1
|
Zhong Z, Wang X, Tan B. Porous Organic Polymers for CO 2 Capture and Catalytic Conversion. Chemistry 2024:e202404089. [PMID: 39715715 DOI: 10.1002/chem.202404089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Overuse of fossil fuels and anthropogenic activities have led to excessive emissions of carbon dioxide, leading to global warming, and measures to reduce atmospheric carbon dioxide concentrations are needed to overcome this global challenge. Therefore, exploring an environmentally friendly strategy for capturing airborne CO2 and converting it into high-value-added chemicals offers a promising pathway toward "carbon neutrality". In recent years, porous organic polymers have attracted much attention for carbon capture and the catalytic conversion of carbon dioxide because of their high specific surface area, high chemical stability, nanoscale porosity, and structural versatility, which make them easy to functionalize. In this review, we introduce the preparation methods for various POPs, the types of POPs adsorbed during carbon dioxide capture, and the progress in the use of POPs for the photocatalytic and chemicatalytic conversion of carbon dioxide, with a special discussion on the influence of adsorption type on the efficiency of catalytic conversion. Finally, we propose a prospective direction for the subsequent development of this field.
Collapse
Affiliation(s)
- Zicheng Zhong
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Xiaoyan Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Bien Tan
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Guan DH, Wang XX, Miao CL, Li JX, Li JY, Yuan XY, Ma XY, Xu JJ. Host-Guest Interactions of Metal-Organic Framework Enable Highly Conductive Quasi-Solid-State Electrolytes for Li-CO 2 Batteries. ACS NANO 2024; 18:34299-34311. [PMID: 39644251 DOI: 10.1021/acsnano.4c12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
High-energy lithium (Li)-based batteries, especially rechargeable Li-CO2 batteries with CO2 fixation capability and high energy density, are desirable for electrified transportation and other applications. However, the challenges of poor stability, low energy efficiency, and leakage of liquid electrolytes hinder the development of Li-CO2 batteries. Herein, a highly conductive and stable metal-organic framework-encapsulated ionic liquid (IL@MOF) electrolyte system is developed for quasi-solid-state Li-CO2 batteries. Benefiting from the host-guest interaction of MOFs with open micromesopores and internal IL, the optimized IL@MOF electrolytes exhibit a high ionic conductivity of 1.03 mS cm-1 and a high transference number of 0.80 at room temperature. The IL@MOF electrolytes also feature a wide electrochemical stability window (4.71 V versus Li+/Li) and a wide working temperature (-60 °C ∼ 150 °C). The IL@MOF electrolytes also enable Li+ and electrons transport in the carbon nanotubes-IL@MOF (CNT-IL@MOF) solid cathodes in quasi-solid-state Li-CO2 batteries, delivering a high specific capacity of 13,978 mAh g-1 (50 mA g-1), a long cycle life of 441 cycles (500 mA g-1 and 1000 mAh g-1), and a wide operation temperature of -60 to 150 °C. The proposed MOF-encapsulated IL electrolyte system presents a powerful strategy for developing high-energy and highly safe quasi-solid-state batteries.
Collapse
Affiliation(s)
- De-Hui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Cheng-Lin Miao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Jia-Xin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jian-You Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xin-Yuan Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xin-Yue Ma
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Jyoti, Kumari S, Chakraborty S, Kanoo P, Kumar V, Chakraborty A. MIL-101(Cr)/aminoclay nanocomposites for conversion of CO 2 into cyclic carbonates. Dalton Trans 2024; 53:15815-15825. [PMID: 38771593 DOI: 10.1039/d4dt00849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We present the use of an amine functionalized two-dimensional clay i.e., aminoclay (AC), in the chemistry of a three-dimensional metal-organic framework (MOF) i.e., MIL-101(Cr), to prepare MIL-101(Cr)/AC composites, which are exploited as catalysts for efficient conversion of CO2 gas into cyclic carbonates under ambient reaction conditions. Three different MOF nanocomposites, denoted as MIL-101(Cr)/AC-1, MIL-101(Cr)/AC-2, and MIL-101(Cr)/AC-3, were synthesized by an in situ process by adding different amounts of AC to the precursor solutions of the MIL-101(Cr). The composites were characterized by various techniques such as FT-IR, PXRD, FESEM, EDX, TGA, N2 adsorption, as well as CO2 and NH3-TPD measurements. The composites were exploited as heterogeneous catalysts for CO2 cycloaddition reactions with different epoxides and the catalytic activity was investigated at atmospheric pressure under solvent-free conditions. Among all the materials, MIL-101(Cr)/AC-2 shows the best catalytic efficiency under the optimized conditions and exhibits enhanced efficacy compared to various MIL-101(Cr)-based MOF catalysts, which typically need either high temperature and pressure or a longer reaction time or a combination of all the parameters. The present protocol using MIL-101(Cr)/AC-2 as the heterogeneous catalyst gives 99.9% conversion for all the substrates into the products at atmospheric pressure.
Collapse
Affiliation(s)
- Jyoti
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Sarita Kumari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Samiran Chakraborty
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Prakash Kanoo
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
- Special Centre for Nano Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, Delhi 110067, India
| | - Vinod Kumar
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Anindita Chakraborty
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| |
Collapse
|
4
|
Zhang F, Liu L, Chen Y, Liu G, Eric Hu X, Wang N, Long B, Deng GJ, Song T. Photoselectively modulating main products by changing the wavelength of visible light over D-π-A-D conjugated polymers. J Colloid Interface Sci 2024; 670:676-686. [PMID: 38781656 DOI: 10.1016/j.jcis.2024.05.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The diversity of catalytic products determines the difficulty of selective product modulation, which usually relies on adjusting the catalyst and reaction conditions to obtain different main products selectively. Herein, we synthesized D-π-A-D conjugated organic polymers (TH-COP) using cyclotriphosphonitrile, alkyne, 2H-benzimidazole, and sulfur units as electron donors, π bridges, electron acceptors, and electron donors, respectively. TH-COP exhibited excellent photoinduced carrier separation and redox ability under different visible light wavelengths, and the main products of its CO2 reduction are CH4 (1000.0 μmol g-1) and CO (837.0 μmol g-1) under 400-420 nm and 420-560 nm, respectively. In addition, TH-COP could completely convert phenylmethyl sulfide to methyl phenyl sulfone at 400-420 nm and diphenyl disulfide at 480-485 nm in yields up to 95 %. This study presents a novel strategy for the targeted fabrication of various main products using conjugated polymers by simply changing the wavelength range of visible light.
