1
|
Mudassir BU, Mudassir M, Williams JB, Agha Z. Genetic Heterogeneity in Four Probands Reveals HGSNAT, KDM6B, LMNA and WFS1 Related Neurodevelopmental Disorders. Biomedicines 2024; 12:2736. [PMID: 39767643 PMCID: PMC11727043 DOI: 10.3390/biomedicines12122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Neurodevelopmental disorders of genetic etiology are a highly diverse set of congenital recurrent complications triggered by irregularities in the basic tenets of brain development. Methods: We present whole exome sequencing analysis and expression characteristics of the probands from four unrelated Pakistani consanguineous families with facial dysmorphism, neurodevelopmental, ophthalmic, auditory, verbal, psychiatric, behavioral, dental, and skeletal manifestations otherwise unexplained by clinical spectrum. Results: Whole exome sequencing identifies a novel, bi-allelic, missense variant in the HGSNAT gene [NM_152419.3: c.1411G > A (p. Glu471Lys) exon 14] for proband family E-1 and a rare, bi-allelic, non-frameshift variant in the KDM6B gene [NM_001348716.2: c.786_791dupACCACC (p. Pro263_Pro264dup) exon 10] for proband family E-2, and a novel, mono-allelic, missense variant in the LMNA gene [NM_170707.4: c. 1328 A > G (p. Glu443Gly) exon 8] for proband family E-3 and an ultra-rare, mono-allelic, missense variant in the WFS1 gene [NM_006005.3: c.2131G > A (p. Asp711Asn) exon 8] for proband family E-4. Protein modelling shows conformation and size modifications in mutated residues causing damage to the conserved domains expressed as neurocognitive pathology. Conclusions: The current study broadens the distinctly cultural and genetically inbred pool of the Pakistani population for harmful mutations, contributing to the ever-expanding phenotypic palette. The greatest aspirations are molecular genetic profiling and personalized treatment for individuals with complex neurological symptoms to improve their life activities.
Collapse
Affiliation(s)
- Behjat Ul Mudassir
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan;
| | - Mujaddid Mudassir
- Rawalpindi Institute of Cardiology, Rawal Road, Rawalpindi 46000, Pakistan;
| | - Jamal B. Williams
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Zehra Agha
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan;
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Groopman E, Mohan S, Waddell A, Wilke M, Fernandez R, Weaver M, Chen H, Liu H, Bali D, Baudet H, Clarke L, Hung C, Mao R, Pinto E Vairo F, Racacho L, Yuzyuk T, Craigen WJ, Goldstein J. Assessment of genes involved in lysosomal diseases using the ClinGen clinical validity framework. Mol Genet Metab 2024; 143:108593. [PMID: 39426251 PMCID: PMC11560485 DOI: 10.1016/j.ymgme.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Lysosomal diseases (LDs) are a heterogeneous group of rare genetic disorders that result in impaired lysosomal function, leading to progressive multiorgan system dysfunction. Accurate diagnosis is paramount to initiating targeted therapies early in the disease process in addition to providing prognostic information and appropriate support for families. In recent years, genomic sequencing technologies have become the first-line approach in the diagnosis of LDs. Understanding the clinical validity of the role of a gene in a disease is critical for the development of genomic technologies, such as which genes to include on next generation sequencing panels, and the interpretation of results from exome and genome sequencing. To this aim, the ClinGen Lysosomal Diseases Gene Curation Expert Panel utilized a semi-quantitative framework incorporating genetic and experimental evidence to assess the clinical validity of the 56 LD-associated genes on the Lysosomal Disease Network's list. Here, we describe the results, and the key themes and challenges encountered.
