1
|
Feng Y, Roos WH. Atomic Force Microscopy: An Introduction. Methods Mol Biol 2024; 2694:295-316. [PMID: 37824010 DOI: 10.1007/978-1-0716-3377-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Imaging of nano-sized particles and sample features is crucial in a variety of research fields, for instance, in biological sciences, where it is paramount to investigate structures at the single particle level. Often, two-dimensional images are not sufficient, and further information such as topography and mechanical properties are required. Furthermore, to increase the biological relevance, it is desired to perform the imaging in close to physiological environments. Atomic force microscopy (AFM) meets these demands in an all-in-one instrument. It provides high-resolution images including surface height information leading to three-dimensional information on sample morphology. AFM can be operated both in air and in buffer solutions. Moreover, it has the capacity to determine protein and membrane material properties via the force spectroscopy mode. Here we discuss the principles of AFM operation and provide examples of how biomolecules can be studied. New developments in AFM are discussed, and by including approaches such as bimodal AFM and high-speed AFM (HS-AFM), we show how AFM can be used to study a variety of static and dynamic single biomolecules and biomolecular assemblies.
Collapse
Affiliation(s)
- Yuzhen Feng
- Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Li P, Shao Y, Xu K, Liu X. High-speed multiparametric imaging through off-resonance tapping AFM with active probe. Ultramicroscopy 2023; 248:113712. [PMID: 36881947 DOI: 10.1016/j.ultramic.2023.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/18/2022] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Off-resonance tapping (ORT) mode of atomic force microscopy (AFM), based on force-distance curve, is widely concerned due to its advantages of weak tip-sample interaction and concurrent quantitative property mapping. However, the ORT-AFM still has the disadvantage of slow scan speed caused by low modulation frequency. In this paper, we overcome this disadvantage by introducing active probe method. With active probe, the cantilever was directly actuated with the induced strain after applying voltage in the piezoceramic film. In this way, the modulation frequency could be increased to more than an order of magnitude faster than that of traditional ORT, thus improving the scan rate. We demonstrated high-speed multiparametric imaging with the active probe method in ORT-AFM.
Collapse
Affiliation(s)
- Peng Li
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, P.R. China.
| | - Yongjian Shao
- School of Electrical and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, P.R. China
| | - Ke Xu
- School of Electrical and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, P.R. China
| | - Xiucheng Liu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, P.R. China
| |
Collapse
|
3
|
Vialetto J, Ramakrishna SN, Isa L. In situ imaging of the three-dimensional shape of soft responsive particles at fluid interfaces by atomic force microscopy. SCIENCE ADVANCES 2022; 8:eabq2019. [PMID: 36351021 PMCID: PMC9645722 DOI: 10.1126/sciadv.abq2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/23/2022] [Indexed: 05/09/2023]
Abstract
The reconfiguration of individual soft and deformable particles upon adsorption at a fluid interface underpins many aspects of their dynamics and interactions, ultimately regulating the properties of monolayers of relevance for applications. In this work, we demonstrate that atomic force microscopy can be used for the in situ reconstruction of the three-dimensional conformation of model poly(N-isopropylacrylamide) microgels adsorbed at an oil-water interface. We image the particle topography from both sides of the interface to characterize its in-plane deformation and to visualize the occurrence of asymmetric swelling in the two fluids. In addition, the technique enables investigating different fluid phases and particle architectures, as well as studying the effect of temperature variations on particle conformation in situ. We envisage that these results open up an exciting range of possibilities to provide microscopic insights into the single-particle behavior of soft objects at fluid interfaces and into the resulting macroscopic material properties.
Collapse
Affiliation(s)
| | | | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Li Z, Xu X, Yu F, Fei J, Li Q, Dong M, Li J. Oriented Nanoarchitectonics of Bacteriorhodopsin for Enhancing ATP Generation in a F o F 1 -ATPase-Based Assembly System. Angew Chem Int Ed Engl 2022; 61:e202116220. [PMID: 35129265 DOI: 10.1002/anie.202116220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 12/23/2022]
Abstract
Energy conversion plays an important role in the metabolism of photosynthetic organisms. Improving energy transformation by promoting a proton gradient has been a great challenge for a long time. In the present study, we realize a directional proton migration through the construction of oriented bacteriorhodopsin (BR) microcapsules coated by Fo F1 -ATPase molecular motors through layer-by-layer (LBL) assembly. The changes in the conformation of BR under illumination lead to proton transfer in a radial direction, which generates a higher proton gradient to drive the synthesis of adenosine triphosphate (ATP) by Fo F1 -ATPase. Furthermore, to promote the photosynthetic activity, optically matched quantum dots were introduced into the artificial coassembly system of BR and Fo F1 -ATPase. Such a design creates a new path for the use of light energy.
Collapse
Affiliation(s)
- Zibo Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
5
|
Ido S, Kobayashi K, Oyabu N, Hirata Y, Matsushige K, Yamada H. Structured Water Molecules on Membrane Proteins Resolved by Atomic Force Microscopy. NANO LETTERS 2022; 22:2391-2397. [PMID: 35274954 DOI: 10.1021/acs.nanolett.2c00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water structuring on the outer surface of protein molecules called the hydration shell is essential as well as the internal water structures for higher-order structuring of protein molecules and their biological activities in vivo. We now show the molecular-scale hydration structure measurements of native purple membrane patches composed of proton pump proteins by a noninvasive three-dimensional force mapping technique based on frequency modulation atomic force microscopy. We successfully resolved the ordered water molecules localized near the proton uptake channels on the cytoplasmic side of the individual bacteriorhodopsin proteins in the purple membrane. We demonstrate that the three-dimensional force mapping can be widely applicable for molecular-scale investigations of the solid-liquid interfaces of various soft nanomaterials.