Collapse
Affiliation(s)
- Fengxuan Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Linyi Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yizheng Chen
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, PR China
| | - Guanhui Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Xiayi Eric Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
| | - Nailiang Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Bei Long
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Ting Song
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
5
|
Chen W, Li S, Yi L, Chen Z, Li Z, Wu Y, Yan W, Deng F, Deng H. Precise Distance Control and Functionality Adjustment of Frustrated Lewis Pairs in Metal-Organic Frameworks. J Am Chem Soc 2024; 146:12215-12224. [PMID: 38629769 DOI: 10.1021/jacs.4c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
We report the construction of frustrated Lewis pairs (FLPs) in a metal-organic framework (MOF), where both Lewis acid (LA) and Lewis base (LB) are fixed to the backbone. The anchoring of a tritopic organoboron linker as LA and a monotopic linker as LB to separate metal oxide clusters in a tetrahedron geometry allows for the precise control of distance between them. As the type of monotopic LB linker varies, pyridine, phenol, aniline, and benzyl alcohol, a series of 11 FLPs were constructed to give fixed distances of 7.1, 5.5, 5.4, and 4.8 Å, respectively, revealed by 11B-1H solid-state nuclear magnetic resonance spectroscopy. Keeping LA and LB apart by a fixed distance makes it possible to investigate the electrostatic effect by changing the functional groups in the monotopic LB linker, while the LA counterpart remains unaffected. This approach offers new chemical environments of the active site for FLP-induced catalysis.
Collapse
Affiliation(s)
- Wenhao Chen
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430072, China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Lezhi Yi
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430072, China
| | - Ziyi Chen
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430072, China
| | - Zihao Li
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yifan Wu
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Yan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Wang T, Chen F, Jiang L, Li J, Chen K, Gao J. Metal-Organic-Framework-Derived Bromine and Nitrogen Dual-Doped Porous Carbon for CO 2 Photocycloaddition Reaction. Inorg Chem 2024; 63:4224-4232. [PMID: 38364058 DOI: 10.1021/acs.inorgchem.3c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The cycloaddition of CO2 with epoxides driven by light irradiation is an intriguing approach to preparing cyclic carbonates. However, it remains a great challenge to achieve high photocatalytic efficiency in the absence of a cocatalyst. Herein, we explored a metal-organic-framework (MOF)-templated pyrolysis strategy to prepare uniform bromine ions/nitrogen-codoped carbon materials (Br-CN) as low-cost photocatalysts for CO2 cycloaddition. The optimal catalyst Br-CN-1-550 can be used as a photocatalyst to catalyze CO2 cycloaddition, remarkably reducing the energy consumption. As a result of its benefits of high photothermal efficiency and rich nucleophilic sites (Br ions), BN-CN-1-550 affords a 9 times higher yield of 4-(chloromethyl)-1,3-dioxolan-2-one than that of the ZIF-8-derived CN under cocatalyst-free conditions and light irradiation (300 mW·cm-2 full-spectrum irradiation, 10 h). This strategy provides a cost-effective way to obtain cyclic carbonate under cocatalyst-free conditions.
Collapse
Affiliation(s)
- Tingting Wang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengfeng Chen
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, Zhejiang, China
| | - Lingjing Jiang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinze Li
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, Zhejiang, China
| | - Junkuo Gao
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Du J, Liu X, Li B. Facile Construction of Advanced 1D Metal-Organic Coordination Polymer for Efficient Lithium Storage. Molecules 2023; 28:7993. [PMID: 38138482 PMCID: PMC10745800 DOI: 10.3390/molecules28247993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, coordination polymers (CPs) have been frequently reported in the field of energy storage as electrode materials for lithium-ion batteries (LIBs) due to their highly adjustable architectures, which have a variety of active sites and obviously defined lithium transport routes. A well-designed redox-active organic linker with potential active sites for storing lithium ions, pyrazine-2,3-dicarboxylate (H2PDA), was applied for generating CPs by a simple hydrothermal method. When employed as anode materials in LIBs, those two one-dimensional (1D) CPs with an isomorphic composition, [M(PDA)(H2O)2]n (M = Co for Co-PDA and Ni for Ni-PDA), produced outstanding reversible capacities and stable cycling performance. The Co-PDA displays a substantial reversible capacity of 936 mAh g-1 at 200 mA g-1 after 200 cycles, as well as an excellent cycling life at high currents. According to the ex situ characterizations, the high reversible specific capacity of the post-cycled electrodes was found to be a result of both the transition metal ions and the organic ligands, and Co-PDA and Ni-PDA electrode materials show reversible insertion/extraction processes that are accompanied by crystallization to an amorphous state.
Collapse
Affiliation(s)
- Jia Du
- School of Biology and Chemical Engineering, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, China; (X.L.); (B.L.)
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xueguo Liu
- School of Biology and Chemical Engineering, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, China; (X.L.); (B.L.)
| | - Bingke Li
- School of Biology and Chemical Engineering, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, China; (X.L.); (B.L.)
| |
Collapse
|
8
|
Chen Y, Chen L, Li Y, Shen K. Metal-Organic Frameworks as a New Platform to Construct Ordered Mesoporous Ce-Based Oxides for Efficient CO 2 Fixation under Ambient Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303235. [PMID: 37269208 DOI: 10.1002/smll.202303235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Metal-organic frameworks (MOFs) are proved to be good precursors to derive various nanomaterials with desirable functions, but so far the controllable synthesis of ordered mesoporous derivatives from MOFs has not been achieved. Herein, this work reports, for the first time, the construction of MOF-derived ordered mesoporous (OM) derivatives by developing a facile mesopore-inherited pyrolysis-oxidation strategy. This work demonstrates a particularly elegant example of this strategy, which involves the mesopore-inherited pyrolysis of OM-CeMOF into a OM-CeO2 @C composite, followed by the oxidation removal of its residual carbon, affording the corresponding OM-CeO2 . Furthermore, the good tunability of MOFs helps to allodially introduce zirconium into OM-CeO2 to regulate its acid-base property, thus boosting its catalytic activity for CO2 fixation. Impressively, the optimized Zr-doped OM-CeO2 can achieve above 16 times higher catalytic activity than its solid CeO2 counterpart, representing the first metal oxide-based catalyst to realize the complete cycloaddition of epichlorohydrin with CO2 under ambient temperature and pressure. This study not only develops a new MOF-based platform for enriching the family of ordered mesoporous nanomaterials, but also demonstrates an ambient catalytic system for CO2 fixation.
