1
|
Hacker C, Sendra K, Keisham P, Filipescu T, Lucocq J, Salimi F, Ferguson S, Bhella D, MacNeill SA, Embley M, Lucocq J. Biogenesis, inheritance, and 3D ultrastructure of the microsporidian mitosome. Life Sci Alliance 2024; 7:e202201635. [PMID: 37903625 PMCID: PMC10618108 DOI: 10.26508/lsa.202201635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
During the reductive evolution of obligate intracellular parasites called microsporidia, a tiny remnant mitochondrion (mitosome) lost its typical cristae, organellar genome, and most canonical functions. Here, we combine electron tomography, stereology, immunofluorescence microscopy, and bioinformatics to characterise mechanisms of growth, division, and inheritance of this minimal mitochondrion in two microsporidia species (grown within a mammalian RK13 culture-cell host). Mitosomes of Encephalitozoon cuniculi (2-12/cell) and Trachipleistophora hominis (14-18/nucleus) displayed incremental/non-phasic growth and division and were closely associated with an organelle identified as equivalent to the fungal microtubule-organising centre (microsporidian spindle pole body; mSPB). The mitosome-mSPB association was resistant to treatment with microtubule-depolymerising drugs nocodazole and albendazole. Dynamin inhibitors (dynasore and Mdivi-1) arrested mitosome division but not growth, whereas bioinformatics revealed putative dynamins Drp-1 and Vps-1, of which, Vps-1 rescued mitochondrial constriction in dynamin-deficient yeast (Schizosaccharomyces pombe). Thus, microsporidian mitosomes undergo incremental growth and dynamin-mediated division and are maintained through ordered inheritance, likely mediated via binding to the microsporidian centrosome (mSPB).
Collapse
Affiliation(s)
| | - Kacper Sendra
- Biosciences Institute, The Medical School, Catherine Cookson Building, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - James Lucocq
- Department of Surgery, Dundee Medical School Ninewells Hospital, Dundee, UK
| | - Fatemeh Salimi
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Sophie Ferguson
- School of Medicine, University of St Andrews, St Andrews, UK
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Martin Embley
- Biosciences Institute, Centre for Bacterial Cell Biology, Baddiley-Clark Building, Newcastle University, Newcastle upon Tyne, UK
| | - John Lucocq
- School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
2
|
Thomé PC, Irisarri I, Wolinska J, Monaghan MT, Strassert JFH. Single-cell genomics reveals new rozellid lineages and supports their sister relationship to Microsporidia. Biol Lett 2023; 19:20230398. [PMID: 38087939 PMCID: PMC10716661 DOI: 10.1098/rsbl.2023.0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied Rozella species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of Rozella allomycis. Here, we provide genomic data of three new rozellid lineages obtained by single-cell sequencing from environmental samples and show with a phylogenomic approach that rozellids form a monophyletic group that is sister to microsporidians, corroborating the previously proposed phylum Rozellomycota. Whereas no mitochondrial genes coding for the respiratory Complex I could be found, we discovered a gene coding for a nucleotide phosphate transporter in one of the three draft genomes. The scattered absence of Complex I genes and scattered presence of nucleotide transporter genes across diverse microsporidian and rozellid lineages suggest that these adaptations to a parasitic lifestyle, which reduce the parasite's capability to synthesize ATP but enables it to steal ATP from its host, evolved independently in microsporidians and rozellids.
Collapse
Affiliation(s)
- Pauline C. Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg, Hamburg, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Michael T. Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F. H. Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
3
|
Corona Ramirez A, Bregnard D, Junier T, Cailleau G, Dorador C, Bindschedler S, Junier P. Assessment of fungal spores and spore-like diversity in environmental samples by targeted lysis. BMC Microbiol 2023; 23:68. [PMID: 36918804 PMCID: PMC10015814 DOI: 10.1186/s12866-023-02809-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.