Collapse
Affiliation(s)
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber Waddell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Meredith Weaver
- American College of Genetics and Genomics, Bethesda, MD, USA
| | - Hongjie Chen
- PreventionGenetics/Exact Sciences, Marshfield, WI, USA
| | | | | | - Heather Baudet
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorne Clarke
- University of British Columbia, Vancouver, Canada
| | | | - Rong Mao
- ARUP, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA
| | | | | | - Tatiana Yuzyuk
- ARUP, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA
| | | | - Jennifer Goldstein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Lin S, Schiff E, Arno G, Mahroo OA, Webster AR. Unveiling hidden genetic complexity: Coexistence of HGSNAT and EYS variants in a patient with retinal dystrophy. Am J Med Genet A 2024; 194:e63805. [PMID: 38988050 DOI: 10.1002/ajmg.a.63805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Affiliation(s)
- Siying Lin
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Elena Schiff
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Division of Research, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Omar A Mahroo
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, St Thomas' Hospital, London, UK
| | - Andrew R Webster
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
4
|
Lin S, Robson AG, Thompson DA, Stepien KM, Lachmann R, Footitt E, Czyz O, Chandrasekhar S, Schiff E, Iosifidis C, Black GC, Michaelides M, Mahroo OA, Arno G, Webster AR. Non-syndromic retinal dystrophy associated with biallelic variation of SUMF1 and reduced leukocyte sulfatase activity. Clin Genet 2024; 106:505-511. [PMID: 38863195 PMCID: PMC7616411 DOI: 10.1111/cge.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Biallelic variants in SUMF1 are associated with multiple sulfatase deficiency (MSD), a rare lysosomal storage disorder typically diagnosed in early infancy or childhood, marked by severe neurodegeneration and early mortality. We present clinical and molecular characterisation of three unrelated patients aged 13 to 58 years with milder clinical manifestations due to SUMF1 disease variants, including two adult patients presenting with apparent non-syndromic retinal dystrophy. Whole genome sequencing identified biallelic SUMF1 variants in all three patients; Patient 1 homozygous for a complex allele c.[290G>T;293T>A]; p.[(Gly97Val);(Val98Glu)], Patient 2 homozygous for c.866A>G; p.(Tyr289Cys), and Patient 3 compound heterozygous for c.726-1G>C and p.(Tyr289Cys). Electroretinography indicated a rod-cone dystrophy with additional possible inner retinal dysfunction in all three patients. Biochemical studies confirmed reduced, but not absent, sulfatase enzyme activity in the absence of extra-ocular disease (Patient 1) or only mild systemic disease (Patients 2, 3). These cases are suggestive that non-null SUMF1 genotypes can cause an attenuated clinical phenotype, including retinal dystrophy without systemic complications, in adulthood.
Collapse
Affiliation(s)
- Siying Lin
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Anthony G Robson
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Dorothy A Thompson
- Tony Kriss Visual Electrophysiology Unit, Department of Clinical and Academic Department of Ophthalmology, Sight and Sound Centre, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Karolina M Stepien
- Adult Inherited Metabolic Disorders, Salford Royal Organisation, Northern Care Alliance NHS Foundation Trust, London, UK
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Emma Footitt
- Department of Metabolic Paediatrics, Great Ormond Street Hospital, London, UK
| | - Ola Czyz
- Department of Metabolic Paediatrics, Great Ormond Street Hospital, London, UK
| | | | - Elena Schiff
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Christos Iosifidis
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Graeme C Black
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Michel Michaelides
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Omar A Mahroo
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, St Thomas' Hospital, London, UK
| | - Gavin Arno
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Division of Research, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Andrew R Webster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
5
|
Wiśniewska K, Wolski J, Żabińska M, Szulc A, Gaffke L, Pierzynowska K, Węgrzyn G. Mucopolysaccharidosis Type IIIE: A Real Human Disease or a Diagnostic Pitfall? Diagnostics (Basel) 2024; 14:1734. [PMID: 39202222 PMCID: PMC11353205 DOI: 10.3390/diagnostics14161734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Mucopolysaccharidoses (MPS) comprise a group of 12 metabolic disorders where defects in specific enzyme activities lead to the accumulation of glycosaminoglycans (GAGs) within lysosomes. This classification expands to 13 when considering MPS IIIE. This type of MPS, associated with pathogenic variants in the ARSG gene, has thus far been described only in the context of animal models. However, pathogenic variants in this gene also occur in humans, but are linked to a different disorder, Usher syndrome (USH) type IV, which is sparking increasing debate. This paper gathers, discusses, and summarizes arguments both for and against classifying dysfunctions of arylsulfatase G (due to pathogenic variants in the ARSG gene) in humans as another subtype of MPS, called MPS IIIE. Specific difficulties in diagnostics and the classification of some inherited metabolic diseases are also highlighted and discussed.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Jakub Wolski
