1
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
2
|
Fukuda S, Ando T. Technical advances in high-speed atomic force microscopy. Biophys Rev 2023; 15:2045-2058. [PMID: 38192344 PMCID: PMC10771405 DOI: 10.1007/s12551-023-01171-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/19/2023] [Indexed: 01/10/2024] Open
Abstract
It has been 30 years since the outset of developing high-speed atomic force microscopy (HS-AFM), and 15 years have passed since its establishment in 2008. This advanced microscopy is capable of directly visualizing individual biological macromolecules in dynamic action and has been widely used to answer important questions that are inaccessible by other approaches. The number of publications on the bioapplications of HS-AFM has rapidly increased in recent years and has already exceeded 350. Although less visible than these biological studies, efforts have been made for further technical developments aimed at enhancing the fundamental performance of HS-AFM, such as imaging speed, low sample disturbance, and scan size, as well as expanding its functionalities, such as correlative microscopy, temperature control, buffer exchange, and sample manipulations. These techniques can expand the range of HS-AFM applications. After summarizing the key technologies underlying HS-AFM, this article focuses on recent technical advances and discusses next-generation HS-AFM.
Collapse
Affiliation(s)
- Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192 Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192 Japan
| |
Collapse
|
3
|
Abstract
Bacteriorhodopsin is a seven-helix light-driven proton-pump that was structurally and functionally extensively studied. Despite a wealth of data, the single molecule kinetics of the reaction cycle remain unknown. Here, we use high-speed atomic force microscopy methods to characterize the single molecule kinetics of wild-type bR exposed to continuous light and short pulses. Monitoring bR conformational changes with millisecond temporal resolution, we determine that the cytoplasmic gate opens 2.9 ms after photon absorption, and stays open for proton capture for 13.2 ms. Surprisingly, a previously active protomer cannot be reactivated for another 37.6 ms, even under excess continuous light, giving a single molecule reaction cycle of ~20 s−1. The reaction cycle slows at low light where the closed state is prolonged, and at basic or acidic pH where the open state is extended. Here, the authors use high-speed atomic force microscopy (HS-AFM) methods to characterize the single molecule kinetics of wild-type bacteriorhodopsin (bR) with millisecond temporal resolution, providing new insights into the bR conformational cycle.
Collapse
|
4
|
Heath GR, Lin YC, Matin TR, Scheuring S. Structural dynamics of channels and transporters by high-speed atomic force microscopy. Methods Enzymol 2021; 652:127-159. [PMID: 34059280 DOI: 10.1016/bs.mie.2021.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Channels and transporters are vital for transmembrane transport of ions and solutes, and also of larger compounds such as lipids and macromolecules. Therefore, they are crucial in many biological processes such as sensing, signal transduction, and the regulation of the distribution of molecules. Dysfunctions of these membrane proteins are associated to numerous diseases, and their interaction with drugs is critical in medicine. Understanding the behavior of channels and transporters requires structural and dynamic information to decipher the molecular mechanisms underlying their function. High-Speed Atomic Force Microscopy (HS-AFM) now allows the study of single transmembrane channels and transporters in action under physiological conditions, i.e., at ambient temperature and pressure, in physiological buffer and in a membrane, and in a most direct, label-free manner. In this chapter, we discuss the HS-AFM sample preparation, application, and data analysis protocols to study the structural and conformational dynamics of membrane-embedded channels and transporters.
Collapse
Affiliation(s)
- George R Heath
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Yi-Chih Lin
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States
| | - Tina R Matin
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States; Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, United States.