Collapse
Affiliation(s)
- Andrea Corona Ramirez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Danaé Bregnard
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Cristina Dorador
- Department of Biotechnology, University of Antofagasta, Antofagasta, Chile
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
4
|
Klawonn I, Dunker S, Kagami M, Grossart HP, Van den Wyngaert S. Intercomparison of Two Fluorescent Dyes to Visualize Parasitic Fungi (Chytridiomycota) on Phytoplankton. MICROBIAL ECOLOGY 2023; 85:9-23. [PMID: 34854932 PMCID: PMC9849195 DOI: 10.1007/s00248-021-01893-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Fungal microparasites (here chytrids) are widely distributed and yet, they are often overlooked in aquatic environments. To facilitate the detection of microparasites, we revisited the applicability of two fungal cell wall markers, Calcofluor White (CFW) and wheat germ agglutinin (WGA), for the direct visualization of chytrid infections on phytoplankton in laboratory-maintained isolates and field-sampled communities. Using a comprehensive set of chytrid-phytoplankton model pathosystems, we verified the staining pattern on diverse morphological structures of chytrids via fluorescence microscopy. Empty sporangia were stained most effectively, followed by encysted zoospores and im-/mature sporangia, while the staining success was more variable for rhizoids, stalks, and resting spores. In a few instances, the staining was unsuccessful (mostly with WGA), presumably due to insufficient cell fixation, gelatinous cell coatings, and multilayered cell walls. CFW and WGA staining could be done in Utermöhl chambers or on polycarbonate filters, but CFW staining on filters seemed less advisable due to high background fluorescence. To visualize chytrids, 1 µg dye mL-1 was sufficient (but 5 µg mL-1 are recommended). Using a dual CFW-WGA staining protocol, we detected multiple, mostly undescribed chytrids in two natural systems (freshwater and coastal), while falsely positive or negative stained cells were well detectable. As a proof-of-concept, we moreover conducted imaging flow cytometry, as a potential high-throughput technology for quantifying chytrid infections. Our guidelines and recommendations are expected to facilitate the detection of chytrid epidemics and to unveil their ecological and economical imprint in natural and engineered aquatic systems.
Collapse
Affiliation(s)
- Isabell Klawonn
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Berlin, Germany.
- Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, 18119, Rostock, Germany.
| | - Susanne Dunker
- Department for Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), 04318, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), 04103, Leipzig, Germany
| | - Maiko Kagami
- Faculty of Science, Toho University, Funabashi, Chiba, 274-8510, Japan
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, 240-8502, Japan
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Berlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, 14476, Potsdam, Germany
| | - Silke Van den Wyngaert
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Berlin, Germany.
- WasserCluster Lunz, Biologische Station, Dr. Carl Kupelwieser Promenade 5, 3293, Lunz am See, Austria.
- Department of Biology, University of Turku, Vesilinnantie 5, 20014, Turku, Finland.
| |
Collapse
|
5
|
Abstract
It has been assumed that fungi are characterized by a haploid-dominant life cycle with a general absence of mitosis in the diploid stage (haplontic life cycles). However, this characterization is based largely on information for Dikarya, a group of fungi that contains mushrooms, lichens, molds, yeasts, and most described fungi. We now appreciate that most early-diverging lineages of fungi are not Dikarya and share traits with protists, such as flagellated life stages. Here, we generated an improved phylogeny of the fungi by generating genome sequences of 69 zoosporic fungi. We show, using the estimated heterozygosity of these genomes, that many fungal lineages have diploid-dominant life cycles (diplontic). This finding forces us to rethink the early evolution of the fungal cell. Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane– and cell-wall–associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.
Collapse
|
6
|
|
7
|
Ilicic D, Grossart HP. Basal Parasitic Fungi in Marine Food Webs-A Mystery Yet to Unravel. J Fungi (Basel) 2022; 8:114. [PMID: 35205868 PMCID: PMC8874645 DOI: 10.3390/jof8020114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.