Collapse
Affiliation(s)
- Yimin Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liyu Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui Shen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
9
|
Lin X, Yu YH, Chen GH, Li QH, Zhang L, Zhang J. Ligand-dependent structural diversity and optimizable CO 2 chemical fixation activities of Cu-doped polyoxo-titanium clusters. Dalton Trans 2023; 52:11451-11457. [PMID: 37547997 DOI: 10.1039/d3dt01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Heterometallic oxo clusters have been attracting intensive interest due to their unique properties originating from the synergistic interactions between different components. Herein, we report the construction and catalytic applications of a family of copper-doped polyoxo-titanium clusters (Cu-PTCs) coordinated with different acetate derivative ligands. The solvothermal reactions of metal salts and trimethylacetic acid or 1,2-phenylenediacetic acid in ethanol produced Ti6Cu3(μ3-O)4(μ2-O)(OEt)16(L1)4 (L1 = trimethyl acetate, PTC-367) and H2Ti8Cu2Br2(μ4-O)2(μ2-O)4(OEt)20(L2)2 (L2 = 1,2-phenylenediacetate, PTC-368), respectively. When smaller acetic acid was introduced as a stabilizing ligand, higher nuclei H2Ti16Cu3(μ4-O)5(μ3-O)15(μ2-O)3(OiPr)18(Ac)8 (Ac = acetate, PTC-369) and H3Ti29Cu3(μ4-O)6(μ3-O)30(μ2-O)8(OiPr)17(Ac)20 (PTC-370) were prepared. The number of metal ions exposed on the surface of the four clusters changes due to variations in the steric hindrance of functionalizing ligands, and theoretically, so does their catalytic activity as Lewis acids. In light of this, we conducted a carbon dioxide cycloaddition reaction in an atmospheric environment and the four obtained compounds displayed increasing catalytic activities from PTC-367 to PTC-370. These results provide a feasible synthetic method for modulating the structures of Cu-doped titanium oxide materials and improving their catalytic activities.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Hua Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guang-Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
10
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Owusu Prempeh C, Hartmann I, Formann S, Eiden M, Neubauer K, Atia H, Wotzka A, Wohlrab S, Nelles M. Comparative Study of Commercial Silica and Sol-Gel-Derived Porous Silica from Cornhusk for Low-Temperature Catalytic Methane Combustion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091450. [PMID: 37176995 PMCID: PMC10180291 DOI: 10.3390/nano13091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
The synthesis and characterization of sol-gel-derived cornhusk support for low-temperature catalytic methane combustion (LTCMC) were investigated in this study. The prepared cornhusk support was impregnated with palladium and cerium oxide (Pd/CeO2) via the classical incipient wetness method. The resulting catalyst was characterized using various techniques, including X-ray diffraction (XRD), N2 physisorption (BET), transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR). The catalytic performance of the Pd/CeO2/CHSiO2 catalyst was evaluated for methane combustion in the temperature range of 150-600 °C using a temperature-controlled catalytic flow reactor, and its performance was compared with a commercial catalyst. The results showed that the Pd/CeO2 dispersed on SiO2 from the cornhusk ash support (Pd/CeO2/CHSiO2) catalyst exhibited excellent catalytic activity for methane combustion, with a conversion of 50% at 394 °C compared with 593 °C for the commercial silica catalyst (Pd/CeO2/commercial). Moreover, the Pd/CeO2/CHSiO2 catalyst displayed better catalytic stability after 10 h on stream, with a 7% marginal loss in catalytic activity compared with 11% recorded for the Pd/CeO2/commercial catalyst. The N2 physisorption and H2-TPR results indicated that the cornhusk SiO2 support possessed a higher surface area and strong reducibility than the synthesized commercial catalyst, contributing to the enhanced catalytic activity of the Pd/CeO2/SiO2 catalyst. Overall, the SiO2 generated from cornhusk ash exhibited promising potential as a low-cost and environmentally friendly support for LTCMC catalysts.
Collapse
Affiliation(s)
- Clement Owusu Prempeh
- Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
- Department of Agriculture and Environmental Science, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Ingo Hartmann
- Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Steffi Formann
- Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Manfred Eiden
- Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Katja Neubauer
- Leibniz-Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Hanan Atia
- Leibniz-Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Alexander Wotzka
- Leibniz-Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz-Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Michael Nelles
- Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
- Department of Agriculture and Environmental Science, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| |
Collapse
|
12
|
Pan X, Si X, Zhang X, Yao Q, Li Y, Duan W, Qiu Y, Su J, Huang X. A robust and porous titanium metal-organic framework for gas adsorption, CO 2 capture and conversion. Dalton Trans 2023; 52:3896-3906. [PMID: 36877532 DOI: 10.1039/d2dt03158b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A robust and porous titanium metal-organic framework (Ti-MOF; LCU-402) has been hydrothermally synthesized through combining a tetranuclear Ti2Ca2(μ3-O)2(μ2-H2O)1.3(H2O)4(O2C-)8 cluster and a tritopic 1,3,5-benzene(tris)benzoic (BTB) ligand. LCU-402 shows remarkable stability and permanent porosity for CO2, CH4, C2H2, C2H4, and C2H6 gas adsorption. Moreover, LCU-402 as a heterogeneous catalyst can smoothly convert CO2 under a simulated flue atmosphere into organic carbonate molecules by cycloaddition reactions of CO2 and epoxides, indicating that LCU-402 might be a promising catalyst candidate in practical applications. We are confident that the identification of a persistent titanium-oxo building unit would accelerate the development of new porous Ti-MOF materials.