| |
Collapse
|
5
|
Stauffer M, Hirschi S, Ucurum Z, Harder D, Schlesinger R, Fotiadis D. Engineering and Production of the Light-Driven Proton Pump Bacteriorhodopsin in 2D Crystals for Basic Research and Applied Technologies. Methods Protoc 2020; 3:mps3030051. [PMID: 32707904 PMCID: PMC7563565 DOI: 10.3390/mps3030051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022] Open
Abstract
The light-driven proton pump bacteriorhodopsin (BR) from the extreme halophilic archaeon Halobacterium salinarum is a retinal-binding protein, which forms highly ordered and thermally stable 2D crystals in native membranes (termed purple membranes). BR and purple membranes (PMs) have been and are still being intensively studied by numerous researchers from different scientific disciplines. Furthermore, PMs are being successfully used in new, emerging technologies such as bioelectronics and bionanotechnology. Most published studies used the wild-type form of BR, because of the intrinsic difficulty to produce genetically modified versions in purple membranes homologously. However, modification and engineering is crucial for studies in basic research and, in particular, to tailor BR for specific applications in applied sciences. We present an extensive and detailed protocol ranging from the genetic modification and cultivation of H. salinarum to the isolation, and biochemical, biophysical and functional characterization of BR and purple membranes. Pitfalls and problems of the homologous expression of BR versions in H. salinarum are discussed and possible solutions presented. The protocol is intended to facilitate the access to genetically modified BR versions for researchers of different scientific disciplines, thus increasing the application of this versatile biomaterial.
Collapse
Affiliation(s)
- Mirko Stauffer
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
- Correspondence: (R.S.); (D.F.)
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
- Correspondence: (R.S.); (D.F.)
| |
Collapse
|
6
|
Dasgupta B, Miyashita O, Tama F. Reconstruction of low-resolution molecular structures from simulated atomic force microscopy images. Biochim Biophys Acta Gen Subj 2019; 1864:129420. [PMID: 31472175 DOI: 10.1016/j.bbagen.2019.129420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Atomic Force Microscopy (AFM) is an experimental technique to study structure-function relationship of biomolecules. AFM provides images of biomolecules at nanometer resolution. High-speed AFM experiments produce a series of images following dynamics of biomolecules. To further understand biomolecular functions, information on three-dimensional (3D) structures is beneficial. METHOD We aim to recover 3D information from an AFM image by computational modeling. The AFM image includes only low-resolution representation of a molecule; therefore we represent the structures by a coarse grained model (Gaussian mixture model). Using Monte-Carlo sampling, candidate models are generated to increase similarity between AFM images simulated from the models and target AFM image. RESULTS The algorithm was tested on two proteins to model their conformational transitions. Using a simulated AFM image as reference, the algorithm can produce a low-resolution 3D model of the target molecule. Effect of molecular orientations captured in AFM images on the 3D modeling performance was also examined and it is shown that similar accuracy can be obtained for many orientations. CONCLUSIONS The proposed algorithm can generate 3D low-resolution protein models, from which conformational transitions observed in AFM images can be interpreted in more detail. GENERAL SIGNIFICANCE High-speed AFM experiments allow us to directly observe biomolecules in action, which provides insights on biomolecular function through dynamics. However, as only partial structural information can be obtained from AFM data, this new AFM based hybrid modeling method would be useful to retrieve 3D information of the entire biomolecule.
Collapse
Affiliation(s)
- Bhaskar Dasgupta
- Center for Computational Science, RIKEN, Kobe, Hyogo, 650-0047, Japan.
| | - Osamu Miyashita
- Center for Computational Science, RIKEN, Kobe, Hyogo, 650-0047, Japan.
| | - Florence Tama
- Center for Computational Science, RIKEN, Kobe, Hyogo, 650-0047, Japan; Department of Physics, Graduate School of Science, Nagoya University, Aichi, 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Aichi, 464-8601, Japan.
| |
Collapse
|
7
|
Abstract
Of all the macromolecular assemblies of life, the least understood is the biomembrane. This is especially true in regard to its atomic structure. Ideas on biomembranes, developed in the last 200 years, culminated in the fluid mosaic model of the membrane. In this essay, I provide a historical outline of how we arrived at our current understanding of biomembranes and the models we use to describe them. A selection of direct experimental findings on the nano-scale structure of biomembranes is taken up to discuss their physical nature, and special emphasis is put on the surprising insights that arise from atomic scale descriptions.
Collapse
|
8
|
Heath GR, Scheuring S. Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters. Curr Opin Struct Biol 2019; 57:93-102. [PMID: 30878714 DOI: 10.1016/j.sbi.2019.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Recent advances in high-speed atomic force microscopy (HS-AFM) have made it possible to study the conformational dynamics of single unlabeled transmembrane channels and transporters. Improving environmental control with the integration of a non-disturbing buffer exchange system, which in turn allows the gradual change of conditions during HS-AFM operation, has provided a breakthrough toward the performance of structural titration experiments. Further advancements in temporal resolution with the use of line scanning and height spectroscopy techniques show how high-speed atomic force microscopy can measure millisecond to microsecond dynamics, pushing this method beyond current spatial and temporal limits offered by less direct techniques.