Collapse
Affiliation(s)
- Doris Ilicic
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| |
Collapse
|
8
|
Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. FUNGAL DIVERS 2021; 109:59-98. [PMID: 34608378 PMCID: PMC8480134 DOI: 10.1007/s13225-021-00480-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
The increasing number of new fungal species described from all over the world along with the use of genetics to define taxa, has dramatically changed the classification system of early-diverging fungi over the past several decades. The number of phyla established for non-Dikarya fungi has increased from 2 to 17. However, to date, both the classification and phylogeny of the basal fungi are still unresolved. In this article, we review the recent taxonomy of the basal fungi and re-evaluate the relationships among early-diverging lineages of fungal phyla. We also provide information on the ecology and distribution in Mucoromycota and highlight the impact of chytrids on amphibian populations. Species concepts in Chytridiomycota, Aphelidiomycota, Rozellomycota, Neocallimastigomycota are discussed in this paper. To preserve the current application of the genus Nephridiophaga (Chytridiomycota: Nephridiophagales), a new type species, Nephridiophaga blattellae, is proposed.
Collapse
|
9
|
Kumar V, Sarma VV, Thambugala KM, Huang JJ, Li XY, Hao GF. Ecology and Evolution of Marine Fungi With Their Adaptation to Climate Change. Front Microbiol 2021; 12:719000. [PMID: 34512597 PMCID: PMC8430337 DOI: 10.3389/fmicb.2021.719000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Climate change agitates interactions between organisms and the environment and forces them to adapt, migrate, get replaced by others, or extinct. Marine environments are extremely sensitive to climate change that influences their ecological functions and microbial community including fungi. Fungi from marine habitats are engaged and adapted to perform diverse ecological functions in marine environments. Several studies focus on how complex interactions with the surrounding environment affect fungal evolution and their adaptation. However, a review addressing the adaptation of marine fungi to climate change is still lacking. Here we have discussed the adaptations of fungi in the marine environment with an example of Hortaea werneckii and Aspergillus terreus which may help to reduce the risk of climate change impacts on marine environments and organisms. We address the ecology and evolution of marine fungi and the effects of climate change on them to explain the adaptation mechanism. A review of marine fungal adaptations will show widespread effects on evolutionary biology and the mechanism responsible for it.
Collapse
Affiliation(s)
- Vinit Kumar
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | | | - Kasun M. Thambugala
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Jun-Jie Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang-Yang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Yang Y, Banos S, Gerdts G, Wichels A, Reich M. Mycoplankton Biome Structure and Assemblage Processes Differ Along a Transect From the Elbe River Down to the River Plume and the Adjacent Marine Waters. Front Microbiol 2021; 12:640469. [PMID: 33967979 PMCID: PMC8102988 DOI: 10.3389/fmicb.2021.640469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/12/2021] [Indexed: 11/25/2022] Open
Abstract
Rivers are transport systems and supply adjacent ecosystems with nutrients. They also serve human well-being, for example as a source of food. Microorganism biodiversity is an important parameter for the ecological balance of river ecosystems. Despite the knowledge that fungi are key players in freshwater nutrient cycling and food webs, data on planktonic fungi of streams with higher stream order are scarce. This study aims to fill this knowledge gap by a fungi-specific 18S ribosomal RNA (rRNA) gene tag sequencing approach, investigating mycoplankton diversity in the Elbe River along a transect from shallow freshwater, to the estuary and river plume down to the adjacent marine waters (sections of seventh stream order number). Using multivariate analyses and the quantitative process estimates (QPEs) method, questions (i) of how mycoplankton communities as part of the river continuum change along the transect, (ii) what factors, spatial and environmental, play a role, and (iii) what assembly processes, such as selection or dispersion, operate along the transect, were addressed. The partitioning of mycoplankton communities into three significant distant biomes was mainly driven by local environmental conditions that were partly under spatial control. The assembly processes underlying the biomes also differed significantly. Thus, variable selection dominated the upstream sections, while undominated processes like ecological drift dominated the sections close to the river mouth and beyond. Dispersal played a minor role. The results suggest that the ecological versatility of the mycoplankton communities changes along the transect as response, for example, to a drastic change from an autotrophic to a heterotrophic system caused by an abrupt increase in the river depth. Furthermore, a significant salinity-dependent occurrence of diverse basal fungal groups was observed, with no clade found exclusively in marine waters. These results provide an important framework to help understand patterns of riverine mycoplankton communities and serve as basis for a further in-depth work so that fungi, as an important ecological organism group, can be integrated into models of, e.g., usage-balance considerations of rivers.