- Psychiatry Ward, 7th Navy Hospital in Gdansk, Polanki 117, 80-305 Gdansk, Poland;
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Aneta Szulc
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| |
Collapse
|
6
|
Basharat R, de Bruijn SE, Zahid M, Rodenburg K, Hitti-Malin RJ, Rodríguez-Hidalgo M, Boonen EGM, Jarral A, Mahmood A, Corominas J, Khalil S, Zai JA, Ali G, Ruiz-Ederra J, Gilissen C, Cremers FPM, Ansar M, Panneman DM, Roosing S. Next-generation sequencing to genetically diagnose a diverse range of inherited eye disorders in 15 consanguineous families from Pakistan. Exp Eye Res 2024; 244:109945. [PMID: 38815792 DOI: 10.1016/j.exer.2024.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Inherited retinal dystrophies (IRDs) are characterized by photoreceptor dysfunction or degeneration. Clinical and phenotypic overlap between IRDs makes the genetic diagnosis very challenging and comprehensive genomic approaches for accurate diagnosis are frequently required. While there are previous studies on IRDs in Pakistan, causative genes and variants are still unknown for a significant portion of patients. Therefore, there is a need to expand the knowledge of the genetic spectrum of IRDs in Pakistan. Here, we recruited 52 affected and 53 normal individuals from 15 consanguineous Pakistani families presenting non-syndromic and syndromic forms of IRDs. We employed single molecule Molecular Inversion Probes (smMIPs) based panel sequencing and whole genome sequencing to identify the probable disease-causing variants in these families. Using this approach, we obtained a 93% genetic solve rate and identified 16 (likely) causative variants in 14 families, of which seven novel variants were identified in ATOH7, COL18A1, MERTK, NDP, PROM1, PRPF8 and USH2A while nine recurrent variants were identified in CNGA3, CNGB1, HGSNAT, NMNAT1, SIX6 and TULP1. The novel MERTK variant and one recurrent TULP1 variant explained the intra-familial locus heterogeneity in one of the screened families while two recurrent CNGA3 variants explained compound heterozygosity in another family. The identification of variants in known disease-associated genes emphasizes the utilization of time and cost-effective screening approaches for rapid diagnosis. The timely genetic diagnosis will not only identify any associated systemic issues in case of syndromic IRDs, but will also aid in the acceleration of personalized medicine for patients affected with IRDs.
Collapse
Affiliation(s)
- Rabia Basharat
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Zahid
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebekkah J Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - María Rodríguez-Hidalgo
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Erica G M Boonen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Afeefa Jarral
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, (AJK), Pakistan
| | - Arif Mahmood
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sharqa Khalil
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jawaid Ahmed Zai
- Department of Physiology and MLT, University of Sindh, Jamshoro, Pakistan
| | - Ghazanfar Ali
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Javier Ruiz-Ederra
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Ansar
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Daan M Panneman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Thuma TBT, Procopio RA, Jimenez HJ, Gunton KB, Pulido JS. Hypomorphic variants in inherited retinal and ocular diseases: A review of the literature with clinical cases. Surv Ophthalmol 2024; 69:337-348. [PMID: 38036193 DOI: 10.1016/j.survophthal.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Hypomorphic variants decrease, but do not eliminate, gene function via a reduction in the amount of mRNA or protein product produced by a gene or by production of a gene product with reduced function. Many hypomorphic variants have been implicated in inherited retinal diseases (IRDs) and other genetic ocular conditions; however, there is heterogeneity in the use of the term "hypomorphic" in the scientific literature. We searched for all hypomorphic variants reported to cause IRDs and ocular disorders. We also discuss the presence of hypomorphic variants in the patient population of our ocular genetics department over the past decade. We propose that standardized criteria should be adopted for use of the term "hypomorphic" to describe gene variants to improve genetic counseling and patient care outcomes.
