-Pompidou Hospital, APHP, INSERM U1151, Paris, France
| | - Béatrice Parfait
- Centre de Ressources Biologiques - site Cochin, Fédération des CRB/PRB, DMU BioPhyGen, AP-HP.Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - David Lebeaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, 75015 Paris, France; Service de Microbiologie, Unité Mobile d'Infectiologie, AP-HP, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015 Paris, France
| | | | - Lubka Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Paris Cité University, Paris, France; Department of Nephrology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Véronique Frémeaux-Bacchi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Laboratory of Immunology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Marie-Agnès Dragon-Durey
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer Team, Paris, France; Laboratory of Immunology, Georges Pompidou European Hospital, APHP, Paris, France; Paris Cité University, Paris, France.
| |
Collapse
|