Collapse
Affiliation(s)
- Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yunwu Li
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yi Qiu
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Jie Su
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
13
|
Jiao R, Wang Y, Pang Y, Yang D, Li Z, Lou H, Qiu X. Construction of Macroporous β-Glucosidase@MOFs by a Metal Competitive Coordination and Oxidation Strategy for Efficient Cellulose Conversion at 120 °C. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8157-8168. [PMID: 36724351 DOI: 10.1021/acsami.2c21383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) have become promising accommodation for enzyme immobilization in recent years. However, the microporous nature of MOFs affects the accessibility of large molecules, resulting in a significant decline in biocatalysis efficiency. Herein, a novel strategy is reported to construct macroporous MOFs by metal competitive coordination and oxidation with induced defect structure using a transition metal (Fe2+) as a functional site. The feasibility of in situ encapsulating β-glucosidase (β-G) within the developed macroporous MOFs endows an enzyme complex (β-G@MOF-Fe) with remarkably enhanced synergistic catalysis ability. The 24 h hydrolysis rate of β-G@MOF-Fe (with respect to cellobiose) is as high as approximately 99.8%, almost 32.2 times that of free β-G (3.1%). Especially, the macromolecular cellulose conversion rate of β-G@MOF-Fe reached 90% at 64 h, while that of β-G@MOFs (most micropores) was only 50%. This improvement resulting from the expansion of pores (significantly increased at 50-100 nm) can provide enough space for the hosted biomacromolecules and accelerate the diffusion rate of reactants. Furthermore, unexpectedly, the constructed β-G@MOF-Fe showed a superior heat resistance of up to 120 °C, attributing to the new strong coordination bond (Fe2+-N) formation through the metal competitive coordination. Therefore, this study offers new insights to solve the problem of the high-temperature macromolecular substrate encountered in the actual reaction.
Collapse
Affiliation(s)
- Rui Jiao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Yanming Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Zhixian Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| |
Collapse
|
14
|
Liu X, Qian B, Zhang D, Yu M, Chang Z, Bu X. Recent progress in host–guest metal–organic frameworks: Construction and emergent properties. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Engineering synergistic effects of immobilized cooperative catalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Le M, Ni QL, Zeng LH, Yuan CY, Wang XJ, Li SM, Gui LC. Construction of Acylamide-functionalized MOFs for efficient catalysis on the conversion of CO2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Polyimide-supported Cu/2,2,6,6-tetramethyl-1-piperidine-N-oxyl catalytic systems: Aromatic donor-acceptor interaction-directed cooperative catalysis. J Colloid Interface Sci 2022; 622:202-208. [DOI: 10.1016/j.jcis.2022.04.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
|
19
|
|
20
|
Khoury C, Holton S, Shpasser D, Hallo E, Kulkarni A, Jentoft FC, Gazit OM. Elucidating Cooperative Interactions between Grafted Amines and Tin or Titanium Sites on Silica. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christine Khoury
- Wolfson Faculty of Chemical Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| | - Samuel Holton
- Department of Chemical Engineering, University of California Davis, Davis, California 95618, United States
| | - Dina Shpasser
- Wolfson Faculty of Chemical Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| | - Elior Hallo
- Wolfson Faculty of Chemical Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California Davis, Davis, California 95618, United States
| | - Friederike C. Jentoft
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Oz M. Gazit
- Wolfson Faculty of Chemical Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
21
|
Jiang Y, Li D, Zhao Y, Sun J. Hydrogen bond donor functionalized poly(ionic liquids)@MIL-101 for the CO2 capture and improving the catalytic CO2 conversion with epoxide. J Colloid Interface Sci 2022; 618:22-33. [DOI: 10.1016/j.jcis.2022.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
|
22
|
Dai Z, Long Y, Liu J, Bao Y, Zheng L, Ma J, Liu J, Zhang F, Xiong Y, Lu JQ. Functional Porous Ionic Polymers as Efficient Heterogeneous Catalysts for the Chemical Fixation of CO 2 under Mild Conditions. Polymers (Basel) 2022; 14:2658. [PMID: 35808703 PMCID: PMC9269538 DOI: 10.3390/polym14132658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/23/2023] Open
Abstract
The development of efficient and metal-free heterogeneous catalysts for the chemical fixation of CO2 into value-added products is still a challenge. Herein, we reported two kinds of polar group (-COOH, -OH)-functionalized porous ionic polymers (PIPs) that were constructed from the corresponding phosphonium salt monomers (v-PBC and v-PBH) using a solvothermal radical polymerization method. The resulting PIPs (POP-PBC and POP-PBH) can be used as efficient bifunctional heterogeneous catalysts in the cycloaddition reaction of CO2 with epoxides under relatively low temperature, ambient pressure, and metal-free conditions without any additives. It was found that the catalytic activities of the POP-PBC and POP-PBH were comparable with the homogeneous catalysts of Me-PBC and PBH and were higher than that of the POP-PPh3-COOH that was synthesized through a post-modification method, indicating the importance of the high concentration catalytic active sites in the heterogeneous catalysts. Reaction under low CO2 concentration conditions showed that the activity of the POP-PBC (with a conversion of 53.8% and a selectivity of 99.0%) was higher than that of the POP-PBH (with a conversion of 32.3% and a selectivity of 99.0%), verifying the promoting effect of the polar group (-COOH group) in the porous framework. The POP-PBC can also be recycled at least five times without a significant loss of catalytic activity, indicating the high stability and robustness of the PIPs-based heterogeneous catalysts.