Collapse
Affiliation(s)
- George R Heath
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065, USA
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
9
|
Wang N, Zhang M, Chen X, Ma X, Li C, Zhang Z, Tang J. Mapping the interaction sites of Mucin 1 and DNA aptamer by atomic force microscopy. Analyst 2018; 142:3800-3804. [PMID: 28930315 DOI: 10.1039/c7an01119a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mucin 1 (MUC1) is an attractive tumor marker for cancer diagnosis. An advanced atomic force microscopy (AFM) mode, peak-force tapping AFM with an aptamer functionalized tip, was introduced to map the specific interaction sites of an aptamer and MUC1. Single molecular force spectroscopy (SMFS) was used to investigate dynamic parameters of the aptamer-MUC1.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
10
|
刘 林, 魏 余, 刘 文, 孙 彤, 王 凯, 汪 颖, 李 宾. [Progress in the applications of high-speed atomic force microscopy in cell biology]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:931-937. [PMID: 30187879 PMCID: PMC6744042 DOI: 10.3969/j.issn.1673-4254.2018.08.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Indexed: 12/24/2022]
Abstract
Without losing its high resolution, high-speed atomic force microscope (HS-AFM) represents a perfect combinationof scanning speed and precision and allows real-time and in situ observation of the dynamic processes in a biological system atboth the cellular and molecular levels. By combining the extremely high temporal resolution with the spatial resolution andcoupling with other advanced technologies, HS-AFM shows promising prospects for applications in life sciences such as cellbiology. In this review, we summarize the latest progress of HS-AFM in the field of cell biology, and discuss the impact ofenvironmental factors on conformation dynamics of DNA, the binding processes between DNA and protein, the domainchanges of membrane proteins, motility of myosin, and surface structure changes of living cells.
Collapse
Affiliation(s)
- 林 刘
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- 中国科学院大学,北京 100049University of Chinese Academy of Sciences, Beijing 100049, China
| | - 余辉 魏
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - 文静 刘
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- 中国科学院大学,北京 100049University of Chinese Academy of Sciences, Beijing 100049, China
| | - 彤 孙
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- 中国科学院大学,北京 100049University of Chinese Academy of Sciences, Beijing 100049, China
| | - 凯喆 王
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- 中国科学院大学,北京 100049University of Chinese Academy of Sciences, Beijing 100049, China
| | - 颖 汪
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - 宾 李
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
11
|
Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci Rep 2018; 8:8262. [PMID: 29844455 PMCID: PMC5974397 DOI: 10.1038/s41598-018-26606-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023] Open
Abstract
Oligomeric assembly is a common feature of membrane proteins and often relevant to their physiological functions. Determining the stoichiometry and the oligomeric state of membrane proteins in a lipid bilayer is generally challenging because of their large size, complexity, and structural alterations under experimental conditions. Here, we use high-speed atomic force microscopy (HS-AFM) to directly observe the oligomeric states in the lipid membrane of various microbial rhodopsins found within eubacteria to archaea. HS-AFM images show that eubacterial rhodopsins predominantly exist as pentamer forms, while archaeal rhodopsins are trimers in the lipid membrane. In addition, circular dichroism (CD) spectroscopy reveals that pentameric rhodopsins display inverted CD couplets compared to those of trimeric rhodopsins, indicating different types of exciton coupling of the retinal chromophore in each oligomer. The results clearly demonstrate that the stoichiometry of the fundamental oligomer of microbial rhodopsins strongly correlate with the phylogenetic tree, providing a new insight into the relationship between the oligomeric structure and function-structural evolution of microbial rhodopsins.