Collapse
Affiliation(s)
- Yanyan Yang
- Molecular Ecology Group, University of Bremen, FB2, Bremen, Germany
| | - Stefanos Banos
- Molecular Ecology Group, University of Bremen, FB2, Bremen, Germany
| | - Gunnar Gerdts
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Antje Wichels
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Marlis Reich
- Molecular Ecology Group, University of Bremen, FB2, Bremen, Germany
| |
Collapse
|
11
|
Priest T, Fuchs B, Amann R, Reich M. Diversity and biomass dynamics of unicellular marine fungi during a spring phytoplankton bloom. Environ Microbiol 2020; 23:448-463. [PMID: 33201558 DOI: 10.1111/1462-2920.15331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/01/2022]
Abstract
Microbial communities have important functions during spring phytoplankton blooms, regulating bloom dynamics and processing organic matter. Despite extensive research into such processes, an in-depth assessment of the fungal component is missing, especially for the smaller size fractions. We investigated the dynamics of unicellular mycoplankton during a spring phytoplankton bloom in the North Sea by 18S rRNA gene tag sequencing and a modified CARD-FISH protocol. Visualization and enumeration of dominant taxa revealed unique cell count patterns that varied considerably over short time scales. The Rozellomycota sensu lato (s.l.) reached a maximum of 105 cells L-1 , being comparable to freshwater counts. The abundance of Dikarya surpassed previous values by two orders of magnitude (105 cells L-1 ) and the corresponding biomass (maximum of 8.9 mg C m-3 ) was comparable to one reported for filamentous fungi with assigned ecological importance. Our results show that unicellular fungi are an abundant and, based on high cellular ribosome content and fast dynamics, active part of coastal microbial communities. The known ecology of the visualized taxa and the observed dynamics suggest the existence of different ecological niches that link primary and secondary food chains, highlighting the importance of unicellular fungi in food web structures and carbon transfer.
Collapse
Affiliation(s)
- Taylor Priest
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Bernhard Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marlis Reich
- Molecular Ecology Group, FB2, University of Bremen, Bremen, Germany
| |
Collapse
|
12
|
Building de novo reference genome assemblies of complex eukaryotic microorganisms from single nuclei. Sci Rep 2020; 10:1303. [PMID: 31992756 PMCID: PMC6987183 DOI: 10.1038/s41598-020-58025-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
The advent of novel sequencing techniques has unraveled a tremendous diversity on Earth. Genomic data allow us to understand ecology and function of organisms that we would not otherwise know existed. However, major methodological challenges remain, in particular for multicellular organisms with large genomes. Arbuscular mycorrhizal (AM) fungi are important plant symbionts with cryptic and complex multicellular life cycles, thus representing a suitable model system for method development. Here, we report a novel method for large scale, unbiased nuclear sorting, sequencing, and de novo assembling of AM fungal genomes. After comparative analyses of three assembly workflows we discuss how sequence data from single nuclei can best be used for different downstream analyses such as phylogenomics and comparative genomics of single nuclei. Based on analysis of completeness, we conclude that comprehensive de novo genome assemblies can be produced from six to seven nuclei. The method is highly applicable for a broad range of taxa, and will greatly improve our ability to study multicellular eukaryotes with complex life cycles.
