1
|
Zhao XH, Deng YF, Xi J, Huang JQ, Zhang YZ. Supramolecular Spring-Like Fe(II) Spin-Crossover Complexes Experiencing Giant and Anisotropic Thermal Expansion Across Two Distinct Temperature Regimes. Angew Chem Int Ed Engl 2025; 64:e202414826. [PMID: 39503272 DOI: 10.1002/anie.202414826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 11/21/2024]
Abstract
Dynamic molecules with tunable chemical and physical properties in response to external stimuli hold great potential for applications in various fields such as information storage, smart molecular machines, and biomimetics. Among them, supramolecular springs and spin-crossover (SCO) complexes can both undergo visible macroscopic changes under heat or light stimulation. In this study, we synthesized a unique trinuclear Fe(II)-SCO complex, [(R-L)FeII{Au(CN)2}2] (R 1), using a chiral chelating ligand decorated with rotatable benzyl rings. The [FeAu2] trinuclear molecules form a 21-helical supramolecular chain via elastic Au ⋯ ${\cdots }$ Au contacts. Interestingly, the synergy between the multiple dynamic factors (SCO event, rotation of the rings, and flexibility in Au ⋯ ${\cdots }$ Au distance) endows the complex with multiple switchings in both magnetism and structure, as well as the most intriguing characteristic of giant and anisotropic "breathing" feature in thermal expansion within two distinct temperature regimes. Specifically, complex R 1 undergoes two hysteretic magnetic transitions: a non-spin transition between 360 and 380 K and an unsymmetric SCO transition in the region of 160-280 K, associated with a symmetry-breaking event between the non-polar and polar space groups (P212121↔P21). Both transitions are triggered/accompanied by the rotation (inward vs. outward) of the benzyl rings. Correspondingly, reversible spring-like motions of the helical chains with the helical pitches varying from 11.345140 K to 12.509280 K then back to 11.630380 K Å are observed in the two distinct temperature regimes. This work demonstrates a significant success in incorporating both SCO and spring-like motion in one system, paving the way for designing multifunctional dynamic materials for future devices.
Collapse
Affiliation(s)
- Xin-Hua Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jing Xi
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jia-Quan Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
2
|
Gu Y, Liu L, Wang Y, Zhang C, Satoh T. Chromaticity sensor for discriminatory identification of aliphatic and aromatic primary amines based on conformational changes of polyacetylene. Talanta 2024; 268:125361. [PMID: 37925824 DOI: 10.1016/j.talanta.2023.125361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The design and construction of suitable sensors that can selectively recognize chemically similar substances such as aliphatic and aromatic amines remain challenging. In this work, we reported a poly(phenylacetylene) bearing two aldehyde pendants as the color indicator for discriminative identification of amines. Reversible Schiff-base reaction of the aldehyde group with the amine resulted in a conformational transition of the polyacetylene backbone from cis-cisoid to cis-transoid, which further achieved a colorimetric change. Thirteen aliphatic amines and aromatic amines had been studied. Compared with aromatic amines, aliphatic amines generally caused the polyene backbone to display perceivable colorimetric change. Steric and electronic effect played a significant role in the colorimetric response. In addition, external environment, including amine content, polymer concentration, and temperature, had influence on the sensitivity of this colorimetric indicator system. The amines-induced colorimetric variation was further demonstrated by the CIELAB color space. Moreover, the colorimetric sensor exhibited excellent reversibility and recyclability.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China; Yantai Research Institute of Harbin Engineering University, Yantai, 264006, China.