Collapse
Affiliation(s)
- Shinichiro Ido
- Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| | - Kei Kobayashi
- Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| | - Noriaki Oyabu
- Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| | - Yoshiki Hirata
- National Institute of Advanced Industrial Science and Technology, 1-1 Umezono, Tsukuba, Ibaraki 305-8566, Japan
| | - Kazumi Matsushige
- Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| | - Hirofumi Yamada
- Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| |
Collapse
|
6
|
Li Z, Xu X, Yu F, Fei J, Li Q, Dong M, Li J. Oriented Nanoarchitectonics of Bacteriorhodopsin for Enhancing ATP Generation in a F
o
F
1
‐ATPase‐Based Assembly System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zibo Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus C 8000 Denmark
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| |
Collapse
|
7
|
Wang W, Zhang W, Chen Y. Linearizing the frequency‐stiffness relation in contact resonance atomic force microscopy for facilitated mechanical characterization. Microsc Res Tech 2022; 85:2123-2130. [DOI: 10.1002/jemt.24070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Wenting Wang
- Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes University of Science and Technology of China Hefei China
| | - Wenhao Zhang
- Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes University of Science and Technology of China Hefei China
| | - Yuhang Chen
- Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes University of Science and Technology of China Hefei China
| |
Collapse
|
8
|
Gisbert VG, Garcia R. Accurate Wide-Modulus-Range Nanomechanical Mapping of Ultrathin Interfaces with Bimodal Atomic Force Microscopy. ACS NANO 2021; 15:20574-20581. [PMID: 34851086 DOI: 10.1021/acsnano.1c09178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nanoscale determination of the mechanical properties of interfaces is of paramount relevance in materials science and cell biology. Bimodal atomic force microscopy (AFM) is arguably the most advanced nanoscale method for mapping the elastic modulus of interfaces. Simulations, theory, and experiments have validated bimodal AFM measurements on thick samples (from micrometer to millimeter). However, the bottom-effect artifact, this is, the influence of the rigid support on the determination of the Young's modulus, questions its accuracy for ultrathin materials and interfaces (1-15 nm). Here we develop a bottom-effect correction method that yields the intrinsic Young's modulus value of a material independent of its thickness. Experiments and numerical simulations validate the accuracy of the method for a wide range of materials (1 MPa to 100 GPa). Otherwise, the Young's modulus of an ultrathin material might be overestimated by a 10-fold factor.
Collapse
Affiliation(s)
- Victor G Gisbert
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
9
|
Olubowale O, Biswas S, Azom G, Prather BL, Owoso SD, Rinee KC, Marroquin K, Gates KA, Chambers MB, Xu A, Garno JC. "May the Force Be with You!" Force-Volume Mapping with Atomic Force Microscopy. ACS OMEGA 2021; 6:25860-25875. [PMID: 34660949 PMCID: PMC8515370 DOI: 10.1021/acsomega.1c03829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
Information of the chemical, mechanical, and electrical properties of materials can be obtained using force volume mapping (FVM), a measurement mode of scanning probe microscopy (SPM). Protocols have been developed with FVM for a broad range of materials, including polymers, organic films, inorganic materials, and biological samples. Multiple force measurements are acquired with the FVM mode within a defined 3D volume of the sample to map interactions (i.e., chemical, electrical, or physical) between the probe and the sample. Forces of adhesion, elasticity, stiffness, deformation, chemical binding interactions, viscoelasticity, and electrical properties have all been mapped at the nanoscale with FVM. Subsequently, force maps can be correlated with features of topographic images for identifying certain chemical groups presented at a sample interface. The SPM tip can be coated to investigate-specific reactions; for example, biological interactions can be probed when the tip is coated with biomolecules such as for recognition of ligand-receptor pairs or antigen-antibody interactions. This review highlights the versatility and diverse measurement protocols that have emerged for studies applying FVM for the analysis of material properties at the nanoscale.
Collapse
|
10
|
Jadavi S, Bianchini P, Cavalleri O, Dante S, Canale C, Diaspro A. Correlative nanoscopy: A multimodal approach to molecular resolution. Microsc Res Tech 2021; 84:2472-2482. [PMID: 33955625 PMCID: PMC8518117 DOI: 10.1002/jemt.23800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022]
Abstract
Atomic force microscopy (AFM) is a nano‐mechanical tool uniquely suited for biological studies at the molecular scale. AFM operation is based on mechanical interaction between the tip and the sample, a mechanism of contrast capable of measuring different information, including surface topography, mechanical, and electrical properties. However, the lack of specificity highlights the need to integrate AFM data with other techniques providing compositional hints. In particular, optical microscopes based on fluorescence as a mechanism of contrast can access the local distribution of specific molecular species. The coupling between AFM and super‐resolved fluorescence microscopy solves the resolution mismatch between AFM and conventional fluorescence optical microscopy. Recent advances showed that also the inherently label‐free imaging capabilities of the AFM are fundamental to complement the fluorescence images. In this review, we have presented a brief historical view on correlative microscopy, and, finally, we have summarized the progress of correlative AFM‐super‐resolution microscopy in biological research.
Collapse
Affiliation(s)
- Samira Jadavi
- DIFILAB, Department of Physics, University of Genova, Genova, Italy.,Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Silvia Dante
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Genova, Italy
| | - Claudio Canale
- DIFILAB, Department of Physics, University of Genova, Genova, Italy
| | - Alberto Diaspro
- DIFILAB, Department of Physics, University of Genova, Genova, Italy.,Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
11
|
Zhai H, Zhang W, Wang L, Putnis CV. Dynamic force spectroscopy for quantifying single-molecule organo–mineral interactions. CrystEngComm 2021. [DOI: 10.1039/d0ce00949k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organo–mineral interactions have long been the focus in the fields of biomineralization and geomineralization, since such interactions not only modulate the dynamics of crystal nucleation and growth but may also change crystal phases, morphologies, and structures.
Collapse
Affiliation(s)
- Hang Zhai
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
- Department of Plant and Environmental Sciences
| | - Wenjun Zhang
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Lijun Wang
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Christine V. Putnis
- Institut für Mineralogie
- University of Münster
- 48149 Münster
- Germany
- School of Molecular and Life Science
| |
Collapse
|
12
|
Jesmer AH, Wylie RG. Controlling Experimental Parameters to Improve Characterization of Biomaterial Fouling. Front Chem 2020; 8:604236. [PMID: 33363113 PMCID: PMC7759637 DOI: 10.3389/fchem.2020.604236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Uncontrolled protein adsorption and cell binding to biomaterial surfaces may lead to degradation, implant failure, infection, and deleterious inflammatory and immune responses. The accurate characterization of biofouling is therefore crucial for the optimization of biomaterials and devices that interface with complex biological environments composed of macromolecules, fluids, and cells. Currently, a diverse array of experimental conditions and characterization techniques are utilized, making it difficult to compare reported fouling values between similar or different biomaterials. This review aims to help scientists and engineers appreciate current limitations and conduct fouling experiments to facilitate the comparison of reported values and expedite the development of low-fouling materials. Recent advancements in the understanding of protein-interface interactions and fouling variability due to experiment conditions will be highlighted to discuss protein adsorption and cell adhesion and activation on biomaterial surfaces.