Collapse
|
13
|
Chambouvet A, Monier A, Maguire F, Itoïz S, del Campo J, Elies P, Edvardsen B, Eikreim W, Richards TA. Intracellular Infection of Diverse Diatoms by an Evolutionary Distinct Relative of the Fungi. Curr Biol 2019; 29:4093-4101.e4. [DOI: 10.1016/j.cub.2019.09.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/12/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
|
14
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc 2019; 94:2101-2137. [PMID: 31659870 PMCID: PMC6899921 DOI: 10.1111/brv.12550] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
The fungal kingdom comprises a hyperdiverse clade of heterotrophic eukaryotes characterized by the presence of a chitinous cell wall, the loss of phagotrophic capabilities and cell organizations that range from completely unicellular monopolar organisms to highly complex syncitial filaments that may form macroscopic structures. Fungi emerged as a 'Third Kingdom', embracing organisms that were outside the classical dichotomy of animals versus vegetals. The taxonomy of this group has a turbulent history that is only now starting to be settled with the advent of genomics and phylogenomics. We here review the current status of the phylogeny and taxonomy of fungi, providing an overview of the main defined groups. Based on current knowledge, nine phylum-level clades can be defined: Opisthosporidia, Chytridiomycota, Neocallimastigomycota, Blastocladiomycota, Zoopagomycota, Mucoromycota, Glomeromycota, Basidiomycota and Ascomycota. For each group, we discuss their main traits and their diversity, focusing on the evolutionary relationships among the main fungal clades. We also explore the diversity and phylogeny of several groups of uncertain affinities and the main phylogenetic and taxonomical controversies and hypotheses in the field.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Health and Experimental Sciences DepartmentUniversitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
15
|
Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 2019; 10:127-140. [PMID: 31448147 PMCID: PMC6691916 DOI: 10.1080/21501203.2019.1614106] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
The global bio-diversity of fungi has been extensively investigated and their species number has been estimated. Notably, the development of molecular phylogeny has revealed an unexpected fungal diversity and utilisation of culture-independent approaches including high-throughput amplicon sequencing has dramatically increased number of fungal operational taxonomic units. A number of novel taxa including new divisions, classes, orders and new families have been established in last decade. Many cryptic species were identified by molecular phylogeny. Based on recently generated data from culture-dependent and -independent survey on same samples, the fungal species on the earth were estimated to be 12 (11.7-13.2) million compared to 2.2-3.8 million species recently estimated by a variety of the estimation techniques. Moreover, it has been speculated that the current use of high-throughput sequencing techniques would reveal an even higher diversity than our current estimation. Recently, the formal classification of environmental sequences and permission of DNA sequence data as fungal names' type were proposed but strongly objected by the mycologist community. Surveys on fungi in unusual niches have indicated that many previously regarded "unculturable fungi" could be cultured on certain substrates under specific conditions. Moreover, the high-throughput amplicon sequencing, shotgun metagenomics and a single-cell genomics could be a powerful means to detect novel taxa. Here, we propose to separate the fungal types into physical type based on specimen, genome DNA (gDNA) type based on complete genome sequence of culturable and uncluturable fungal specimen and digital type based on environmental DNA sequence data. The physical and gDNA type should have priority, while the digital type can be temporal supplementary before the physical type and gDNA type being available. The fungal name based on the "digital type" could be assigned as the "clade" name + species name. The "clade" name could be the name of genus, family or order, etc. which the sequence of digital type affiliates to. Facilitating future cultivation efforts should be encouraged. Also, with the advancement in knowledge of fungi inhabiting various environments mostly because of rapid development of new detection technologies, more information should be expected for fungal diversity on our planet.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Muzammil Hussain