| | - Yudan Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China; Yantai Research Institute of Harbin Engineering University, Yantai, 264006, China
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| |
Collapse
|
3
|
Hwang D, Wrigley LM, Lee M, Sobolewski AL, Domcke W, Schlenker CW. Local Hydrogen Bonding Determines Branching Pathways in Intermolecular Heptazine Photochemistry. J Phys Chem B 2023. [PMID: 37471476 DOI: 10.1021/acs.jpcb.3c01397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Heptazine is the molecular core of the widely studied photocatalyst carbon nitride. By analyzing the excited-state intermolecular proton-coupled electron-transfer (PCET) reaction between a heptazine derivative and a hydrogen-atom donor substrate, we are able to spectroscopically identify the resultant heptazinyl reactive radical species on a picosecond time scale. We provide detailed spectroscopic characterization of the tri-anisole heptazine:4-methoxyphenol hydrogen-bonded intermolecular complex (TAHz:MeOPhOH), using femtosecond transient absorption spectroscopy and global analysis, to reveal distinct product absorption signatures at ∼520, 1250, and 1600 nm. We assign these product peaks to the hydrogenated TAHz radical (TAHzH•) based on control experiments utilizing 1,4-dimethoxybenzene (DMB), which initiates electron transfer without concomitant proton transfer, i.e., no excited-state PCET. Additional control experiments with radical quenchers, protonation agents, and UV-vis-NIR spectroelectrochemistry also corroborate our product peak assignments. These spectral assignments allowed us to monitor the influence of the local hydrogen-bonding environment on the resulting evolution of photochemical products from excited-state PCET of heptazines. We observe that the preassociation of heptazine with the substrate in solution is extremely sensitive to the hydrogen-bond-accepting character of the solvent. This sensitivity directly influences which product signatures we detect with time-resolved spectroscopy. The spectral signature of the TAHzH• radical assigned in this work will facilitate future in-depth analysis of heptazine and carbon nitride photochemistry. Our results may also be utilized for designing improved PCET-based photochemical systems that will require precise control over local molecular environments. Examples include applications such as preparative synthesis involving organic photoredox catalysis, on-site solar water purification, as well as photocatalytic water splitting and artificial photosynthesis.
Collapse
Affiliation(s)
- Doyk Hwang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Liam M Wrigley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Micah Lee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Cody W Schlenker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195-1652, United States
- Clean Energy Institute, University of Washington, Seattle, Washington 98195-1653, United States
| |
Collapse
|
4
|
Pusfitasari ED, Ruiz-Jimenez J, Samuelsson J, Besel V, Fornstedt T, Hartonen K, Riekkola ML. Assessment of physicochemical properties of sorbent materials in passive and active sampling systems towards gaseous nitrogen-containing compounds. J Chromatogr A 2023; 1703:464119. [PMID: 37271082 DOI: 10.1016/j.chroma.2023.464119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
The adsorption and desorption behavior of volatile nitrogen-containing compounds in vapor phase by solid-phase microextraction Arrow (SPME-Arrow) and in-tube extraction (ITEX) sampling systems, were investigated experimentally using gas chromatography-mass spectrometry. Three different SPME-Arrow coating materials, DVB/PDMS, MCM-41, and MCM-41-TP and two ITEX adsorbents, TENAX-GR and MCM-41-TP were compared to clarify the selectivity of the sorbents towards nitrogen-containing compounds. In addition, saturated vapor pressures for these compounds were estimated, both experimentally and theoretically. In this study, the adsorption of nitrogen-containing compounds on various adsorbents followed the Elovich model well, while a pseudo-first-order kinetics model best described the desorption kinetics. Pore volume and pore sizes of the coating sorbents were essential parameters for the determination of the adsorption performance for the SPME-Arrow sampling system. MCM-41-TP coating with the smallest pore size gave the slowest adsorption rate compared to that of DVB/PDMS and MCM-41 in the SPME-Arrow sampling system. Both adsorbent and adsorbate properties, such as hydrophobicity and basicity, affected the adsorption and desorption kinetics in SPME-Arrow system. The adsorption and desorption rates of studied C6H15N isomers in the MCM-41 and MCM-41-TP sorbent materials of SPME-Arrow system were higher for dipropylamine and triethylamine (branched amines) than for hexylamine (linear chain amines). DVB/PDMS-SPME-Arrow gave fast adsorption rates for the aromatic-ringed pyridine and o-toluidine. All studied nitrogen-containing compounds demonstrated high desorption rates with DVB/PDMS-SPME-Arrow. Chemisorption and physisorption were the sorption mechanisms in MCM-41- and MCM-41-TP- SPME-Arrow, but additional experiments are needed to confirm this. An active sampling technique ITEX gave comparable adsorption and desorption rates on the selective MCM-41-TP and universal TENAX-GR sorbent materials for all the compounds studied. Vapor pressures of nitrogen-containing compounds were experimentally estimated by using retention index approach and these values were compared with the theoretical ones, calculated using the COnductor-like Screening MOdel for Real Solvent (COSMO-RS) model. Both values agreed well with those found in the literature proving that these methods can be successfully used in predicting VOC's vapor pressures, e.g. for the formation of secondary organic aerosols.