Collapse
Affiliation(s)
- Zhifeng Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China
| | - Yang Long
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Jianliang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Yuanfei Bao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Liping Zheng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Jiacong Ma
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Jiayi Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Fei Zhang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China
| | - Ji-Qing Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
23
|
Zhang X, Fu J, Wang G, Hu H, Zhang DS, Zhang YZ, Zhang YK, Zhang ZW, Zhou WF, Li TT, Lv D, Geng L. Structure modulation, selective dye adsorption and catalytic CO2 transformation of four pillared-layer metal-organic frameworks. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Apilardmongkol P, Ratanasak M, Hasegawa JY, Parasuk V. Exploring the Reaction Mechanism of Heterobimetallic Nickel‐Alkali Catalysts for Ethylene Polymerization: Secondary‐Metal‐Ligand Cooperative Catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pavee Apilardmongkol
- Chulalongkorn University Faculty of Science Chemistry Pathumwan 10330 Bangkok THAILAND
| | - Manussada Ratanasak
- Hokkaido University Catalysis Theory Research Division, Institute for Catalysis Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido, Japan, 001-0021 001-0021 Sapporo JAPAN
| | - Jun-ya Hasegawa
- Hokkaido University: Hokkaido Daigaku Institute for Catalysis Kita21, Nishi10, Kita-ku, Sapporo 001-0021 Sappporo JAPAN
| | - Vudhichai Parasuk
- Chulalongkorn University Faculty of Science Chemistry Pathumwan 10330 Bangkok THAILAND
| |
Collapse
|
25
|
Cleveland JW, Choi JI, Sekiya RS, Cho J, Moon HJ, Jang SS, Jones CW. Cooperativity in the Aldol Condensation Using Bifunctional Mesoporous Silica-Poly(styrene) MCM-41 Organic/Inorganic Hybrid Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11235-11247. [PMID: 35229600 DOI: 10.1021/acsami.1c21738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work explores the efficacy of silica/organic hybrid catalysts, where the organic component is built from linear aminopolymers appended to the silica support within the support mesopores. Specifically, the role of molecular weight and polymer chain composition in amine-bearing atom transfer radical polymerization-synthesized poly(styrene-co-2-(4-vinylbenzyl)isoindoline-1,3-dione) copolymers is probed in the aldol condensation of 4-nitrobenzaldehyde and acetone. Controlled polymerization produces protected amine-containing poly(styrene) chains of controlled molecular weight and dispersity, and a grafting-to thiol-ene coupling approach followed by a phthalimide deprotection step are used to covalently tether and activate the polymer hybrid catalysts prior to the catalytic reactions. Site-normalized batch kinetics are used to assess the role of polymer molecular weight and chain composition in the cooperative catalysis. Lower-molecular-weight copolymers are demonstrated to be more active than catalysts built from only molecular organic components or from higher-molecular-weight chains. Molecular dynamics simulations are used to probe the role of polymer flexibility and morphology, whereby it is determined that higher-molecular-weight hybrid structures result in congested pores that inhibit active site cooperativity and the diffusivity of reagents, thus resulting in lower rates during the reaction.
Collapse
Affiliation(s)
- Jacob W Cleveland
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Ji Il Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Ryoh-Suke Sekiya
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Jinwon Cho
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Hyun June Moon
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
26
|
Jiang Y, Zhao Y, Liang L, Zhang X, Sun J. Imidazolium-based poly(ionic liquid)s@MIL-101 for CO 2 adsorption and subsequent catalytic cycloaddition without additional cocatalyst and solvent. NEW J CHEM 2022. [DOI: 10.1039/d1nj05358b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ionic liquid)@MIL-101 incorporates an ionic liquid in a MOF and can be used in CO2 capture and conversion.
Collapse
Affiliation(s)
- Yichen Jiang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Yifei Zhao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
27
|
Liu X, Ding M, Ma P, Yao J. Optimizing the mobility of active species in ionic liquid/MIL-101 composites for boosting carbon dioxide conversion. NEW J CHEM 2022. [DOI: 10.1039/d1nj04914c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mobility of active species has been optimized based on ionic liquid/metal–organic framework (MOF) composites for efficient CO2 chemical fixation.
Collapse
Affiliation(s)
- Xi Liu
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Meili Ding
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Pan Ma
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianfeng Yao
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
28
|
Ghosh AK, Saha U, Biswas S, ALOthman ZA, Islam MA, Dolai M. Anthracene-triazole-dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aloke Kumar Ghosh
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| | - Urmila Saha
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700 073 West Bengal, India
| | - Surajit Biswas
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, 741 235 West Bengal, India
| | - Zeid A. ALOthman
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, M13 9PL Manchester, U.K
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| |
Collapse
|
29
|
Williams BP, Lo WS, Morabito JV, Young AP, Tsung F, Kuo CH, Palomba JM, Rayder TM, Chou LY, Sneed BT, Liu XY, Lamontagne LK, Petroff CA, Brodsky CN, Yang J, Andoni I, Li Y, Zhang F, Li Z, Chen SY, Gallacher C, Li B, Tsung SY, Pu MH, Tsung CK. Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51809-51828. [PMID: 34310110 DOI: 10.1021/acsami.1c08916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Professor Chia-Kuang (Frank) Tsung made his scientific impact primarily through the atomic-level design of nanoscale materials for application in heterogeneous catalysis. He approached this challenge from two directions: above and below the material surface. Below the surface, Prof. Tsung synthesized finely controlled nanoparticles, primarily of noble metals and metal oxides, tailoring their composition and surface structure for efficient catalysis. Above the surface, he was among the first to leverage the tunability and stability of metal-organic frameworks (MOFs) to improve heterogeneous, molecular, and biocatalysts. This article, written by his former students, seeks first to commemorate Prof. Tsung's scientific accomplishments in three parts: (1) rationally designing nanocrystal surfaces to promote catalytic activity; (2) encapsulating nanocrystals in MOFs to improve catalyst selectivity; and (3) tuning the host-guest interaction between MOFs and guest molecules to inhibit catalyst degradation. The subsequent discussion focuses on building on the foundation laid by Prof. Tsung and on his considerable influence on his former group members and collaborators, both inside and outside of the lab.