Collapse
Affiliation(s)
- Tobin B T Thuma
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | | | - Hiram J Jimenez
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA
| | - Kammi B Gunton
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | - Jose S Pulido
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Retina Service, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
8
|
da Palma MM, Marra M, Igelman AD, Ku CA, Burr A, Andersen K, Everett LA, Porto FBO, Sallum JMF, Yang P, Pennesi ME. Expanding the phenotypic and genotypic spectrum of patients with HGSNAT-related retinopathy. Ophthalmic Genet 2024; 45:167-174. [PMID: 37592806 DOI: 10.1080/13816810.2023.2245035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Variants in HGSNAT have historically been associated with syndromic mucopolysaccharidosis type IIIC (MPSIIIC) but more recent studies demonstrate cases of HGSNAT-related non-syndromic retinitis pigmentosa. We describe and expand the genotypic and phenotypic spectrum of this disease. MATERIALS AND METHODS This is a retrospective, observational, case series of 11 patients with pericentral retinitis pigmentosa due to variants in HGSNAT gene without a syndromic diagnosis of MPSIIIC. We reviewed ophthalmologic data extracted from medical records, genetic testing, color fundus photos, fundus autofluorescence (FAF), and optical coherence tomography (OCT). RESULTS Of the 11 patients, the mean age was 52 years (range: 26-78). The mean age of ophthalmologic symptoms onset was 45 years (range: 15-72). The visual acuity varied from 20/20 to 20/80 (mean 20/30 median 20/20). We described five novel variants in HGSNAT: c.715del (p.Arg239Alafs *37), c.118 G>A (p.Asp40Asn), c.1218_1220delinsTAT, c.1297A>G (p.Asn433Asp), and c.1726 G>T (p.Gly576*). CONCLUSIONS HGSNAT has high phenotypic heterogeneity. Data from our cohort showed that all patients who had at least one variant of c.1843 G>A (p.Ala615Thr) presented with the onset of ocular symptoms after the fourth decade of life. The two patients with onset of ocular symptoms before the fourth decade did not carry this variant. This may suggest that c.1843 G>A variant is associated with a later onset of retinopathy.
Collapse
Affiliation(s)
- Mariana Matioli da Palma
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Ophthalmology and Visual Sciences, Universidade Federal de São Paulo Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo, Brazil
- Department of Surgery & Hospital Clinic of Barcelona, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Austin D Igelman
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Cristy A Ku
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California, USA
| | - Amanda Burr
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Katherine Andersen
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Lesley A Everett
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | | | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology and Visual Sciences, Universidade Federal de São Paulo Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo, Brazil
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute at Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
9
|
Hewson L, Choo A, Webber DL, Trim PJ, Snel MF, Fedele AO, Hopwood JJ, Hemsley KM, O'Keefe LV. Drosophila melanogaster models of MPS IIIC (Hgsnat-deficiency) highlight the role of glia in disease presentation. J Inherit Metab Dis 2024; 47:340-354. [PMID: 38238109 DOI: 10.1002/jimd.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 03/16/2024]
Abstract
Sanfilippo syndrome (Mucopolysaccharidosis type III or MPS III) is a recessively inherited neurodegenerative lysosomal storage disorder. Mutations in genes encoding enzymes in the heparan sulphate degradation pathway lead to the accumulation of partially degraded heparan sulphate, resulting ultimately in the development of neurological deficits. Mutations in the gene encoding the membrane protein heparan-α-glucosaminide N-acetyltransferase (HGSNAT; EC2.3.1.78) cause MPS IIIC (OMIM#252930), typified by impaired cognition, sleep-wake cycle changes, hyperactivity and early death, often before adulthood. The precise disease mechanism that causes symptom emergence remains unknown, posing a significant challenge in the development of effective therapeutics. As HGSNAT is conserved in Drosophila melanogaster, we now describe the creation and characterisation of the first Drosophila models of MPS IIIC. Flies with either an endogenous insertion mutation or RNAi-mediated knockdown of hgsnat were confirmed to have a reduced level of HGSNAT transcripts and age-dependent accumulation of heparan sulphate leading to engorgement of the endo/lysosomal compartment. This resulted in abnormalities at the pre-synapse, defective climbing and reduced overall activity. Altered circadian rhythms (shift in peak morning activity) were seen in hgsnat neuronal knockdown lines. Further, when hgsnat was knocked down in specific glial subsets (wrapping, cortical, astrocytes or subperineural glia), impaired climbing or reduced activity was noted, implying that hgsnat function in these specific glial subtypes contributes significantly to this behaviour and targeting treatments to these cell groups may be necessary to ameliorate or prevent symptom onset. These novel models of MPS IIIC provide critical research tools for delineating the key cellular pathways causal in the onset of neurodegeneration in this presently untreatable disorder.