Collapse
Affiliation(s)
- Eka Dian Pusfitasari
- Department of Chemistry, PO Box 55, FI-00014, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research, Chemistry, Faculty of science, PO Box 55, FI-00014, University of Helsinki, Finland
| | - Jose Ruiz-Jimenez
- Department of Chemistry, PO Box 55, FI-00014, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research, Chemistry, Faculty of science, PO Box 55, FI-00014, University of Helsinki, Finland
| | - Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88, Karlstad, Sweden
| | - Vitus Besel
- Institute for Atmospheric and Earth System Research, Physics, Faculty of science, PO Box 64, FI-00014, University of Helsinki, Finland
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88, Karlstad, Sweden
| | - Kari Hartonen
- Department of Chemistry, PO Box 55, FI-00014, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research, Chemistry, Faculty of science, PO Box 55, FI-00014, University of Helsinki, Finland.
| | - Marja-Liisa Riekkola
- Department of Chemistry, PO Box 55, FI-00014, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research, Chemistry, Faculty of science, PO Box 55, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
5
|
Highly tough, colorless, transparent polyamide-imide films from one reaction vessel without purification. Macromol Res 2023. [DOI: 10.1007/s13233-023-00130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
6
|
Cai S, Huang Y, Xie S, Wang S, Guan Y, Wan X, Zhang J. 2D Hexagonal Assemblies of Amphiphilic Double-Helical Poly(phenylacetylene) Homopolymers with Enhanced Circularly Polarized Luminescence and Chiral Self-Sorting. Angew Chem Int Ed Engl 2022; 61:e202214293. [PMID: 36305302 DOI: 10.1002/anie.202214293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Two-dimensional (2D) chiral materials have been attracting immense attentions owing to their unique properties. Herein, we successfully developed a unique assembly strategy of amphiphilic homopolymers to construct stable free-standing 2D chiral nanosheets in solution. The amphiphilic poly(phenylacetylene) (PPA) homopolymers bearing the hydrophobic and hydrophilic dendritic side chains adopt a DNA-like double-helical conformation. The regular hexagonal nanosheets were formed in THF/EtOH through nucleation and epitaxial growth. The sizes of the nanosheets can be modulated from nanometers to submillimeters upon varying the ratio of binary solvents, while the thickness is linearly correlated with the molecular weights. The 2D architecture can significantly enhance the CPL of polymers with a high dissymmetry factor ≈0.1. Driven by a discrimination of helical conformation, the PPAs can self-sort into homochiral 2D nanosheets, as directly visualized by using fluorescent microscopy.
Collapse
Affiliation(s)
- Siliang Cai
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yihan Huang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Sheng Wang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Dong B, Xu G, Yang R, Wang Q. Chemical Upcycling of Poly(ε-caprolactone) to Valuable Chemical via TBD-Catalyzed Efficient Methanolysis Strategy. Chem Asian J 2022; 17:e202200667. [PMID: 35983673 DOI: 10.1002/asia.202200667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/01/2022] [Indexed: 11/09/2022]
Abstract
As a petroleum-derived polyester material, poly(ε-caprolactone) (PCL) plays an essential role in biomedical field due to its excellent biocompatibility and non-toxicity. With the increasing use of PCL in recent years, its waste disposal has become a significant challenge. To address this challenge, we demonstrate a high-efficiency organocatalysis strategy for the chemical upcycling of PCL to valuable chemical. Among organocatalysts explored in this article, 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) shows superior performance for transforming end-of-life poly(ε-caprolactone) into highly value-added methyl 6-hydroxyhexanoate with quantitative conversion in a short time. The endwise unzipping depolymerization mechanism is corroborated by monitoring molecular weight during depolymerization process and 1 H NMR control experiments. Furthermore, this approach is also practicable for large-scale depolymerization for commercial PCL plastics, providing idea for promoting the sustainable development of PCL plastics.