Collapse
Affiliation(s)
| | - Ryan G. Wylie
- Department of Chemistry and Chemical Biology, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrêne YF, Alsteens D. Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem Rev 2020; 121:11701-11725. [PMID: 33166471 DOI: 10.1021/acs.chemrev.0c00617] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the last three decades, a series of key technological improvements turned atomic force microscopy (AFM) into a nanoscopic laboratory to directly observe and chemically characterize molecular and cell biological systems under physiological conditions. Here, we review key technological improvements that have established AFM as an analytical tool to observe and quantify native biological systems from the micro- to the nanoscale. Native biological systems include living tissues, cells, and cellular components such as single or complexed proteins, nucleic acids, lipids, or sugars. We showcase the procedures to customize nanoscopic chemical laboratories by functionalizing AFM tips and outline the advantages and limitations in applying different AFM modes to chemically image, sense, and manipulate biosystems at (sub)nanometer spatial and millisecond temporal resolution. We further discuss theoretical approaches to extract the kinetic and thermodynamic parameters of specific biomolecular interactions detected by AFM for single bonds and extend the discussion to multiple bonds. Finally, we highlight the potential of combining AFM with optical microscopy and spectroscopy to address the full complexity of biological systems and to tackle fundamental challenges in life sciences.
Collapse
Affiliation(s)
- Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hermann E Gaub
- Applied Physics, Ludwig-Maximilians-Universität Munich, Amalienstrasse 54, 80799 München, Germany
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics and Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Dumitru AC, Mohammed D, Maja M, Yang J, Verstraeten S, del Campo A, Mingeot‐Leclercq M, Tyteca D, Alsteens D. Label-Free Imaging of Cholesterol Assemblies Reveals Hidden Nanomechanics of Breast Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002643. [PMID: 33240781 PMCID: PMC7675049 DOI: 10.1002/advs.202002643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Indexed: 05/13/2023]
Abstract
Tumor cells present profound alterations in their composition, structural organization, and functional properties. A landmark of cancer cells is an overall altered mechanical phenotype, which so far are linked to changes in their cytoskeletal regulation and organization. Evidence exists that the plasma membrane (PM) of cancer cells also shows drastic changes in its composition and organization. However, biomechanical characterization of PM remains limited mainly due to the difficulties encountered to investigate it in a quantitative and label-free manner. Here, the biomechanical properties of PM of a series of MCF10 cell lines, used as a model of breast cancer progression, are investigated. Notably, a strong correlation between the cell PM elasticity and oncogenesis is observed. The altered membrane composition under cancer progression, as emphasized by the PM-associated cholesterol levels, leads to a stiffening of the PM that is uncoupled from the elastic cytoskeletal properties. Conversely, cholesterol depletion of metastatic cells leads to a softening of their PM, restoring biomechanical properties similar to benign cells. As novel therapies based on targeting membrane lipids in cancer cells represent a promising approach in the field of anticancer drug development, this method contributes to deciphering the functional link between PM lipid content and disease.
Collapse
Affiliation(s)
- Andra C. Dumitru
- Louvain Institute of Biomolecular Science and Technology (LIBST)Université catholique de LouvainLouvain‐la‐Neuve1348Belgium
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology (LIBST)Université catholique de LouvainLouvain‐la‐Neuve1348Belgium
| | - Mauriane Maja
- Cell Biology (CELL) Unit de Duve InstituteUniversité catholique de LouvainBrussels1200Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology (LIBST)Université catholique de LouvainLouvain‐la‐Neuve1348Belgium
| | - Sandrine Verstraeten
- Cellular and Molecular Pharmacology Unit (FACM)Louvain Drug Research InstituteUniversité catholique de LouvainBrussels1200Belgium
| | - Aranzazu del Campo
- INM – Leibniz‐Institut für Neue Materialien gGmbHCampus D2 2Saarbrücken66123Germany
| | - Marie‐Paule Mingeot‐Leclercq
- Cellular and Molecular Pharmacology Unit (FACM)Louvain Drug Research InstituteUniversité catholique de LouvainBrussels1200Belgium
| | - Donatienne Tyteca
- Cell Biology (CELL) Unit de Duve InstituteUniversité catholique de LouvainBrussels1200Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology (LIBST)Université catholique de LouvainLouvain‐la‐Neuve1348Belgium
| |
Collapse
|
15
|
Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 2020; 49:5850-5884. [PMID: 32662499 DOI: 10.1039/d0cs00318b] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fast, high-resolution, non-destructive and quantitative characterization methods are needed to develop materials with tailored properties at the nanoscale or to understand the relationship between mechanical properties and cell physiology. This review introduces the state-of-the-art force microscope-based methods to map at high-spatial resolution the elastic and viscoelastic properties of soft materials. The experimental methods are explained in terms of the theories that enable the transformation of observables into material properties. Several applications in materials science, molecular biology and mechanobiology illustrate the scope, impact and potential of nanomechanical mapping methods.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
16
|
Clifton LA, Campbell RA, Sebastiani F, Campos-Terán J, Gonzalez-Martinez JF, Björklund S, Sotres J, Cárdenas M. Design and use of model membranes to study biomolecular interactions using complementary surface-sensitive techniques. Adv Colloid Interface Sci 2020; 277:102118. [PMID: 32044469 DOI: 10.1016/j.cis.2020.102118] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/07/2023]
Abstract
Cellular membranes are complex structures and simplified analogues in the form of model membranes or biomembranes are used as platforms to understand fundamental properties of the membrane itself as well as interactions with various biomolecules such as drugs, peptides and proteins. Model membranes at the air-liquid and solid-liquid interfaces can be studied using a range of complementary surface-sensitive techniques to give a detailed picture of both the structure and physicochemical properties of the membrane and its resulting interactions. In this review, we will present the main planar model membranes used in the field to date with a focus on monolayers at the air-liquid interface, supported lipid bilayers at the solid-liquid interface and advanced membrane models such as tethered and floating membranes. We will then briefly present the principles as well as the main type of information on molecular interactions at model membranes accessible using a Langmuir trough, quartz crystal microbalance with dissipation monitoring, ellipsometry, atomic force microscopy, Brewster angle microscopy, Infrared spectroscopy, and neutron and X-ray reflectometry. A consistent example for following biomolecular interactions at model membranes is used across many of the techniques in terms of the well-studied antimicrobial peptide Melittin. The overall objective is to establish an understanding of the information accessible from each technique, their respective advantages and limitations, and their complementarity.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 OQX, United Kingdom
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Federica Sebastiani
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - José Campos-Terán
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico; Lund Institute of advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, 223 70 Lund, Sweden
| | - Juan F Gonzalez-Martinez
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Javier Sotres
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Marité Cárdenas
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden.