Collapse
Affiliation(s)
- Benjamin P Williams
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Joseph V Morabito
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Allison P Young
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Frances Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chun-Hong Kuo
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan 115
| | - Joseph M Palomba
- U.S. Army DEVCOM Soldier Center, 10 General Greene Avenue, Natick, Massachusetts 01760, United States
| | - Thomas M Rayder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Brian T Sneed
- CMC Materials, 870 North Commons Drive, Aurora, Illinois 60504, United States
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Leo K Lamontagne
- SecureSeniorConnections, 7114 East Stetson Drive, Scottsdale, Arizona 85251, United States
| | - Christopher A Petroff
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Casey N Brodsky
- University of Michigan Medical School, 7300 Medical Sciences Building I-A Wing, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jane Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ilektra Andoni
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Yang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Furui Zhang
- Department of Chemistry and the Institute for Catalysis in Energy Processes, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhehui Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Sheng-Yu Chen
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan 115
| | - Connor Gallacher
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Banruo Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Sheng-Yuan Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Ming-Hwa Pu
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
30
|
Hao L, Xia Q, Zhang Q, Masa J, Sun Z. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63841-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Li Y, Tian X, Jiang W, Wu P, Li HS, Wang M, Lin C, Wang J. Amino and triazole-containing metal-organic frameworks for highly efficient CO 2 fixation. Chem Commun (Camb) 2021; 57:10803-10806. [PMID: 34590631 DOI: 10.1039/d1cc04371d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel porous metal-organic framework (MOF) functionalized with amino and triazole moieties has been synthesized. Attributed to the high affinity to CO2 and unsaturated zinc centers, the MOF exhibits high catalytic activity for the CO2 to epoxide cycloaddition reaction, with a turnover number value of up to 10 000 per cycle, and can be reused at least for 20 cycles.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Xueqin Tian
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Weiwei Jiang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Han-Shu Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Man Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Chen Lin
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
32
|
Du J, Ouyang H, Tan B. Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chem Asian J 2021; 16:3833-3850. [PMID: 34605613 DOI: 10.1002/asia.202100991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Indexed: 01/07/2023]
Abstract
To overcome the challenges of global warming and environmental pollution, it is necessary to reduce the concentration of carbon dioxide (CO2 ) in the atmosphere, which is mainly accumulated in the air through the burning of fossil fuels. Therefore, the development of environmentally friendly strategies to capture carbon dioxide and convert it into value-added products offers a promising way forward for reducing carbon dioxide concentration in the atmosphere. In this context, POPs (porous organic polymers) have shown great potential as CO2 selective adsorbents due to their high specific surface area, chemical stability, nanoscale porosity and structural diversity, as well as POPs based heterogeneous catalysts for CO2 conversion. This review provides a concise account of preparation methods of various POPs, challenges and current development trends of POPs in photocatalytic CO2 reduction, electrocatalytic CO2 reduction and chemical CO2 conversion.
Collapse
Affiliation(s)
- Jing Du
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Huang Ouyang
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Bien Tan
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
33
|
Catalytic conversion of CO2: Electrochemically to ethanol and thermochemically to cyclic carbonates using nanoporous polytriazine. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Yang Y, Yang Y, Liu Y, Zhao S, Tang Z. Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yongchao Yang
- School of Chemical and Biomolecular Engineering The University of Sydney Camperdown NSW 2006 Australia
| | - Yuwei Yang
- School of Chemical and Biomolecular Engineering The University of Sydney Camperdown NSW 2006 Australia
| | - Yangyang Liu
- School of Chemical and Biomolecular Engineering The University of Sydney Camperdown NSW 2006 Australia
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering The University of Sydney Camperdown NSW 2006 Australia
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| |
Collapse
|
35
|
Zhang B, Bai X, Wang S, Li L, Li X, Fan F, Wang T, Zhang L, Zhang X, Li Y, Liu Y, Chen J, Meng F, Fu Y. Preparation of Superhydrophobic Metal-Organic Framework/Polymer Composites as Stable and Efficient Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32175-32183. [PMID: 34184868 DOI: 10.1021/acsami.1c07188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs), as a chemical platform, combined with multifunctional polymers are of interest in catalytic applications, which can not only inherit the outstanding properties of the two components but also lead to unique synergistic effects. Nonetheless, most MOFs possess varying degrees of water instability, which limits their real application. Herein, we fabricated highly hydrophobic MOF/polymer composites via a universal post-synthetic polymerization strategy as efficient catalysts. Polyaniline (PANI) was first hybridized with MOFs by vapor deposition polymerization, and then, hydrophobic molecules were grafted to the PANI by a covalent linking process, thereby forming a superhydrophobic MOF/PANI hybrid material (MOF/PANI-shp). The resultant MOF/PANI-shp not only obtains superior moisture/water resistance without significantly disturbing the original features but also exhibits a novel catalytic selectivity in styrene oxidation because of the accessible sites and synergistic effects. Such a synthetic strategy for the MOF/polymer catalyst opens a new avenue for the design of a unique catalyst with outstanding catalytic efficiency, selectivity, and stability.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Xiaojue Bai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Sha Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Linlin Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Xuemin Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Xuemin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Yunong Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Junyi Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Alaer 843300, P. R. China
| | - Fanbao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P.R. China
| |
Collapse
|
36
|
Shi Y, Zhao J, Xu H, Hou SL, Zhao B. Eco-friendly co-catalyst-free cycloaddition of CO2 and aziridines activated by a porous MOF catalyst. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1006-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Peng Y, Zhang Y, Tan Q, Huang H. Bioinspired Construction of Uranium Ion Trap with Abundant Phosphate Functional Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27049-27056. [PMID: 34076417 DOI: 10.1021/acsami.1c04892] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly efficient extraction of radioactive uranium from aqueous solution remains a serious task in the nuclear energy field. To address this, we here create an effective uranium ion trap by using a novel and facile strategy that introduces bioinspired moiety phytic acid (PA) into highly robust PCN-222. The resultant metal-organic framework (MOF)-based uranium ion trap (PCN-222-PA) with a high density of accessible phosphate groups exhibits a remarkable U(VI) uptake capacity (401.6 mg·g-1), surpassing most of the reported phosphorus-modified MOFs and various other MOF adsorbents. Kinetics study reveals that PCN-222-PA can reduce the uranium concentration from 10 mg L-1 to 21 μg L-1, below the acceptable limit defined by the US Environmental Protection Agency. In addition, PCN-222-PA also shows good selectivity and high stability as well as excellent recyclability toward uranium capture. Our work demonstrates a new strategy to design functional MOFs with abundant phosphate groups and provides a new perspective for extracting uranium from aqueous solution.
Collapse
Affiliation(s)
- Yaguang Peng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuxi Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Tan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
38
|
Guan Y, Li Y, Zhou J, Zhang T, Ding J, Xie Z, Wang L. Defect Engineering of Nanoscale Hf-Based Metal-Organic Frameworks for Highly Efficient Iodine Capture. Inorg Chem 2021; 60:9848-9856. [PMID: 34133146 DOI: 10.1021/acs.inorgchem.1c01120] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the rapid development of the nuclear industry, how to deal with radioactive iodine waste in a timely and effective manner has become an important issue to be solved urgently. Herein, the defect-engineering strategy has been applied to develop a metal-organic framework (MOF)-based solid adsorbent by using the classical UiO-type Hf-UiO-66 as an example. After simple acid treatment, the produced defect-containing Hf-UiO-66 (DHUN) not only retains its topological structure, high crystallization, and regular shape but also shows a great increase in the Brunauer-Emmett-Teller value and pore size in comparison with the original Hf-UiO (HUN). These formed defects within DHUN have been demonstrated to be important for the great enhancement of the iodine capture and following application in computed tomography imaging in vitro. This present work gives a new insight into the control and formation of defect sites, and this simple and efficient defect-engineering strategy also shows great promise for the development of novel solid adsorbents and other functional MOF materials.