Collapse
Affiliation(s)
- Laura Hewson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Amanda Choo
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Dani L Webber
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Paul J Trim
- Proteomics, Metabolomics & MS-Imaging Core, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Marten F Snel
- Proteomics, Metabolomics & MS-Imaging Core, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Anthony O Fedele
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - John J Hopwood
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kim M Hemsley
- Childhood Dementia Research Group, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Louise V O'Keefe
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Liang Y, Gao X, Lu D, Zhang H, Zhang. Mucopolysaccharidosis type IIIC in chinese mainland: clinical and molecular characteristics of ten patients and report of six novel variants in the HGSNAT gene. Metab Brain Dis 2023; 38:2013-2023. [PMID: 37014526 DOI: 10.1007/s11011-023-01204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Mucopolysaccharidosis type IIIC (MPS IIIC; Sanfilippo syndrome C) is a rare lysosomal storage disease caused by mutations in the heparan-α-glucosaminide N-acetyltransferase (HGSNAT) gene, resulting in the accumulation of heparan sulfate. MPS IIIC is characterized by severe neuropsychiatric symptoms and mild somatic symptoms. METHODS Our study analyzed the clinical presentation and biochemical characteristics of ten Chinese MPS IIIC patients from eight families. Whole exome sequencing was applied to identify the variants in HGSNAT gene. In one patient with only one mutant allele identified firstly, whole genome sequencing was applied. The pathogenic effect of novel variants was evaluated in silico. RESULTS The mean age at the onset of clinical symptoms was 4.2 ± 2.5 years old, and the mean age of diagnosis was 7.6 ± 4.5 years old, indicating a delay of diagnosis. The most common onset symptoms were speech deterioration, and the most frequent presenting symptoms are speech deterioration, mental deterioration, hyperactivity and hepatomegaly, sequentially. All mutant alleles of 10 patients have been identified. There were eleven different HGSNAT variants, and the most common one was a previously reported variant c.493 + 1G > A. There were six novel variants, p.R124T, p.G290A, p.G426E, c.743 + 101_743 + 102delTT, c.851 + 171T > A and p.V582Yfs*18 in our cohort. Extraordinarily, two deep intron variants were identified in our cohort, with the variant c.851 + 171T > A identified by whole genome sequencing. CONCLUSION This study analyzed the clinical, biochemical, and genetic characteristics of ten Chinese MPS IIIC patients, which would assist in the early diagnosis and genetic counselling of MPS IIIC.
Collapse
Affiliation(s)
- Yingjun Liang
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665 #, Shanghai, 200092, China
| | - Xiaolan Gao
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665 #, Shanghai, 200092, China
| | - Deyun Lu
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665 #, Shanghai, 200092, China
| | - Huiwen Zhang
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665 #, Shanghai, 200092, China.
| | - Zhang
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665 #, Shanghai, 200092, China
| |
Collapse
|
11
|
Zlotogora J, Harel T, Meiner V. Explanations for the discrepancy between variant frequency and homozygous disease occurrence: Lessons from Ashkenazi Jewish data. Eur J Med Genet 2023; 66:104765. [PMID: 37028505 DOI: 10.1016/j.ejmg.2023.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Ample data on recessive disorders among Ashkenazi Jews has been gathered and published through the years. The opportunity to integrate molecular records analyzed in actual affected individuals with data derived from population-documented frequencies enables to compare these figures. We reviewed assumed pathogenic variants reported among patients in the Israeli medical genetic database (IMGD) with a carrier frequency of 1% or more among Ashkenazi Jews in gnomAD. Among the 60 assumed pathogenic variants recorded in IMGD, 15 (25%) had either a disease incidence considerably lower than expected by the calculated carrier frequency (12 variants), or the variant was not characterized in Ashkenazi Jewish patients (three variants). Possible explanations for the rarity or absence of affected individuals despite high carrier frequency include embryonic lethality, clinical variability, and incomplete and age-related penetrance, in addition to the existence of additional assumed pathogenic variants on the founder haplotype, hypomorphic variants or digenic inheritance. The discrepancy in actual versus expected number of patients calls for caution upon designing and choosing targeted genes and recessive mutations for carrier screening.