Collapse
Affiliation(s)
- Bingzhe Dong
- Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Bio-based materials, CHINA
| | - Guangqiang Xu
- Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Bio-based Materials, CHINA
| | - Rulin Yang
- Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Bio-based Materials, CHINA
| | - Qinggang Wang
- Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Bio-based Materials, Songling Road 189., 266101, Qingdao, CHINA
| |
Collapse
|
8
|
Wang S, Xie S, Zeng H, Du H, Zhang J, Wan X. Self-Reporting Activated Ester-Amine Reaction for Enantioselective Multi-Channel Visual Detection of Chiral Amines. Angew Chem Int Ed Engl 2022; 61:e202202268. [PMID: 35285991 DOI: 10.1002/anie.202202268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/04/2023]
Abstract
Chiral recognition is of importance not only in living systems but also in estimating the optical purity of enantiomeric drugs and fabricating advanced materials. Herein we report a novel self-reporting activated ester-amine reaction that can provide multi-channel visual detection of organic amines. It relies on the reaction extent dependent cis-transoid to cis-cisoid helical transition of the polyphenylacetylene backbone and the thus triggered fluorescence. Owing to the high selectivity, this visual process can recognize structurally diverse achiral amines and quantitatively check the impurity content. It also shows an outstanding enantioselectivity towards various chiral amines and can be applied to determine enantiomeric composition. The multiple responses in absorption, circular dichroism, photoluminescence, and circularly polarized luminescence make the helical transition of the polymer backbone a potential detection mode for high-throughput screening of chiral chemicals.
Collapse
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hua Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongxu Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
Fazl F, Torabi M, Yarie M, Zolfigol MA. Synthesis and application of novel urea-benzoic acid functionalized magnetic nanoparticles for the synthesis of 2,3-disubstituted thiazolidin-4-ones and hexahydroquinolines. RSC Adv 2022; 12:16342-16353. [PMID: 35747527 PMCID: PMC9158513 DOI: 10.1039/d2ra02205b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
In this work, we reported the synthesis and application of a new urea-benzoic acid containing ligand [(OEt)3Si(CH2)3-urea-benzoic acid] for the functionalization of silica coated magnetic nanoparticles. The resulting structure, namely Fe3O4@SiO2@(CH2)3-urea-benzoic acid, was characterized through different techniques including FT-IR, SEM, EDX-Mapping, VSM and TGA/DTG analysis. Then, Fe3O4@SiO2@(CH2)3-urea-benzoic acid was applied as a heterogeneous dual acidic and hydrogen bonding catalyst for the synthesis of 2,3-disubstituted thiazolidin-4-ones and hexahydroquinolines under mild and green reaction conditions. More importantly, all of the desired products were obtained with relatively good yields. Also, the catalyst was recovered and reused for four successive runs without significant reduction in yield of the model reaction.