| |
Collapse
|
17
|
Mulvihill E, Pfreundschuh M, Thoma J, Ritzmann N, Müller DJ. High-Resolution Imaging of Maltoporin LamB while Quantifying the Free-Energy Landscape and Asymmetry of Sugar Binding. NANO LETTERS 2019; 19:6442-6453. [PMID: 31385710 DOI: 10.1021/acs.nanolett.9b02674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Maltoporins are a family of membrane proteins that facilitate the diffusion of hydrophilic molecules and maltosaccharides across the outer membrane of Gram-negative bacteria. Two contradicting models propose the sugar binding, uptake, and transport by maltoporins to be either symmetric or asymmetric. Here, we address this contradiction and introduce force-distance-based atomic force microscopy to image single maltoporin LamB trimers in the membrane at sub-nanometer resolution and simultaneously quantify the binding of different malto-oligosaccharides. We assay subtle differences of the binding free-energy landscape of maltotriose, maltotetraose, and maltopentaose, which quantifies how binding strength and affinity increase with the malto-oligosaccharide chain length. The ligand-binding parameters change considerably by mutating the extracellular loop 3, which folds into and constricts the transmembrane pore of LamB. By recording LamB topographs and structurally mapping binding events at sub-nanometer resolution, we observe LamB to preferentially bind maltodextrin from the periplasmic side, which shows sugar binding and uptake to be asymmetric. The study introduces atomic force microscopy as an analytical nanoscopic tool that can differentiate among the factors modulating and models describing the binding and uptake of substrates by membrane proteins.
Collapse
Affiliation(s)
- Estefania Mulvihill
- Department of Biosystems Science and Engineering , Eidgenössische Technische Hochschule (ETH) Zurich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Moritz Pfreundschuh
- Department of Biosystems Science and Engineering , Eidgenössische Technische Hochschule (ETH) Zurich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Johannes Thoma
- Department of Biosystems Science and Engineering , Eidgenössische Technische Hochschule (ETH) Zurich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Noah Ritzmann
- Department of Biosystems Science and Engineering , Eidgenössische Technische Hochschule (ETH) Zurich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering , Eidgenössische Technische Hochschule (ETH) Zurich , Mattenstrasse 26 , 4058 Basel , Switzerland
| |
Collapse
|
18
|
Dissecting the cytochrome c 2-reaction centre interaction in bacterial photosynthesis using single molecule force spectroscopy. Biochem J 2019; 476:2173-2190. [PMID: 31320503 PMCID: PMC6688529 DOI: 10.1042/bcj20170519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022]
Abstract
The reversible docking of small, diffusible redox proteins onto a membrane protein complex is a common feature of bacterial, mitochondrial and photosynthetic electron transfer (ET) chains. Spectroscopic studies of ensembles of such redox partners have been used to determine ET rates and dissociation constants. Here, we report a single-molecule analysis of the forces that stabilise transient ET complexes. We examined the interaction of two components of bacterial photosynthesis, cytochrome c 2 and the reaction centre (RC) complex, using dynamic force spectroscopy and PeakForce quantitative nanomechanical imaging. RC-LH1-PufX complexes, attached to silicon nitride AFM probes and maintained in a photo-oxidised state, were lowered onto a silicon oxide substrate bearing dispersed, immobilised and reduced cytochrome c 2 molecules. Microscale patterns of cytochrome c 2 and the cyan fluorescent protein were used to validate the specificity of recognition between tip-attached RCs and surface-tethered cytochrome c 2 Following the transient association of photo-oxidised RC and reduced cytochrome c 2 molecules, retraction of the RC-functionalised probe met with resistance, and forces between 112 and 887 pN were required to disrupt the post-ET RC-c 2 complex, depending on the retraction velocities used. If tip-attached RCs were reduced instead, the probability of interaction with reduced cytochrome c 2 molecules decreased 5-fold. Thus, the redox states of the cytochrome c 2 haem cofactor and RC 'special pair' bacteriochlorophyll dimer are important for establishing a productive ET complex. The millisecond persistence of the post-ET cytochrome c 2[oxidised]-RC[reduced] 'product' state is compatible with rates of cyclic photosynthetic ET, at physiologically relevant light intensities.
Collapse
|
19
|
Senapati S, Poma AB, Cieplak M, Filipek S, Park PSH. Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes. Anal Chem 2019; 91:7226-7235. [PMID: 31074606 DOI: 10.1021/acs.analchem.9b00546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane proteins, including G protein-coupled receptors (GPCRs), present a challenge in studying their structural properties under physiological conditions. Moreover, to better understand the activity of proteins requires examination of single molecule behaviors rather than ensemble averaged behaviors. Force-distance curve-based AFM (FD-AFM) was utilized to directly probe and localize the conformational states of a GPCR within the membrane at nanoscale resolution based on the mechanical properties of the receptor. FD-AFM was applied to rhodopsin, the light receptor and a prototypical GPCR, embedded in native rod outer segment disc membranes from photoreceptor cells of the retina in mice. Both FD-AFM and computational studies on coarse-grained models of rhodopsin revealed that the active state of the receptor has a higher Young's modulus compared to the inactive state of the receptor. Thus, the inactive and active states of rhodopsin could be differentiated based on the stiffness of the receptor. Differentiating the states based on the Young's modulus allowed for the mapping of the different states within the membrane. Quantifying the active states present in the membrane containing the constitutively active G90D rhodopsin mutant or apoprotein opsin revealed that most receptors adopt an active state. Traditionally, constitutive activity of GPCRs has been described in terms of two-state models where the receptor can achieve only a single active state. FD-AFM data are inconsistent with a two-state model but instead require models that incorporate multiple active states.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Adolfo B Poma
- Institute of Fundamental Technological Research , Polish Academy of Sciences , Pawińskiego 5B , 02-106 Warsaw , Poland.,Institute of Physics , Polish Academy of Sciences , Aleja Lotników 32/46 , 02-668 Warsaw , Poland
| | - Marek Cieplak
- Institute of Physics , Polish Academy of Sciences , Aleja Lotników 32/46 , 02-668 Warsaw , Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , 02-093 Warsaw , Poland
| | - Paul S H Park
- Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
20
|
Ruggeri FS, Šneideris T, Vendruscolo M, Knowles TPJ. Atomic force microscopy for single molecule characterisation of protein aggregation. Arch Biochem Biophys 2019; 664:134-148. [PMID: 30742801 PMCID: PMC6420408 DOI: 10.1016/j.abb.2019.02.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
The development of atomic force microscopy (AFM) has opened up a wide range of novel opportunities in nanoscience and new modalities of observation in complex biological systems. AFM imaging has been widely employed to resolve the complex and heterogeneous conformational states involved in protein aggregation at the single molecule scale and shed light onto the molecular basis of a variety of human pathologies, including neurodegenerative disorders. The study of individual macromolecules at nanoscale, however, remains challenging, especially when fully quantitative information is required. In this review, we first discuss the principles of AFM with a special emphasis on the fundamental factors defining its sensitivity and accuracy. We then review the fundamental parameters and approaches to work at the limit of AFM resolution in order to perform single molecule statistical analysis of biomolecules and nanoscale protein aggregates. This single molecule statistical approach has proved to be powerful to unravel the molecular and hierarchical assembly of the misfolded species present transiently during protein aggregation, to visualise their dynamics at the nanoscale, as well to study the structural properties of amyloid-inspired functional nanomaterials.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.