Collapse
Affiliation(s)
- Yuyao Guan
- Department of Radiology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P. R. China
| | - Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junli Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tao Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P. R. China
| | - Jun Ding
- Department of Radiology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
39
|
López‐Maya E, Padial NM, Castells‐Gil J, Ganivet CR, Rubio‐Gaspar A, Cirujano FG, Almora‐Barrios N, Tatay S, Navalón S, Martí‐Gastaldo C. Selective Implantation of Diamines for Cooperative Catalysis in Isoreticular Heterometallic Titanium–Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elena López‐Maya
- Functional Inorganic Materials team Instituto de Ciencia Molecular Universidad de Valencia Catedrático Jose Beltrán-2 46980 Paterna Spain
| | - Natalia M. Padial
- Functional Inorganic Materials team Instituto de Ciencia Molecular Universidad de Valencia Catedrático Jose Beltrán-2 46980 Paterna Spain
| | - Javier Castells‐Gil
- Functional Inorganic Materials team Instituto de Ciencia Molecular Universidad de Valencia Catedrático Jose Beltrán-2 46980 Paterna Spain
| | - Carolina R. Ganivet
- Functional Inorganic Materials team Instituto de Ciencia Molecular Universidad de Valencia Catedrático Jose Beltrán-2 46980 Paterna Spain
| | - Ana Rubio‐Gaspar
- Functional Inorganic Materials team Instituto de Ciencia Molecular Universidad de Valencia Catedrático Jose Beltrán-2 46980 Paterna Spain
| | - Francisco G. Cirujano
- Functional Inorganic Materials team Instituto de Ciencia Molecular Universidad de Valencia Catedrático Jose Beltrán-2 46980 Paterna Spain
| | - Neyvis Almora‐Barrios
- Functional Inorganic Materials team Instituto de Ciencia Molecular Universidad de Valencia Catedrático Jose Beltrán-2 46980 Paterna Spain
| | - Sergio Tatay
- Functional Inorganic Materials team Instituto de Ciencia Molecular Universidad de Valencia Catedrático Jose Beltrán-2 46980 Paterna Spain
| | - Sergio Navalón
- Departamento de Química Universitat Politècnica de València C/Camino de Vera, s/n 46022 Valencia Spain
| | - Carlos Martí‐Gastaldo
- Functional Inorganic Materials team Instituto de Ciencia Molecular Universidad de Valencia Catedrático Jose Beltrán-2 46980 Paterna Spain
| |
Collapse
|
40
|
Dai Z, Tang Y, Zhang F, Xiong Y, Wang S, Sun Q, Wang L, Meng X, Zhao L, Xiao FS. Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63679-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Xiang W, Shen C, Lu Z, Chen S, Li X, Zou R, Zhang Y, Liu CJ. CO2 cycloaddition over ionic liquid immobilized hybrid zeolitic imidazolate frameworks: Effect of Lewis acid/base sites. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
MOF@POP core–shell architecture as synergetic catalyst for high-efficient CO2 fixation without cocatalyst under mild conditions. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
López-Maya E, Padial NM, Castells-Gil J, Ganivet CR, Rubio-Gaspar A, Cirujano FG, Almora-Barrios N, Tatay S, Navalón S, Martí-Gastaldo C. Selective Implantation of Diamines for Cooperative Catalysis in Isoreticular Heterometallic Titanium-Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:11868-11873. [PMID: 33631030 DOI: 10.1002/anie.202100176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Indexed: 11/08/2022]
Abstract
We introduce the first example of isoreticular titanium-organic frameworks, MUV-10 and MUV-12, to show how the different affinity of hard Ti(IV) and soft Ca(II) metal sites can be used to direct selective grafting of amines. This enables the combination of Lewis acid titanium centers and available -NH2 sites in two sizeable pores for cooperative cycloaddition of CO2 to epoxides at room temperature and atmospheric pressure. The selective grafting of molecules to heterometallic clusters adds up to the pool of methodologies available for controlling the positioning and distribution of chemical functions in precise positions of the framework required for definitive control of pore chemistry.
Collapse
Affiliation(s)
- Elena López-Maya
- Functional Inorganic Materials team, Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático Jose Beltrán-2, 46980, Paterna, Spain
| | - Natalia M Padial
- Functional Inorganic Materials team, Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático Jose Beltrán-2, 46980, Paterna, Spain
| | - Javier Castells-Gil
- Functional Inorganic Materials team, Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático Jose Beltrán-2, 46980, Paterna, Spain
| | - Carolina R Ganivet
- Functional Inorganic Materials team, Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático Jose Beltrán-2, 46980, Paterna, Spain
| | - Ana Rubio-Gaspar
- Functional Inorganic Materials team, Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático Jose Beltrán-2, 46980, Paterna, Spain
| | - Francisco G Cirujano
- Functional Inorganic Materials team, Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático Jose Beltrán-2, 46980, Paterna, Spain
| | - Neyvis Almora-Barrios
- Functional Inorganic Materials team, Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático Jose Beltrán-2, 46980, Paterna, Spain
| | - Sergio Tatay
- Functional Inorganic Materials team, Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático Jose Beltrán-2, 46980, Paterna, Spain
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022, Valencia, Spain
| | - Carlos Martí-Gastaldo
- Functional Inorganic Materials team, Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático Jose Beltrán-2, 46980, Paterna, Spain
| |
Collapse
|
44
|
Pander M, Janeta M, Bury W. Quest for an Efficient 2-in-1 MOF-Based Catalytic System for Cycloaddition of CO 2 to Epoxides under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8344-8352. [PMID: 33560110 PMCID: PMC8023534 DOI: 10.1021/acsami.0c20437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 05/21/2023]
Abstract
We have devised a straightforward tandem postsynthetic modification strategy for Zr-based metal-organic framework (MOF) materials, which resulted in a series of well-defined 2-in-1 heterogeneous catalysts, cat1-cat8, exhibiting high catalytic activity in the synthesis of cyclic carbonates under solvent-free and co-catalyst-free conditions. The materials feature precisely located co-catalyst moieties decorating the metal nodes throughout the bulk of the MOF and yield cyclic carbonates with up to 99% efficiency at room temperature. We use diffuse reflectance infrared Fourier transform (DRIFT) and solid-state nuclear magnetic resonance (NMR) measurements to elucidate the role of each component in this model catalytic reaction. Establishing a method to precisely control the co-catalyst loading allowed us to observe the cooperativity between Lewis acid sites and the co-catalyst in the 2-in-1 heterogeneous system.