Collapse
|
12
|
Uchihashi T, Scheuring S. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes. Biochim Biophys Acta Gen Subj 2018; 1862:229-240. [DOI: 10.1016/j.bbagen.2017.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022]
|
13
|
Yeow N, Tabor RF, Garnier G. Atomic force microscopy: From red blood cells to immunohaematology. Adv Colloid Interface Sci 2017; 249:149-162. [PMID: 28515013 DOI: 10.1016/j.cis.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
Atomic force microscopy (AFM) offers complementary imaging modes that can provide morphological and structural details of red blood cells (RBCs), and characterize interactions between specific biomolecules and RBC surface antigen. This review describes the applications of AFM in determining RBC health by the observation of cell morphology, elasticity and surface roughness. Measurement of interaction forces between plasma proteins and antibodies against RBC surface antigen using the AFM also brought new information to the immunohaematology field. With constant improvisation of the AFM in resolution and imaging time, the reaction of RBC to changes in the physico-chemistry of its environment and the presence of RBC surface antigen specific-biomolecules is achievable.
Collapse
|
14
|
Shibata M, Watanabe H, Uchihashi T, Ando T, Yasuda R. High-speed atomic force microscopy imaging of live mammalian cells. Biophys Physicobiol 2017; 14:127-135. [PMID: 28900590 PMCID: PMC5590786 DOI: 10.2142/biophysico.14.0_127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons.
Collapse
Affiliation(s)
- Mikihiro Shibata
- High-speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Watanabe
- Research Institute of Biomolecule Metrology Co., Ltd., Tsukuba, Ibaraki 305-0853, Japan
| | - Takayuki Uchihashi
- Department of Physics and Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| |
Collapse
|
15
|
Ida H, Takahashi Y, Kumatani A, Shiku H, Matsue T. High Speed Scanning Ion Conductance Microscopy for Quantitative Analysis of Nanoscale Dynamics of Microvilli. Anal Chem 2017; 89:6015-6020. [DOI: 10.1021/acs.analchem.7b00584] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hiroki Ida
- Graduate
School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8576, Japan
| | - Yasufumi Takahashi
- Division
of Electrical Engineering and Computer Science, Kakuma-machi, Kanazawa University, Kanazawa 920-1192, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Akichika Kumatani
- Graduate
School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8576, Japan
- Advanced
Institute for Material Research (AIMR), Tohoku University, Sendai, Miyagi 980-8576, Japan
| | - Hitoshi Shiku
- Department
of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Tomokazu Matsue
- Graduate
School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8576, Japan
- Advanced
Institute for Material Research (AIMR), Tohoku University, Sendai, Miyagi 980-8576, Japan
| |
Collapse
|
16
|
Uchihashi T, Watanabe H, Fukuda S, Shibata M, Ando T. Functional extension of high-speed AFM for wider biological applications. Ultramicroscopy 2016; 160:182-196. [DOI: 10.1016/j.ultramic.2015.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/25/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
|
17
|
Duan X, Liu Z, Gan Y, Xia D, Li Q, Li Y, Yang J, Gao S, Dong M. Mutations in COL1A1 Gene Change Dentin Nanostructure. Anat Rec (Hoboken) 2015; 299:511-9. [PMID: 26694865 DOI: 10.1002/ar.23308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 11/06/2022]
Abstract
Although many studies have attempted to associate specific gene mutations with dentin phenotypic severity, it remains unknown how the mutations in COL1A1 gene influence the mechanical behavior of dentin collagen and matrix. Here, we reported one osteogenesis imperfecta (OI) pedigree caused by two new inserting mutations in exon 5 of COL1A1 (NM_000088.3:c.440_441insT;c.441_442insA), which resulted in the unstable expression of COL1A1 mRNA and half quantity of procollagen production. We investigated the morphological and mechanical features of proband's dentin using atomic force microscope (AFM), scanning electron microscope, and transmission electron microscope. Increased D-periodic spacing, variably enlarged collagen fibrils coating with fewer minerals were found in the mutated collagen. AFM analysis demonstrated rougher dentin surface and sparsely decreased Young's modulus in proband's dentin. We believe that our findings provide new insights into the genetic-/nano- mechanisms of dentin diseases, and may well explain OI dentin features with reduced mechanical strength and a lower crosslinked density.