| | - Tomas Šneideris
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom.
| |
Collapse
|
21
|
Oh YJ, Koehler M, Lee Y, Mishra S, Park JW, Hinterdorfer P. Ultra-Sensitive and Label-Free Probing of Binding Affinity Using Recognition Imaging. NANO LETTERS 2019; 19:612-617. [PMID: 30560669 DOI: 10.1021/acs.nanolett.8b04883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Reliable quantification of binding affinity is important in biotechnology and pharmacology and increasingly coupled with a demand for ultrasensitivity, nanoscale resolution, and minute sample amounts. Standard techniques are not able to meet these criteria. This study provides a new platform based on atomic force microscopy (AFM)-derived recognition imaging to determine affinity by visualizing single molecular bindings on nanosize dendrons. Using DNA hybridization as a demonstrator, an AFM sensor adorned with a cognate binding strand senses and localizes target DNAs at nanometer resolution. To overcome the limitations of speed and resolution, the AFM cantilever is sinusoidally oscillated close to resonance conditions at small amplitudes. The equilibrium dissociation constant of capturing DNA duplexes was obtained, yielding 2.4 × 10-10 M. Our label-free single-molecular biochemical analysis approach evidences the utility of recognition imaging and analysis in quantifying biomolecular interactions of just a few hundred molecules.
Collapse
Affiliation(s)
- Yoo Jin Oh
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , A-4020 Linz , Austria
| | - Melanie Koehler
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , A-4020 Linz , Austria
| | - Yoonhee Lee
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Sourav Mishra
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Joon Won Park
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Peter Hinterdorfer
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , A-4020 Linz , Austria
| |
Collapse
|
22
|
Puiggalí-Jou A, Pawlowski J, del Valle LJ, Michaux C, Perpète EA, Sek S, Alemán C. Properties of Omp2a-Based Supported Lipid Bilayers: Comparison with Polymeric Bioinspired Membranes. ACS OMEGA 2018; 3:9003-9019. [PMID: 31459033 PMCID: PMC6645002 DOI: 10.1021/acsomega.8b00913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/19/2018] [Indexed: 05/31/2023]
Abstract
Omp2a β-barrel outer membrane protein has been reconstituted into supported lipid bilayers (SLBs) to compare the nanomechanical properties (elastic modulus, adhesion forces, and deformation) and functionality of the resulting bioinspired system with those of Omp2a-based polymeric nanomembranes (NMs). Protein reconstitution into lipid bilayers has been performed using different strategies, the most successful one consisting of a detergent-mediated process into preformed liposomes. The elastic modulus obtained for the lipid bilayer and Omp2a are ∼19 and 10.5 ± 1.7 MPa, respectively. Accordingly, the protein is softer than the lipid bilayer, whereas the latter exhibits less mechanical strength than polymeric NMs. Besides, the function of Omp2a in the SLB is similar to that observed for Omp2a-based polymeric NMs. Results open the door to hybrid bioinspired substrates based on the integration of Omp2a-proteoliposomes and nanoperforated polymeric freestanding NMs.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| | - Jan Pawlowski
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Luis J. del Valle
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| | - Catherine Michaux
- Laboratoire
de Chimie Physique des Biomolécules, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Eric A. Perpète
- Laboratoire
de Chimie Physique des Biomolécules, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Slawomir Sek
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Carlos Alemán
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| |
Collapse
|
23
|
Mulvihill E, Sborgi L, Mari SA, Pfreundschuh M, Hiller S, Müller DJ. Mechanism of membrane pore formation by human gasdermin-D. EMBO J 2018; 37:embj.201798321. [PMID: 29898893 PMCID: PMC6043855 DOI: 10.15252/embj.201798321] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 11/09/2022] Open
Abstract
Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMDNterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family.
Collapse
Affiliation(s)
- Estefania Mulvihill
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | - Stefania A Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| |
Collapse
|
24
|
Patel AN, Kranz C. (Multi)functional Atomic Force Microscopy Imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:329-350. [PMID: 29490193 DOI: 10.1146/annurev-anchem-061417-125716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Incorporating functionality to atomic force microscopy (AFM) to obtain physical and chemical information has always been a strong focus in AFM research. Modifying AFM probes with specific molecules permits accessibility of chemical information via specific reactions and interactions. Fundamental understanding of molecular processes at the solid/liquid interface with high spatial resolution is essential to many emerging research areas. Nanoscale electrochemical imaging has emerged as a complementary technique to advanced AFM techniques, providing information on electrochemical interfacial processes. While this review presents a brief introduction to advanced AFM imaging modes, such as multiparametric AFM and topography recognition imaging, the main focus herein is on electrochemical imaging via hybrid AFM-scanning electrochemical microscopy. Recent applications and the challenges associated with such nanoelectrochemical imaging strategies are presented.
Collapse
Affiliation(s)
- Anisha N Patel
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm 89081, Germany;
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm 89081, Germany;
| |
Collapse
|
25
|
Wang J, Liu M, Shen Y, Sun J, Shao Z, Czajkowsky DM. Compressive Force Spectroscopy: From Living Cells to Single Proteins. Int J Mol Sci 2018; 19:E960. [PMID: 29570665 PMCID: PMC5979447 DOI: 10.3390/ijms19040960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.