Collapse
|
45
|
Liu J, Chen C, Zhang K, Zhang L. Applications of metal–organic framework composites in CO2 capture and conversion. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Bao C, Jiang Y, Zhao L, Li D, Xu P, Sun J. Aminoethylimidazole ionic liquid-grafted MIL-101-NH 2 heterogeneous catalyst for the conversion of CO 2 and epoxide without solvent and cocatalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj02590b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aminoethylimidazole IL-functionalized MIL-101-NHIM-NH2 catalyst efficiently catalyzes the cycloaddition reaction of CO2 and epoxide without solvent and cocatalyst, owing to the synergistic effects of Cr, –NH2 and Br− active sites.
Collapse
Affiliation(s)
- Chenglong Bao
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Yichen Jiang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Liyan Zhao
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Dazhi Li
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|
47
|
Bu R, Zhang L, Gao LL, Sun WJ, Yang SL, Gao EQ. Copper(I)-modified covalent organic framework for CO2 insertion to terminal alkynes. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Yang S, Karve VV, Justin A, Kochetygov I, Espín J, Asgari M, Trukhina O, Sun DT, Peng L, Queen WL. Enhancing MOF performance through the introduction of polymer guests. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213525] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Das R, Muthukumar D, Pillai RS, Nagaraja CM. Rational Design of a Zn II MOF with Multiple Functional Sites for Highly Efficient Fixation of CO 2 under Mild Conditions: Combined Experimental and Theoretical Investigation. Chemistry 2020; 26:17445-17454. [PMID: 32767456 DOI: 10.1002/chem.202002688] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/06/2020] [Indexed: 02/06/2023]
Abstract
The development of efficient heterogeneous catalysts suitable for carbon capture and utilization (CCU) under mild conditions is a promising step towards mitigating the growing concentration of CO2 in the atmosphere. Herein, we report the construction of a hydrogen-bonded 3D framework, {[Zn(hfipbba)(MA)]⋅3 DMF}n (hfipbba=4,4'-(hexaflouroisopropylene)bis(benzoic acid)) (HbMOF1) utilizing ZnII center, a partially fluorinated, long-chain dicarboxylate ligand (hfipbba), and an amine-rich melamine (MA) co-ligand. Interestingly, the framework possesses two types of 1D channels decorated with CO2 -philic (-NH2 and -CF3 ) groups that promote the highly selective CO2 adsorption by the framework, which was supported by computational simulations. Further, the synergistic involvement of both Lewis acidic and basic sites exposed in the confined 1D channels along with high thermal and chemical stability rendered HbMOF1 a good heterogeneous catalyst for the highly efficient fixation of CO2 in a reaction with terminal/internal epoxides at mild conditions (RT and 1 bar CO2 ). Moreover, in-depth theoretical studies were carried out using periodic DFT to obtain the relative energies for each stage involved in the catalytic reaction and an insight mechanistic details of the reaction is presented. Overall, this work represents a rare demonstration of rational design of a porous ZnII MOF incorporating multiple functional sites suitable for highly efficient fixation of CO2 with terminal/internal epoxides at mild conditions supported by comprehensive theoretical studies.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - D Muthukumar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Renjith S Pillai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - C Mallaiah Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| |
Collapse
|
50
|
Li CP, Li HR, Ai JY, Chen J, Du M. Optimizing Strategy for Enhancing the Stability and 99TcO 4 - Sequestration of Poly(ionic liquids)@MOFs Composites. ACS CENTRAL SCIENCE 2020; 6:2354-2361. [PMID: 33376797 PMCID: PMC7760461 DOI: 10.1021/acscentsci.0c01342] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 05/26/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of promising sorbents for effective sequestration of radioactive 99TcO4 - anions. However, their poor stability and slow sorption kinetics in the industrial condition pose a great challenge. Herein, we demonstrate an optimizing strategy via in situ polymerization of ionic liquids (ILs) encapsulated in the pores of MOFs, forming polyILs@MOFs composites with greatly enhanced TcO4 - sequestration compared with the pristine MOFs. Notably, the cross-linked polymerization of ILs facilitates the formation of both the inside ionic filler as the active sites and outside coating as the protective layers of MOFs, which is significantly beneficial to obtain the optimized sorption materials of exceptional stability under extreme conditions (e.g., in 6 M HNO3). The final optimized composite shows fast sorption kinetics (<30 s), good regeneration (>30 cycles), and superior uptake performance for TcO4 - in highly acidic conditions and simulated recycle stream. This strategy opens up a new opportunity to construct the highly stable MOF-based composites and extend their applicability in different fields.
Collapse
Affiliation(s)
- Cheng-Peng Li
- College
of Chemistry, Tianjin Key Laboratory of Structure and Performance
for Functional Molecules, Tianjin Normal
University, Tianjin 300387, China
| | - Hai-Ruo Li
- College
of Chemistry, Tianjin Key Laboratory of Structure and Performance
for Functional Molecules, Tianjin Normal
University, Tianjin 300387, China
| | - Jin-Yun Ai
- College
of Chemistry, Tianjin Key Laboratory of Structure and Performance
for Functional Molecules, Tianjin Normal
University, Tianjin 300387, China
| | - Jing Chen
- College
of Chemistry, Tianjin Key Laboratory of Structure and Performance
for Functional Molecules, Tianjin Normal
University, Tianjin 300387, China
| | - Miao Du
- College
of Chemistry, Tianjin Key Laboratory of Structure and Performance
for Functional Molecules, Tianjin Normal
University, Tianjin 300387, China
- College
of Material and Chemical Engineering, Zhengzhou
University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|