Collapse
Affiliation(s)
- Xiaohong Duan
- State Key Laboratory of Military Stomatology, Department of Oral Biology Clinic of Oral Rare Diseases and Genetic Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhenxia Liu
- State Key Laboratory of Military Stomatology, Department of Oral Biology Clinic of Oral Rare Diseases and Genetic Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yunna Gan
- Department of Prosthodontics School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Dan Xia
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav WiedsVej 14, Aarhus C, Denmark
| | - Qiang Li
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav WiedsVej 14, Aarhus C, Denmark
| | - Yanling Li
- State Key Laboratory of Military Stomatology, Department of Oral Biology Clinic of Oral Rare Diseases and Genetic Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jiaji Yang
- State Key Laboratory of Military Stomatology, Department of Oral Biology Clinic of Oral Rare Diseases and Genetic Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shan Gao
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav WiedsVej 14, Aarhus C, Denmark.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Central South University, Changsha, Hunan, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav WiedsVej 14, Aarhus C, Denmark
| |
Collapse
|
18
|
Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. Sci Rep 2015; 5:8724. [PMID: 25735540 PMCID: PMC4348644 DOI: 10.1038/srep08724] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/02/2015] [Indexed: 01/06/2023] Open
Abstract
Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects such as live mammalian cells has been complicated because of the collision between the cantilever and samples. Here, we demonstrate that attaching an extremely long (~3 μm) and thin (~5 nm) tip by amorphous carbon to the cantilever allows us to image the surface structure of live cells with the spatiotemporal resolution of nanometers and seconds. We demonstrate that long-tip high-speed atomic force microscopy is capable of imaging morphogenesis of filopodia, membrane ruffles, pit formation, and endocytosis in COS-7, HeLa cells and hippocampal neurons.
Collapse
|
19
|
Xue Y, Wang L, Xia D, Li Q, Gao S, Dong M, Cai T, Shi S, He L, Hu K, Mao T, Duan X. Dental Abnormalities Caused by Novel Compound Heterozygous CTSK Mutations. J Dent Res 2015; 94:674-81. [PMID: 25731711 DOI: 10.1177/0022034515573964] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cathepsin K (CTSK) is an important protease responsible for degrading type I collagen, osteopontin, and other bone matrix proteins. The mutations in the CTSK gene can cause pycnodysostosis (OMIM 265800), a rare autosomal recessive bone dysplasia. Patients with pycnodysostosis have been reported to present specific dental abnormalities; however, whether these dental abnormalities are related to dysfunctional CTSK has never been reported. Here we investigated the histologic changes of cementum and alveolar bone in a pycnodysostosis patient, caused by novel compound heterozygous mutations in the CTSK gene (c.87 G>A p.W29X and c.848 A>G p.Y283C). The most impressive manifestations in tooth were extensive periradicular high-density clumps with unclear periodontal space by orthopantomography examination and micro-computed tomography scanning analysis. Hematoxylin/eosin and toluidine blue staining and atomic force microscopy analysis showed that the cementum became significantly thickened, softened, and full of cementocytes. The disorganized bone structure was the main character of alveolar bone. The p.W29X mutation may represent the loss-of-function allele with an earlier termination codon in the precursor CTSK polypeptide. Residue Y283 is highly conserved among papain-like cysteine proteases. Three-dimensional structure modeling analysis found that the loss of the hydroxybenzene residue in the Y283C mutation would interrupt the hydrogen network and possibly affect the self-cleavage of the CTSK enzyme. Furthermore, p.Y283C mutation did not affect the mRNA and protein levels of overexpressed CTSK in COS-7 system but did reduce CTSK enzyme activity. In conclusion, the histologic and ultrastructural changes of cementum and alveolar bone might be affected by CTSK mutation via reduction of its enzyme activity (clinical trial registration: ChiCTR-TNC-10000876).
Collapse
Affiliation(s)
- Y Xue
- State Key Laboratory of Military Stomatology, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - L Wang
- Department of Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - D Xia
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Q Li
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - S Gao
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - M Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - T Cai
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S Shi
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, CA, USA
| | - L He
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - K Hu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - T Mao
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - X Duan
- State Key Laboratory of Military Stomatology, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
20
|
Bosshart PD, Engel A, Fotiadis D. High-resolution atomic force microscopy imaging of rhodopsin in rod outer segment disk membranes. Methods Mol Biol 2015; 1271:189-203. [PMID: 25697525 DOI: 10.1007/978-1-4939-2330-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.