Collapse
Affiliation(s)
- Jiabin Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Meijun Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhifeng Shao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Daniel Mark Czajkowsky
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
26
|
Kundel F, Tosatto L, Whiten DR, Wirthensohn DC, Horrocks MH, Klenerman D. Shedding light on aberrant interactions - a review of modern tools for studying protein aggregates. FEBS J 2018; 285:3604-3630. [PMID: 29453901 DOI: 10.1111/febs.14409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/27/2018] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
The link between protein aggregation and neurodegenerative disease is well established. However, given the heterogeneity of species formed during the aggregation process, it is difficult to delineate details of the molecular events involved in generating pathological aggregates from those producing soluble monomers. As aberrant aggregates are possible pharmacological targets for the treatment of neurodegenerative diseases, the need to observe and characterise soluble oligomers has pushed traditional biophysical techniques to their limits, leading to the development of a plethora of new tools capable of detecting soluble oligomers with high precision and specificity. In this review, we discuss a range of modern biophysical techniques that have been developed to study protein aggregation, and give an overview of how they have been used to understand, in detail, the aberrant aggregation of amyloidogenic proteins associated with the two most common neurodegenerative disorders, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
| | - Laura Tosatto
- Centre for Integrative Biology, Università degli Studi di Trento, Italy
| | | | | | | | - David Klenerman
- Department of Chemistry, University of Cambridge, UK.,UK Dementia Research Institute, University of Cambridge, UK
| |
Collapse
|
27
|
Kim NH, Hwang W, Baek K, Rohman MR, Kim J, Kim HW, Mun J, Lee SY, Yun G, Murray J, Ha JW, Rho J, Moskovits M, Kim K. Smart SERS Hot Spots: Single Molecules Can Be Positioned in a Plasmonic Nanojunction Using Host–Guest Chemistry. J Am Chem Soc 2018; 140:4705-4711. [DOI: 10.1021/jacs.8b01501] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nam Hoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Wooseup Hwang
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Kangkyun Baek
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Md. Rumum Rohman
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Jeehong Kim
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Hyun Woo Kim
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | | | - So Young Lee
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Gyeongwon Yun
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - James Murray
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Ji Won Ha
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| | | | - Martin Moskovits
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kimoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| |
Collapse
|
28
|
Amo CA, Perrino AP, Payam AF, Garcia R. Mapping Elastic Properties of Heterogeneous Materials in Liquid with Angstrom-Scale Resolution. ACS NANO 2017; 11:8650-8659. [PMID: 28770996 DOI: 10.1021/acsnano.7b04381] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fast quantitative mapping of mechanical properties with nanoscale spatial resolution represents one of the major goals of force microscopy. This goal becomes more challenging when the characterization needs to be accomplished with subnanometer resolution in a native environment that involves liquid solutions. Here we demonstrate that bimodal atomic force microscopy enables the accurate measurement of the elastic modulus of surfaces in liquid with a spatial resolution of 3 Å. The Young's modulus can be determined with a relative error below 5% over a 5 orders of magnitude range (1 MPa to 100 GPa). This range includes a large variety of materials from proteins to metal-organic frameworks. Numerical simulations validate the accuracy of the method. About 30 s is needed for a Young's modulus map with subnanometer spatial resolution.
Collapse
Affiliation(s)
- Carlos A Amo
- Materials Science Factory Instituto de Ciencia de Materiales de Madrid , CSIC c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Alma P Perrino
- Materials Science Factory Instituto de Ciencia de Materiales de Madrid , CSIC c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Amir F Payam
- Materials Science Factory Instituto de Ciencia de Materiales de Madrid , CSIC c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Ricardo Garcia
- Materials Science Factory Instituto de Ciencia de Materiales de Madrid , CSIC c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
29
|
Laskowski PR, Pfreundschuh M, Stauffer M, Ucurum Z, Fotiadis D, Müller DJ. High-Resolution Imaging and Multiparametric Characterization of Native Membranes by Combining Confocal Microscopy and an Atomic Force Microscopy-Based Toolbox. ACS NANO 2017; 11:8292-8301. [PMID: 28745869 DOI: 10.1021/acsnano.7b03456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To understand how membrane proteins function requires characterizing their structure, assembly, and inter- and intramolecular interactions in physiologically relevant conditions. Conventionally, such multiparametric insight is revealed by applying different biophysical methods. Here we introduce the combination of confocal microscopy, force-distance curve-based (FD-based) atomic force microscopy (AFM), and single-molecule force spectroscopy (SMFS) for the identification of native membranes and the subsequent multiparametric analysis of their membrane proteins. As a well-studied model system, we use native purple membrane from Halobacterium salinarum, whose membrane protein bacteriorhodopsin was His-tagged to bind nitrilotriacetate (NTA) ligands. First, by confocal microscopy we localize the extracellular and cytoplasmic surfaces of purple membrane. Then, we apply AFM to image single bacteriorhodopsins approaching sub-nanometer resolution. Afterwards, the binding of NTA ligands to bacteriorhodopsins is localized and quantified by FD-based AFM. Finally, we apply AFM-based SMFS to characterize the (un)folding of the membrane protein and to structurally map inter- and intramolecular interactions. The multimethodological approach is generally applicable to characterize biological membranes and membrane proteins at physiologically relevant conditions.
Collapse
Affiliation(s)
- Pawel R Laskowski
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| | - Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| | - Mirko Stauffer
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| |
Collapse
|
30
|
Pfreundschuh M, Harder D, Ucurum Z, Fotiadis D, Müller DJ. Detecting Ligand-Binding Events and Free Energy Landscape while Imaging Membrane Receptors at Subnanometer Resolution. NANO LETTERS 2017; 17:3261-3269. [PMID: 28361535 DOI: 10.1021/acs.nanolett.7b00941] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Force-distance curve-based atomic force microscopy has emerged into a sophisticated technique for imaging cellular membranes and for detecting specific ligand-binding events of native membrane receptors. However, so far the resolution achieved has been insufficient to structurally map ligand-binding sites onto membrane proteins. Here, we introduce experimental and theoretical approaches for overcoming this limitation. To establish a structurally and functionally well-defined reference sample, we engineer a ligand-binding site to the light-driven proton pump bacteriorhodopsin of purple membrane. Functionalizing the AFM stylus with an appropriate linker-system tethering the ligand and optimizing the AFM conditions allows for imaging the engineered bacteriorhodopsin at subnanometer resolution while structurally mapping the specific ligand-receptor binding events. Improved data analysis allows reconstructing the ligand-binding free energy landscape from the experimental data, thus providing thermodynamic and kinetic insight into the ligand-binding process. The nanoscopic method introduced is generally applicable for imaging receptors in native membranes at subnanometer resolution and for systematically mapping and quantifying the free energy landscape of ligand binding.
Collapse
Affiliation(s)
- Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zürich , 4058 Basel, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich , 4058 Basel, Switzerland
| |
Collapse
|
31
|
Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller DJ. Imaging modes of atomic force microscopy for application in molecular and cell biology. NATURE NANOTECHNOLOGY 2017; 12:295-307. [PMID: 28383040 DOI: 10.1038/nnano.2017.45] [Citation(s) in RCA: 510] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/23/2017] [Indexed: 05/22/2023]
Abstract
Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Toshio Ando
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - David Alsteens
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - David Martinez-Martin
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christoph Gerber
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 80, 4057 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| |
Collapse
|
32
|
Alsteens D, Newton R, Schubert R, Martinez-Martin D, Delguste M, Roska B, Müller DJ. Nanomechanical mapping of first binding steps of a virus to animal cells. NATURE NANOTECHNOLOGY 2017; 12:177-183. [PMID: 27798607 DOI: 10.1038/nnano.2016.228] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/18/2016] [Indexed: 05/23/2023]
Abstract
Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (<50 nm). We present theoretical approaches to contour the free-energy landscape of early binding events between an engineered virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1 ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.