Collapse
Affiliation(s)
- Fazlulhaq Fazl
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
10
|
Zarei N, Torabi M, Yarie M, Zolfigol MA. Novel Urea-Functionalized Magnetic Nanoparticles as a Heterogeneous Hydrogen Bonding Catalyst for the Synthesis of New 2-Hydroxy Pyridines. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2061531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Narges Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
11
|
Wang S, Xie S, Zeng H, Du H, Zhang J, Wan X. Self‐Reporting Activated Ester‐Amine Reaction for Enantioselective Multi‐Channel Visual Detection of Chiral Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hua Zeng
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hongxu Du
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
12
|
Yin G, Liu L, Mottate K, Teraguchi M, Kaneko T, Aoki T. On-off reversible switching of the chirality of one-handed helical Poly(phenylacetylene)s by polarity stimuli. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Wang S, Hu D, Guan X, Cai S, Shi G, Shuai Z, Zhang J, Peng Q, Wan X. Brightening up Circularly Polarized Luminescence of Monosubstituted Polyacetylene by Conformation Control: Mechanism, Switching, and Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Deping Hu
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiaoyan Guan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Siliang Cai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ge Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhigang Shuai
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Qian Peng
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
14
|
Wang S, Hu D, Guan X, Cai S, Shi G, Shuai Z, Zhang J, Peng Q, Wan X. Brightening up Circularly Polarized Luminescence of Monosubstituted Polyacetylene by Conformation Control: Mechanism, Switching, and Sensing. Angew Chem Int Ed Engl 2021; 60:21918-21926. [PMID: 34309164 DOI: 10.1002/anie.202108010] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Indexed: 11/09/2022]
Abstract
The first example of luminescent monosubstituted polyacetylenes (mono-PAs) is presented, based on a contracted cis-cisoid polyene backbone. It has an excellent circularly polarized luminescence (CPL) performance with a high dissymmetric factor (up to the order of 10-1 ). The luminescence stems from the helical cis-cisoid PA backbone, which is tightly fixed by the strong intramolecular hydrogen bonds, thereby reversing the energy order of excited states and enabling an emissive energy dissipation. CPL switches are facilely achieved by the solvent and temperature through reversible conformational transition. By taking advantages of fast response and high sensitivity, the thin film of mono-PAs could be used as a CPL-based probe for quantitative detection of trifluoroacetic acid with a wider linear dynamic range than those of photoluminescence and circular dichroism. This work opens a new avenue to develop novel smart CPL materials through modulating conformational transition.
Collapse
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Deping Hu
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoyan Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siliang Cai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ge Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhigang Shuai
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Jin YJ, Kim H, Lee J, Kim H, Aoki T, Kwak G. Optical-Dissymmetry Phase Transitions in an Achiral Helical-Spring Polymer through Controlled Noncovalent Interactions. J Phys Chem B 2021; 125:8251-8260. [PMID: 34259532 DOI: 10.1021/acs.jpcb.1c05345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Noncovalent chemistry may offer diversity in the functions and applications for artificial polymers by allowing various ordered-disordered phase transitions in a precisely controlled manner. To verify this notion from a fundamental perspective, we examined an achiral poly(phenylacetylene) derivative with an α-helical structure as a helical-spring polymer for revealing phase changes through control of intramolecular hydrogen bonding with the chiral solvent and temperature. When an amine capable of hydrogen bonding was used as the chiral solvent, either an irreversible helix-helix or a reversible helix-coil phase change occurred in an optically dissymmetric manner according to the amount of the chiral solvent added and ambient temperature. Considering the hydrogen-bonding strength values of the solvent mixture and the thermodynamic parameters, we could predict if the optical-dissymmetry phase changes would occur and, if so, how they occur. Our results were similar to those see for the denaturation of proteins, induced by solvent and temperature, based on helix-coil phase transition.
Collapse
Affiliation(s)
- Young-Jae Jin
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, School of Applied Chemical Engineering, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea.,Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Korea
| | - Hyojin Kim
- Daegu Technopark Nano Convergence Practical Application Center, 891-5 Daecheon-dong, Dalseo-ku, Daegu 704-801, Korea
| | - Jineun Lee
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, School of Applied Chemical Engineering, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea
| | - Heesang Kim
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, School of Applied Chemical Engineering, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea
| | - Toshiki Aoki
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Technology, and Center for Transdisciplinary Research, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Giseop Kwak
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, School of Applied Chemical Engineering, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea
| |
Collapse
|
16
|
Cai S, Chen J, Wang S, Zhang J, Wan X. Allostery-Mimicking Self-assembly of Helical Poly(phenylacetylene) Block Copolymers and the Chirality Transfer. Angew Chem Int Ed Engl 2021; 60:9686-9692. [PMID: 33580891 DOI: 10.1002/anie.202100551] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/22/2022]
Abstract
Allostery can regulate protein self-assembly which further affects biological activities, and achieving precise control over the chiral suprastructures during self-assembly remains challenging. Herein, to mimic the allosterical nature of proteins, the poly(phenylacetylene) block copolymers PPA-b-PsmNap with the dynamic helical backbone were synthesized to investigate their conformational-transition-induced self-assembly. As the helical conformation of the block PsmNap spontaneously transforms from cis-transiod to cis-cisoid, the decreasing solubility of PsmNap blocks in THF induced self-assembly of PPA-b-PsmNap. The self-assembly structures of copolymers can sequentially evolve from vesicles to nanobelts to helical strands during the process of conformation transformation. The screw sense of final helical strands was strictly correlated to the helicity of the block PsmNap. This is helpful to understand the mechanism of allostery-modulated self-assembly.