Collapse
Affiliation(s)
- Patrick D Bosshart
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland
| | | | | |
Collapse
|
21
|
Ando T. High-speed AFM imaging. Curr Opin Struct Biol 2014; 28:63-8. [DOI: 10.1016/j.sbi.2014.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022]
|
22
|
Pfreundschuh M, Martinez-Martin D, Mulvihill E, Wegmann S, Muller DJ. Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM. Nat Protoc 2014; 9:1113-30. [DOI: 10.1038/nprot.2014.070] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014; 114:3120-88. [PMID: 24476364 PMCID: PMC4076042 DOI: 10.1021/cr4003837] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Toshio Ando
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takayuki Uchihashi
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Simon Scheuring
- U1006
INSERM/Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy Bâtiment Inserm TPR2 bloc 5, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
24
|
Rajendran A, Endo M, Sugiyama H. State-of-the-Art High-Speed Atomic Force Microscopy for Investigation of Single-Molecular Dynamics of Proteins. Chem Rev 2013; 114:1493-520. [DOI: 10.1021/cr300253x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Arivazhagan Rajendran
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho
Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho,
Sakyo-ku, Kyoto 606-8501, Japan
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho
Sakyo-ku, Kyoto 606-8502, Japan
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho,
Sakyo-ku, Kyoto 606-8501, Japan
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
25
|
Pfreundschuh M, Hensen U, Müller DJ. Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution. NANO LETTERS 2013; 13:5585-5593. [PMID: 24079830 DOI: 10.1021/nl403232z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Elucidating the mechanisms by which proteins translocate small molecules and ions through transmembrane pores and channels is of great interest in biology, medicine, and nanotechnology. However, the characterization of pore forming proteins in their native state lacks suitable methods that are capable of high-resolution imaging (~1 nm) while simultaneously mapping physical and chemical properties. Here we report how force-distance (FD) curve-based atomic force microscopy (AFM) imaging can be applied to image the native pore forming outer membrane protein F (OmpF) at subnanometer resolution and to quantify the electrostatic field and potential generated by the transmembrane pore. We further observe the electrostatic field and potential of the OmpF pore switching "on" and "off" in dependence of the electrolyte concentration. Because electrostatic field and potential select for charged molecules and ions and guide them to the transmembrane pore the insights are of fundamental importance to understand the pore function. These experimental results establish FD-based AFM as a unique tool to image biological systems to subnanometer resolution and to quantify their electrostatic properties.
Collapse
Affiliation(s)
- Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zurich , CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
26
|
Abstract
Directly observing individual protein molecules in action at high spatiotemporal resolution has long been a holy grail for biological science. This is because we long have had to infer how proteins function from the static snapshots of their structures and dynamic behavior of optical makers attached to the molecules. This limitation has recently been removed to a large extent by the materialization of high-speed atomic force microscopy (HS-AFM). HS-AFM allows us to directly visualize the structure dynamics and dynamic processes of biological molecules in physiological solutions, at subsecond to sub-100-ms temporal resolution, without disturbing their function. In fact, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. In this review, we first describe theoretical considerations for the highest possible imaging rate of this new microscope, and then highlight recent imaging studies. Finally, the current limitation and future challenges to explore are described.
Collapse
Affiliation(s)
- Toshio Ando
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan.
| | | | | |
Collapse
|
27
|
Watanabe H, Uchihashi T, Kobashi T, Shibata M, Nishiyama J, Yasuda R, Ando T. Wide-area scanner for high-speed atomic force microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:053702. [PMID: 23742553 DOI: 10.1063/1.4803449] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
High-speed atomic force microscopy (HS-AFM) has recently been established. The dynamic processes and structural dynamics of protein molecules in action have been successfully visualized using HS-AFM. However, its maximum scan ranges in the X- and Y-directions have been limited to ~1 μm and ~4 μm, respectively, making it infeasible to observe the dynamics of much larger samples, including live cells. Here, we develop a wide-area scanner with a maximum XY scan range of ~46 × 46 μm(2) by magnifying the displacements of stack piezoelectric actuators using a leverage mechanism. Mechanical vibrations produced by fast displacement of the X-scanner are suppressed by a combination of feed-forward inverse compensation and the use of triangular scan signals with rounded vertices. As a result, the scan speed in the X-direction reaches 6.3 mm/s even for a scan size as large as ~40 μm. The nonlinearity of the X- and Y-piezoelectric actuators' displacements that arises from their hysteresis is eliminated by polynomial-approximation-based open-loop control. The interference between the X- and Y-scanners is also eliminated by the same technique. The usefulness of this wide-area scanner is demonstrated by video imaging of dynamic processes in live bacterial and eukaryotic cells.