Collapse
Affiliation(s)
- Joël Zlotogora
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 9112001, Israel.
| | - Tamar Harel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 9112001, Israel; Department of Genetics, Hadassah Medical Organization, Jerusalem, 9112001, Israel
| | - Vardiella Meiner
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 9112001, Israel; Department of Genetics, Hadassah Medical Organization, Jerusalem, 9112001, Israel
| |
Collapse
|
12
|
Ludwig J, Sawant OB, Wood J, Singamsetty S, Pan X, Bonilha VL, Rao S, Pshezhetsky AV. Histological characterization of retinal degeneration in mucopolysaccharidosis type IIIC. Exp Eye Res 2023; 229:109433. [PMID: 36858249 PMCID: PMC10103010 DOI: 10.1016/j.exer.2023.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Heparan-α-glucosaminide N-acetyltransferase (HGSNAT) participates in lysosomal degradation of heparan sulfate. Mutations in the gene encoding this enzyme cause mucopolysaccharidosis IIIC (MPS IIIC) or Sanfilippo syndrome type C. MPS IIIC patients exhibit progressive neurodegeneration, leading to dementia and death in early adulthood. Currently there is no approved treatment for MPS IIIC. Incidences of non-syndromic retinitis pigmentosa and early signs of night blindness are reported in some MPS IIIC patients, however the majority of ocular phenotypes are not well characterized. The goal of this study was to investigate retinal degeneration phenotype in the Hgsnat knockout mouse model of MPS IIIC and a cadaveric human MPS IIIC eye. Cone and rod photoreceptors in the eyes of homozygous 6-month-old Hgsnat knockout mice and their wild-type counterparts were analyzed using cone arrestin, S-opsin, M-opsin and rhodopsin antibodies. Histological observation was performed on the eye from a 35-year-old MPS IIIC donor. We observed a nearly 50% reduction in the rod photoreceptors density in the Hgsnat knockout mice compared to the littermate wild-type controls. Cone photoreceptor density was unaltered at this age. Severe retinal degeneration was also observed in the MPS IIIC donor eye. To our knowledge, this is the first report characterizing ocular phenotypes arising from deleterious variants in the Hgsnat gene associated with MPS IIIC clinical phenotype. Our findings indicate retinal manifestations may be present even before behavioral manifestations. Thus, we speculate that ophthalmological evaluations could be used as diagnostic indicators of early disease, progression, and end-point evaluation for future MPS IIIC therapies.
Collapse
Affiliation(s)
- Jessica Ludwig
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, 44103, USA
| | - Onkar B Sawant
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, 44103, USA.
| | | | | | - Xuefang Pan
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Vera L Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alexey V Pshezhetsky
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Jurkute N, Cancellieri F, Pohl L, Li CHZ, Heaton RA, Reurink J, Bellingham J, Quinodoz M, Yioti G, Stefaniotou M, Weener M, Zuleger T, Haack TB, Stingl K, Hoyng CB, Mahroo OA, Hargreaves I, Raymond FL, Michaelides M, Rivolta C, Kohl S, Roosing S, Webster AR, Arno G. Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype. NPJ Genom Med 2022; 7:60. [PMID: 36266294 PMCID: PMC9581764 DOI: 10.1038/s41525-022-00330-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to investigate coenzyme Q10 (CoQ10) biosynthesis pathway defects in inherited retinal dystrophy. Individuals affected by inherited retinal dystrophy (IRD) underwent exome or genome sequencing for molecular diagnosis of their condition. Following negative IRD gene panel analysis, patients carrying biallelic variants in CoQ10 biosynthesis pathway genes were identified. Clinical data were collected from the medical records. Haplotypes harbouring the same missense variant were characterised from family genome sequencing (GS) data and direct Sanger sequencing. Candidate splice variants were characterised using Oxford Nanopore Technologies single molecule sequencing. The CoQ10 status of the human plasma was determined in some of the study patients. 13 individuals from 12 unrelated families harboured candidate pathogenic genotypes in the genes: PDSS1, COQ2, COQ4 and COQ5. The PDSS1 variant c.589 A > G was identified in three affected individuals from three unrelated families on a possible ancestral haplotype. Three variants (PDSS1 c.468-25 A > G, PDSS1 c.722-2 A > G, COQ5 c.682-7 T > G) were shown to lead to cryptic splicing. 6 affected individuals were diagnosed with non-syndromic retinitis pigmentosa and 7 had additional clinical findings. This study provides evidence of CoQ10 biosynthesis pathway gene defects leading to non-syndromic retinitis pigmentosa in some cases. Intronic variants outside of the canonical splice-sites represent an important cause of disease. RT-PCR nanopore sequencing is effective in characterising these splice defects.