Collapse
Affiliation(s)
- David Alsteens
- ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
- Université Catholique de Louvain, Institute of Life Sciences, 1348 Louvain-La-Neuve, Belgium
| | - Richard Newton
- ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Rajib Schubert
- ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - David Martinez-Martin
- ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Martin Delguste
- Université Catholique de Louvain, Institute of Life Sciences, 1348 Louvain-La-Neuve, Belgium
| | - Botond Roska
- Friedrich Miescher Institute (FMI), 4058 Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland
| | - Daniel J Müller
- ETH Zürich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| |
Collapse
|
33
|
Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy. SENSORS 2017; 17:s17010200. [PMID: 28117741 PMCID: PMC5298773 DOI: 10.3390/s17010200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/23/2022]
Abstract
The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed.
Collapse
|
34
|
Edwards DT, Perkins TT. Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution. J Struct Biol 2017; 197:13-25. [DOI: 10.1016/j.jsb.2016.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 11/24/2022]
|
35
|
Xiao J, Dufrêne YF. Optical and force nanoscopy in microbiology. Nat Microbiol 2016; 1:16186. [PMID: 27782138 PMCID: PMC5839876 DOI: 10.1038/nmicrobiol.2016.186] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Microbial cells have developed sophisticated multicomponent structures and machineries to govern basic cellular processes, such as chromosome segregation, gene expression, cell division, mechanosensing, cell adhesion and biofilm formation. Because of the small cell sizes, subcellular structures have long been difficult to visualize using diffraction-limited light microscopy. During the last three decades, optical and force nanoscopy techniques have been developed to probe intracellular and extracellular structures with unprecedented resolutions, enabling researchers to study their organization, dynamics and interactions in individual cells, at the single-molecule level, from the inside out, and all the way up to cell-cell interactions in microbial communities. In this Review, we discuss the principles, advantages and limitations of the main optical and force nanoscopy techniques available in microbiology, and we highlight some outstanding questions that these new tools may help to answer.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biophysics &Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21212, USA
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), Belgium
| |
Collapse
|
36
|
Rapid recognition and functional analysis of membrane proteins on human cancer cells using atomic force microscopy. J Immunol Methods 2016; 436:41-9. [PMID: 27374866 DOI: 10.1016/j.jim.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/27/2016] [Indexed: 11/23/2022]
Abstract
Understanding the physicochemical properties of cell surface signalling molecules is important for us to uncover the underlying mechanisms that guide the cellular behaviors. Atomic force microscopy (AFM) has become a powerful tool for detecting the molecular interactions on individual cells with nanometer resolution. In this paper, AFM peak force tapping (PFT) imaging mode was applied to rapidly locate and visually map the CD20 molecules on human lymphoma cells using biochemically sensitive tips. First, avidin-biotin system was used to test the effectiveness of using PFT imaging mode to probe the specific molecular interactions. The adhesion images obtained on avidin-coated mica using biotin-tethered tips obviously showed the recognition spots which corresponded to the avidins in the simultaneously obtained topography images. The experiments confirmed the specificity and reproducibility of the recognition results. Then, the established procedure was applied to visualize the nanoscale organization of CD20s on the surface of human lymphoma Raji cells using rituximab (a monoclonal anti-CD20 antibody)-tethered tips. The experiments showed that the recognition spots in the adhesion images corresponded to the specific CD20-rituximab interactions. The cluster sizes of CD20s on lymphoma Raji cells were quantitatively analyzed from the recognition images. Finally, under the guidance of fluorescence recognition, the established procedure was applied to cancer cells from a clinical lymphoma patient. The results showed that there were significant differences between the adhesion images obtained on cancer cells and on normal cells (red blood cell). The CD20 distributions on ten cancer cells from the patient were quantified according to the adhesion images. The experimental results demonstrate the capability of applying PFT imaging to rapidly investigate the nanoscale biophysical properties of native membrane proteins on the cell surface, which is of potential significance in developing novel biomarkers for cancer diagnosis and drug development.
Collapse
|
37
|
Senapati S, Lindsay S. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy. Acc Chem Res 2016; 49:503-10. [PMID: 26934674 DOI: 10.1021/acs.accounts.5b00533] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two-color" recognition image. Biological phenomena in nature often involve multimolecular interactions, and this new linker could be ideal for studying them using AFM recognition imaging. It also has the potential to be used extensively in the diagnostics technique. This Account includes fundamentals behind AFM recognition imaging, a brief discussion on tip functionalization, recent advancements, and future directions and possibilities.
Collapse
Affiliation(s)
- Subhadip Senapati
- Biodesign Institute, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Stuart Lindsay
- Biodesign Institute, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
38
|
Schillers H, Medalsy I, Hu S, Slade AL, Shaw JE. PeakForce Tapping resolves individual microvilli on living cells. J Mol Recognit 2016; 29:95-101. [PMID: 26414320 PMCID: PMC5054848 DOI: 10.1002/jmr.2510] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
Abstract
Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip-sample interactions in time (microseconds) and controlling force in the low pico-Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM-Live Cell probe, having a short cantilever with a 17-µm-long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico-Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions.
Collapse
Affiliation(s)
- Hermann Schillers
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany
| | - Izhar Medalsy
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - Shuiqing Hu
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - Andrea L Slade
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - James E Shaw
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| |
Collapse
|
39
|
Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM. Nat Commun 2015; 6:8857. [PMID: 26561004 PMCID: PMC4660198 DOI: 10.1038/ncomms9857] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/11/2015] [Indexed: 01/29/2023] Open
Abstract
A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.
Collapse
|
40
|
Preiner J, Horner A, Karner A, Ollinger N, Siligan C, Pohl P, Hinterdorfer P. High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties. NANO LETTERS 2015; 15:759-63. [PMID: 25516527 PMCID: PMC4296598 DOI: 10.1021/nl504478f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/11/2014] [Indexed: 05/20/2023]
Abstract
The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels (AqpZ, GlpF) revealed the spatial and temporal organization of loop-stabilizing intraproteinaceous H-bonds and salt bridges.
Collapse
Affiliation(s)
- Johannes Preiner
- Center
for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
- E-mail:
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Andreas Karner
- Center
for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria
| | - Nicole Ollinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Peter Hinterdorfer
- Center
for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| |
Collapse
|
41
|
Bosshart PD, Engel A, Fotiadis D. High-resolution atomic force microscopy imaging of rhodopsin in rod outer segment disk membranes. Methods Mol Biol 2015; 1271:189-203. [PMID: 25697525 DOI: 10.1007/978-1-4939-2330-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.