Collapse
Affiliation(s)
- Hiroki Watanabe
- Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Medalsy ID, Müller DJ. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS NANO 2013; 7:2642-2650. [PMID: 23442147 DOI: 10.1021/nn400015z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Knowing the dynamic mechanical response of tissue, cells, membranes, proteins, nucleic acids, and carbohydrates to external perturbations is important to understand various biological and biotechnological problems. Atomic force microscopy (AFM)-based approaches are the most frequently used nanotechnologies to determine the mechanical properties of biological samples that range in size from microscopic to (sub)nanoscopic. However, the dynamic nature of biomechanical properties has barely been addressed by AFM imaging. In this work, we characterizethe viscoelastic properties of the native light-driven proton pump bacteriorhodopsin of the purple membrane of Halobacterium salinarum. Using force-distance curve (F-D)-based AFM we imaged purple membranes while force probing their mechanical response over a wide range of loading rates (from ∼0.5 to 100 μN/s). Our results show that the mechanical stiffness of protein and membrane increases with the loading rate up to a factor of 10 (from ∼0.3 to 3.2 N/m). In addition, the electrostatic repulsion between AFM tip and sample can alter the mechanical stiffness measured by AFM up to ∼60% (from ∼0.8 to 1.3 N/m).These findings indicate that the mechanical response of membranes and proteins and probably of other biomolecular systems should be determined at different loading rates to fully understand their properties.
Collapse
Affiliation(s)
- Izhar D Medalsy
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | | |
Collapse
|
29
|
Yamashita H, Inoue K, Shibata M, Uchihashi T, Sasaki J, Kandori H, Ando T. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. J Struct Biol 2013; 184:2-11. [PMID: 23462099 DOI: 10.1016/j.jsb.2013.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/22/2012] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
Bacteriorhodopsin (bR) trimers form a two-dimensional hexagonal lattice in the purple membrane of Halobacterium salinarum. However, the physiological significance of forming the lattice has long been elusive. Here, we study this issue by comparing properties of assembled and non-assembled bR trimers using directed mutagenesis, high-speed atomic force microscopy (HS-AFM), optical spectroscopy, and a proton pumping assay. First, we show that the bonds formed between W12 and F135 amino acid residues are responsible for trimer-trimer association that leads to lattice assembly; the lattice is completely disrupted in both W12I and F135I mutants. HS-AFM imaging reveals that both crystallized D96N and non-crystallized D96N/W12I mutants undergo a large conformational change (i.e., outward E-F loop displacement) upon light-activation. However, lattice disruption significantly reduces the rate of conformational change under continuous light illumination. Nevertheless, the quantum yield of M-state formation, measured by low-temperature UV-visible spectroscopy, and proton pumping efficiency are unaffected by lattice disruption. From these results, we conclude that trimer-trimer association plays essential roles in providing bound retinal with an appropriate environment to maintain its full photo-reactivity and in maintaining the natural photo-reaction pathway.
Collapse
Affiliation(s)
- Hayato Yamashita
- Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Molecular machines directly observed by high-speed atomic force microscopy. FEBS Lett 2013; 587:997-1007. [PMID: 23318713 DOI: 10.1016/j.febslet.2012.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 11/22/2022]
Abstract
Molecular machines made of proteins are highly dynamic and carry out sophisticated biological functions. The direct and dynamic high-resolution visualization of molecular machines in action is considered to be the most straightforward approach to understanding how they function but this has long been infeasible until recently. High-speed atomic force microscopy has recently been realized, making such visualization possible. The captured images of myosin V, F1-ATPase, and bacteriorhodopsin have enabled their dynamic processes and structure dynamics to be revealed in great detail, giving unique and deep insights into their functional mechanisms.