Collapse
Affiliation(s)
- Neringa Jurkute
- Moorfields Eye Hospital NHS Foundation Trust, London, UK. .,Institute of Ophthalmology, University College London, London, UK.
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lisa Pohl
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Catherina H Z Li
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores, Liverpool, UK
| | - Janine Reurink
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Bellingham
- Institute of Ophthalmology, University College London, London, UK
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Georgia Yioti
- University of Ioannina Medical School, Ioannina, Greece
| | | | | | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | | | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Omar A Mahroo
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Institute of Ophthalmology, University College London, London, UK
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores, Liverpool, UK
| | - F Lucy Raymond
- NIHR BioResource-Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Institute of Ophthalmology, University College London, London, UK
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Susanne Roosing
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- Moorfields Eye Hospital NHS Foundation Trust, London, UK. .,Institute of Ophthalmology, University College London, London, UK. .,North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
14
|
Fadaie Z, Whelan L, Ben-Yosef T, Dockery A, Corradi Z, Gilissen C, Haer-Wigman L, Corominas J, Astuti GDN, de Rooij L, van den Born LI, Klaver CCW, Hoyng CB, Wynne N, Duignan ES, Kenna PF, Cremers FPM, Farrar GJ, Roosing S. Whole genome sequencing and in vitro splice assays reveal genetic causes for inherited retinal diseases. NPJ Genom Med 2021; 6:97. [PMID: 34795310 PMCID: PMC8602293 DOI: 10.1038/s41525-021-00261-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a major cause of visual impairment. These clinically heterogeneous disorders are caused by pathogenic variants in more than 270 genes. As 30-40% of cases remain genetically unexplained following conventional genetic testing, we aimed to obtain a genetic diagnosis in an IRD cohort in which the genetic cause was not found using whole-exome sequencing or targeted capture sequencing. We performed whole-genome sequencing (WGS) to identify causative variants in 100 unresolved cases. After initial prioritization, we performed an in-depth interrogation of all noncoding and structural variants in genes when one candidate variant was detected. In addition, functional analysis of putative splice-altering variants was performed using in vitro splice assays. We identified the genetic cause of the disease in 24 patients. Causative coding variants were observed in genes such as ATXN7, CEP78, EYS, FAM161A, and HGSNAT. Gene disrupting structural variants were also detected in ATXN7, PRPF31, and RPGRIP1. In 14 monoallelic cases, we prioritized candidate noncanonical splice sites or deep-intronic variants that were predicted to disrupt the splicing process based on in silico analyses. Of these, seven cases were resolved as they carried pathogenic splice defects. WGS is a powerful tool to identify causative variants residing outside coding regions or heterozygous structural variants. This approach was most efficient in cases with a distinct clinical diagnosis. In addition, in vitro splice assays provide important evidence of the pathogenicity of rare variants.
Collapse
Affiliation(s)
- Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Whelan
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adrian Dockery
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Laura de Rooij
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niamh Wynne
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Emma S Duignan
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Jane Farrar
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Thorsteinsson DA, Stefansdottir V, Eysteinsson T, Thorisdottir S, Jonsson JJ. Molecular genetics of inherited retinal degenerations in Icelandic patients. Clin Genet 2021; 100:156-167. [PMID: 33851411 PMCID: PMC8360171 DOI: 10.1111/cge.13967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022]
Abstract
The study objective was to delineate the genetics of inherited retinal degenerations (IRDs) in Iceland, a small nation of 364.000 and a genetic isolate. Benefits include delineating novel pathogenic genetic variants and defining genetically homogenous patients as potential investigative molecular therapy candidates. The study sample comprised patients with IRD in Iceland ascertained through national centralized genetic and ophthalmological services at Landspitali, a national social support institute, and the Icelandic patient association. Information on patients' disease, syndrome, and genetic testing was collected in a clinical registry. Variants were reevaluated according to ACMG/AMP guidelines. Overall, 140 IRD patients were identified (point prevalence of 1/2.600), of which 70 patients had a genetic evaluation where two-thirds had an identified genetic cause. Thirteen disease genes were found in patients with retinitis pigmentosa, with the RLBP1 gene most common (n = 4). The c.1073 + 5G > A variant in the PRPF31 gene was homozygous in two RP patients. All tested patients with X-linked retinoschisis (XLRS) had the same possibly unique RS1 pathogenic variant, c.441G > A (p.Trp147X). Pathologic variants and genes for IRDs in Iceland did not resemble those described in ancestral North-Western European nations. Four variants were reclassified as likely pathogenic. One novel pathogenic variant defined a genetically homogenous XLRS patient group.