Collapse
Affiliation(s)
- Patrick D Bosshart
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland
| | | | | |
Collapse
|
42
|
Abstract
Recent progress in surface science, nanotechnology and biophysics has cast new light on the correlation between the physicochemical properties of biomaterials and the resulting biological response. One experimental tool that promises to generate an increasingly more sophisticated knowledge of how proteins, cells and bacteria interact with nanostructured surfaces is the atomic force microscope (AFM). This unique instrument permits to close in on interfacial events at the scale at which they occur, the nanoscale. This perspective covers recent developments in the exploitation of the AFM, and suggests insights on future opportunities that can arise from the exploitation of this powerful technique.
Collapse
Affiliation(s)
- Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
43
|
Chen P, Xu L, Liu J, Hol FJH, Keymer JE, Taddei F, Han D, Lindner AB. Nanoscale probing the kinetics of oriented bacterial cell growth using atomic force microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3018-3025. [PMID: 24706390 DOI: 10.1002/smll.201303724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Probing oriented bacterial cell growth on the nanoscale: A novel open-top micro-channel is developed to facilitate the AFM imaging of physically trapped but freely growing bacteria. The growth curves of individual Escherichia coli cells with nanometer resolution and their kinetic nano-mechanical properties are quantitatively measured.
Collapse
Affiliation(s)
- Peipei Chen
- Institut National de la Santé et de la Recherche Medicale, U1001; Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang S, Aslan H, Besenbacher F, Dong M. Quantitative biomolecular imaging by dynamic nanomechanical mapping. Chem Soc Rev 2014; 43:7412-29. [DOI: 10.1039/c4cs00176a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Tian Y, Cai M, Xu H, Ding B, Hao X, Jiang J, Sun Y, Wang H. Atomic force microscopy of asymmetric membranes from turtle erythrocytes. Mol Cells 2014; 37:592-7. [PMID: 25134535 PMCID: PMC4145370 DOI: 10.14348/molcells.2014.0115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/13/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model.
Collapse
Affiliation(s)
- Yongmei Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
- University of Chinese Academy of Sciences, Beijing 100049,
P.R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
| | - Bohua Ding
- School of physics, Northeast Normal University, Changchun, Jilin 130024,
P.R. China
| | - Xian Hao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
| | - Yingchun Sun
- School of physics, Northeast Normal University, Changchun, Jilin 130024,
P.R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
| |
Collapse
|
46
|
Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. mBio 2014; 5:e01363-14. [PMID: 25053785 PMCID: PMC4120197 DOI: 10.1128/mbio.01363-14] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights.
Collapse
|
47
|
Lü J, Yang J, Dong M, Sahin O. Nanomechanical spectroscopy of synthetic and biological membranes. NANOSCALE 2014; 6:7604-8. [PMID: 24895687 DOI: 10.1039/c3nr02643d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We report that atomic force microscopy based high-speed nanomechanical analysis can identify components of complex heterogeneous synthetic and biological membranes from the measured spectrum of nanomechanical properties. We have investigated phase separated ternary lipid bilayers and purple membranes of Halobacterium salinarum. The nanomechanical spectra recorded on these samples identify all membrane components, some of which are difficult to resolve in conventional phase images. This non-destructive approach can aid the design of synthetic lipid bilayers and studies lateral organization of complex heterogeneous cellular membranes.
Collapse
Affiliation(s)
- Junhong Lü
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA, USA
| | | | | | | |
Collapse
|
48
|
Bull MS, Sullan RMA, Li H, Perkins TT. Improved single molecule force spectroscopy using micromachined cantilevers. ACS NANO 2014; 8:4984-95. [PMID: 24670198 DOI: 10.1021/nn5010588] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Enhancing the short-term force precision of atomic force microscopy (AFM) while maintaining excellent long-term force stability would result in improved performance across multiple AFM modalities, including single molecule force spectroscopy (SMFS). SMFS is a powerful method to probe the nanometer-scale dynamics and energetics of biomolecules (DNA, RNA, and proteins). The folding and unfolding rates of such macromolecules are sensitive to sub-pN changes in force. Recently, we demonstrated sub-pN stability over a broad bandwidth (Δf = 0.01-16 Hz) by removing the gold coating from a 100 μm long cantilever. However, this stability came at the cost of increased short-term force noise, decreased temporal response, and poor sensitivity. Here, we avoided these compromises while retaining excellent force stability by modifying a short (L = 40 μm) cantilever with a focused ion beam. Our process led to a ∼10-fold reduction in both a cantilever's stiffness and its hydrodynamic drag near a surface. We also preserved the benefits of a highly reflective cantilever while mitigating gold-coating induced long-term drift. As a result, we extended AFM's sub-pN bandwidth by a factor of ∼50 to span five decades of bandwidth (Δf ≈ 0.01-1000 Hz). Measurements of mechanically stretching individual proteins showed improved force precision coupled with state-of-the-art force stability and no significant loss in temporal resolution compared to the stiffer, unmodified cantilever. Finally, these cantilevers were robust and were reused for SFMS over multiple days. Hence, we expect these responsive, yet stable, cantilevers to broadly benefit diverse AFM-based studies.
Collapse
Affiliation(s)
- Matthew S Bull
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | | | | | | |
Collapse
|
49
|
Pfreundschuh M, Alsteens D, Hilbert M, Steinmetz MO, Müller DJ. Localizing chemical groups while imaging single native proteins by high-resolution atomic force microscopy. NANO LETTERS 2014; 14:2957-2964. [PMID: 24766578 DOI: 10.1021/nl5012905] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Simultaneous high-resolution imaging and localization of chemical interaction sites on single native proteins is a pertinent biophysical, biochemical, and nanotechnological challenge. Such structural mapping and characterization of binding sites is of importance in understanding how proteins interact with their environment and in manipulating such interactions in a plethora of biotechnological applications. Thus far, this challenge remains to be tackled. Here, we introduce force-distance curve-based atomic force microscopy (FD-based AFM) for the high-resolution imaging of SAS-6, a protein that self-assembles into cartwheel-like structures. Using functionalized AFM tips bearing Ni(2+)-N-nitrilotriacetate groups, we locate specific interaction sites on SAS-6 at nanometer resolution and quantify the binding strength of the Ni(2+)-NTA groups to histidine residues. The FD-based AFM approach can readily be applied to image any other native protein and to locate and structurally map histidine residues. Moreover, the surface chemistry used to functionalize the AFM tip can be modified to map other chemical interaction sites.
Collapse
Affiliation(s)
- Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Pfreundschuh M, Martinez-Martin D, Mulvihill E, Wegmann S, Muller DJ. Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM. Nat Protoc 2014; 9:1113-30. [DOI: 10.1038/nprot.2014.070] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|