Collapse
|
31
|
Abstract
High-speed atomic force microscopy (HS-AFM) has been developed as a nano-dynamics visualization technique. This microscopy permits direct observation of structure dynamics and dynamic processes of biological molecules in physiological solutions, at a subsecond to sub-100 ms temporal resolution and an ∼2 nm lateral and a 0.1 nm vertical resolution. Importantly, tip-sample interactions do not disturb the biomolecules' functions. Various functioning proteins including myosin V walking on an actin filament and bacteriorhodopsin responding to light have been successfully visualized with HS-AFM. In the quest for understanding the functional mechanisms of proteins, inferences no longer have to be made from static snapshots of molecular structures and dynamic behavior of optical markers attached to proteins. High-resolution molecular movies obtained from HS-AFM observations reveal the details of molecules' dynamic behavior in action, without the need for intricate analyses and interpretations. In this review, I first describe the fundamentals behind the achieved high imaging rate and low invasiveness to samples, and then highlight recent imaging studies. Finally, future studies are briefly described.
Collapse
Affiliation(s)
- Toshio Ando
- Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| |
Collapse
|
32
|
Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T, Fukumori Y. Single-Molecule Imaging on Living Bacterial Cell Surface by High-Speed AFM. J Mol Biol 2012; 422:300-9. [DOI: 10.1016/j.jmb.2012.05.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/14/2012] [Indexed: 11/27/2022]
|
33
|
Atomic force microscopy for the study of membrane proteins. Curr Opin Biotechnol 2012; 23:510-5. [DOI: 10.1016/j.copbio.2011.11.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/08/2011] [Accepted: 11/25/2011] [Indexed: 11/19/2022]
|
34
|
Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 2012; 7:1193-206. [DOI: 10.1038/nprot.2012.047] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Patil AV, Premaraban T, Berthoumieu O, Watts A, Davis JJ. Engineered Bacteriorhodopsin: A Molecular Scale Potential Switch. Chemistry 2012; 18:5632-6. [DOI: 10.1002/chem.201103597] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/24/2012] [Indexed: 11/10/2022]
|
36
|
Abstract
High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.
Collapse
Affiliation(s)
- Toshio Ando
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
37
|
Berthoumieu O, Patil AV, Xi W, Aslimovska L, Davis JJ, Watts A. Molecular scale conductance photoswitching in engineered bacteriorhodopsin. NANO LETTERS 2012; 12:899-903. [PMID: 22148875 DOI: 10.1021/nl203965w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bacteriorhodopsin (BR) is a robust light-driven proton pump embedded in the purple membrane of the extremophilic archae Halobacterium salinarium . Its photoactivity remains in the dry state, making BR of significant interest for nanotechnological use. Here, in a novel configuration, BR was depleted from most of its endogenous lipids and covalently and asymmetrically anchored onto a gold electrode through a strategically located and highly responsive cysteine mutation; BR has no indigenous cysteines. Chemisorption on gold was characterized by surface plasmon resonance, reductive striping voltammetry, ellipsometry, and atomic force microscopy (AFM). For the first time, the conductance of isolated protein trimers, intimately probed by conducting AFM, was reproducibly and reversibly switched under wavelength-specific conditions (mean resistance of 39 ± 12 MΩ under illumination, 137 ± 18 MΩ in the dark), demonstrating a surface stability that is relevant to potential nanodevice applications.
Collapse
Affiliation(s)
- Olivia Berthoumieu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Structural and Functional Analysis of Proteins by High-Speed Atomic Force Microscopy. STRUCTURAL AND MECHANISTIC ENZYMOLOGY - BRINGING TOGETHER EXPERIMENTS AND COMPUTING 2012; 87:5-55. [DOI: 10.1016/b978-0-12-398312-1.00002-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
High-Speed AFM Reveals the Dynamics of Single Biomolecules at the Nanometer Scale. Cell 2011; 147:979-82. [DOI: 10.1016/j.cell.2011.11.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Indexed: 01/25/2023]
|
40
|
Medalsy I, Hensen U, Muller DJ. Imaging and Quantifying Chemical and Physical Properties of Native Proteins at Molecular Resolution by Force-Volume AFM. Angew Chem Int Ed Engl 2011; 50:12103-8. [DOI: 10.1002/anie.201103991] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/07/2011] [Indexed: 11/06/2022]
|
41
|
Medalsy I, Hensen U, Muller DJ. Molekulare Abbildung und Quantifizierung chemischer und physikalischer Eigenschaften nativer Proteine mit Kraftvolumen-Rasterkraftmikroskopie. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|