Collapse
Affiliation(s)
- Siliang Cai
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junxian Chen
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Sheng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Cai S, Chen J, Wang S, Zhang J, Wan X. Allostery‐Mimicking Self‐assembly of Helical Poly(phenylacetylene) Block Copolymers and the Chirality Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Siliang Cai
- Beijing National Laboratory for Molecular Science Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Junxian Chen
- Beijing National Laboratory for Molecular Science Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Sheng Wang
- Beijing National Laboratory for Molecular Science Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
18
|
Zang Y, Lun Y, Teraguchi M, Kaneko T, Jia H, Miao F, Zhang X, Aoki T. Synthesis of Cis-Cisoid or Cis-Transoid Poly(Phenyl-Acetylene)s Having One or Two Carbamate Groups as Oxygen Permeation Membrane Materials. MEMBRANES 2020; 10:E199. [PMID: 32854258 PMCID: PMC7557842 DOI: 10.3390/membranes10090199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022]
Abstract
Three new phenylacetylene monomers having one or two carbamate groups were synthesized and polymerized by using (Rh(norbornadiene)Cl)2 as an initiator. The resulting polymers had very high average molecular weights (Mw) of 1.4-4.8 × 106, with different solubility and membrane-forming abilities. The polymer having two carbamate groups and no hydroxy groups in the monomer unit showed the best solubility and membrane-forming ability among the three polymers. In addition, the oxygen permeability coefficient of the membrane was more than 135 times higher than that of a polymer having no carbamate groups and two hydroxy groups in the monomer unit with maintaining similar oxygen permselectivity. A better performance in membrane-forming ability and oxygen permeability may be caused by a more extended and flexible cis-transoid conformation and lower polarity. On the other hand, the other two new polymers having one carbamate group and two hydroxy groups in the monomer unit showed lower performances in membrane-forming abilities and oxygen permeabilities. It may be caused by a very tight cis-cisoid conformation, which was maintained by intramolecular hydrogen bonds.
Collapse
Affiliation(s)
- Yu Zang
- Key laboratory of polymer matrix composites, Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, Heilongjiang 161006, China; (H.J.); (X.Z.); (T.A.)
| | - Yinghui Lun
- Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, Hunan 421002, China;
| | - Masahiro Teraguchi
- Chemistry and Chemical Engineering, Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan; (M.T.); (T.K.)
| | - Takashi Kaneko
- Chemistry and Chemical Engineering, Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan; (M.T.); (T.K.)
| | - Hongge Jia
- Key laboratory of polymer matrix composites, Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, Heilongjiang 161006, China; (H.J.); (X.Z.); (T.A.)
| | - Fengjuan Miao
- College of Communications and Electronics Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, Heilongjiang 161006, China;
| | - Xunhai Zhang
- Key laboratory of polymer matrix composites, Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, Heilongjiang 161006, China; (H.J.); (X.Z.); (T.A.)
| | - Toshiki Aoki
- Key laboratory of polymer matrix composites, Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, Heilongjiang 161006, China; (H.J.); (X.Z.); (T.A.)
- Chemistry and Chemical Engineering, Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan; (M.T.); (T.K.)
| |
Collapse
|