Collapse
Affiliation(s)
| | - Vigdis Stefansdottir
- Department of Genetics and Molecular Medicine, Landspitali - National University Hospital of Iceland, Reykjavik, Iceland
| | - Thor Eysteinsson
- Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Ophthalmology, Landspitali - National University Hospital of Iceland, Reykjavik, Iceland
| | - Sigridur Thorisdottir
- Department of Ophthalmology, Landspitali - National University Hospital of Iceland, Reykjavik, Iceland
| | - Jon J Jonsson
- Department of Genetics and Molecular Medicine, Landspitali - National University Hospital of Iceland, Reykjavik, Iceland.,Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
16
|
Beard H, Chidlow G, Neumann D, Nazri N, Douglass M, Trim PJ, Snel MF, Casson RJ, Hemsley KM. Is the eye a window to the brain in Sanfilippo syndrome? Acta Neuropathol Commun 2020; 8:194. [PMID: 33203474 PMCID: PMC7672954 DOI: 10.1186/s40478-020-01070-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
Sanfilippo syndrome is an untreatable form of childhood-onset dementia. Whilst several therapeutic strategies are being evaluated in human clinical trials including i.v. delivery of AAV9-based gene therapy, an urgent unmet need is the availability of non-invasive, quantitative measures of neurodegeneration. We hypothesise that as part of the central nervous system, the retina may provide a window through which to 'visualise' degenerative lesions in brain and amelioration of them following treatment. This is reliant on the age of onset and the rate of disease progression being equivalent in retina and brain. For the first time we have assessed in parallel, the nature, age of onset and rate of retinal and brain degeneration in a mouse model of Sanfilippo syndrome. Significant accumulation of heparan sulphate and expansion of the endo/lysosomal system was observed in both retina and brain pre-symptomatically (by 3 weeks of age). Robust and early activation of micro- and macroglia was also observed in both tissues. There was substantial thinning of retina and loss of rod and cone photoreceptors by ~ 12 weeks of age, a time at which cognitive symptoms are noted. Intravenous delivery of a clinically relevant AAV9-human sulphamidase vector to neonatal mice prevented disease lesion appearance in retina and most areas of brain when assessed 6 weeks later. Collectively, the findings highlight the previously unrecognised early and significant involvement of retina in the Sanfilippo disease process, lesions that are preventable by neonatal treatment with AAV9-sulphamidase. Critically, our data demonstrate for the first time that the advancement of retinal disease parallels that occurring in brain in Sanfilippo syndrome, thus retina may provide an easily accessible neural tissue via which brain disease development and its amelioration with treatment can be monitored.
Collapse
|
17
|
Hufnagel RB, Walter MA, Arno G. Introduction to the special issue on Ophthalmic Genetics: Vision in 2020. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:535-537. [PMID: 32864823 DOI: 10.1002/ajmg.c.31841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 11/05/2022]
Abstract
In this special issue of the American Journal of Medical Genetics, Part C, we explore the ever-expanding field of Ophthalmic Genetics. The eye is unique among organs for its accessibility to physical examination, permitting exploration of every tissue by slit lamp microscopy, ophthalmoscopy, and imaging including color and autofluorescent photography, ultrasound, optical coherence tomography (OCT), electrophysiology, and adaptive optics confocal and scanning laser ophthalmoscopy. This accessibility permits a variety of surgical and nonsurgical treatments, including the first FDA-approved gene therapy, voretigene neparvovec-rzyl for RPE65-associated Leber Congenital Amaurosis. In this issue, we sought to provide a survey highlighting how heritable ophthalmic disorders are recognizable and accessible to clinical geneticists as well as ophthalmologists.
Collapse
Affiliation(s)
- Robert B Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A Walter
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| |
Collapse
|