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Leonard G, Labarre A, Milner DS, Monier A, Soanes D, Wideman JG, Maguire F, Stevens S, Sain D, Grau-Bové X, Sebé-Pedrós A, Stajich JE, Paszkiewicz K, Brown MW, Hall N, Wickstead B, Richards TA. Comparative genomic analysis of the 'pseudofungus' Hyphochytrium catenoides. Open Biol 2019; 8:rsob.170184. [PMID: 29321239 PMCID: PMC5795050 DOI: 10.1098/rsob.170184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic microbes have three primary mechanisms for obtaining nutrients and energy: phagotrophy, photosynthesis and osmotrophy. Traits associated with the latter two functions arose independently multiple times in the eukaryotes. The Fungi successfully coupled osmotrophy with filamentous growth, and similar traits are also manifested in the Pseudofungi (oomycetes and hyphochytriomycetes). Both the Fungi and the Pseudofungi encompass a diversity of plant and animal parasites. Genome-sequencing efforts have focused on host-associated microbes (mutualistic symbionts or parasites), providing limited comparisons with free-living relatives. Here we report the first draft genome sequence of a hyphochytriomycete ‘pseudofungus’; Hyphochytrium catenoides. Using phylogenomic approaches, we identify genes of recent viral ancestry, with related viral derived genes also present on the genomes of oomycetes, suggesting a complex history of viral coevolution and integration across the Pseudofungi. H. catenoides has a complex life cycle involving diverse filamentous structures and a flagellated zoospore with a single anterior tinselate flagellum. We use genome comparisons, drug sensitivity analysis and high-throughput culture arrays to investigate the ancestry of oomycete/pseudofungal characteristics, demonstrating that many of the genetic features associated with parasitic traits evolved specifically within the oomycete radiation. Comparative genomics also identified differences in the repertoire of genes associated with filamentous growth between the Fungi and the Pseudofungi, including differences in vesicle trafficking systems, cell-wall synthesis pathways and motor protein repertoire, demonstrating that unique cellular systems underpinned the convergent evolution of filamentous osmotrophic growth in these two eukaryotic groups.
Collapse
Affiliation(s)
- Guy Leonard
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Aurélie Labarre
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - David S Milner
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Adam Monier
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Darren Soanes
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy G Wideman
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Finlay Maguire
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sam Stevens
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Divya Sain
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Xavier Grau-Bové
- Institute of Evolutionary Biology, CSIC-UPF, Barcelona, Catalonia, Spain
| | | | - Jason E Stajich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Konrad Paszkiewicz
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Neil Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thomas A Richards
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
17
|
Powell MJ, Letcher PM. Ultrastructure of early stages of Rozella allomycis (Cryptomycota) infection of its host, Allomyces macrogynus (Blastocladiomycota). Fungal Biol 2019; 123:109-116. [PMID: 30709516 DOI: 10.1016/j.funbio.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 01/02/2023]
Abstract
This study reconstructs early stages of Rozella allomycis endoparasitic infection of its host, Allomyces macrogynus. Young thalli of A. macrogynus were inoculated with suspensions of R. allomycis zoospores and allowed to develop for 120 h. Infected thalli at intervals were fixed for electron microscopy and observed. Zoospores were attracted to host thalli, encysted on their surfaces, and penetrated their walls with an infection tube. The parasite cyst discharged its protoplast through an infection tube, which invaginated the host plasma membrane. The host plasma membrane then surrounded the parasite protoplast and formed a compartment confining it inside host cytoplasm. The earliest host-parasite interface within host cytoplasm consisted of two membranes, the outer layer the host plasma membrane and the inner layer the parasite plasma membrane. At first a wide space separated the two membranes and no material was observed within this space. Later, as the endoparasite thallus expanded within the compartment, the two membranes became closely appressed. As the endoparasite thallus continued to enlarge, the interface developed into three membrane layers. Thus, host plasma membrane surrounded the parasite protoplast initially without the parasite having to pierce the host plasma membrane for entry. Significantly, host-derived membrane was at the interface throughout development.
Collapse
Affiliation(s)
- Martha J Powell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA.
| | - Peter M Letcher
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA.
| |
Collapse
|
18
|
Torruella G, Grau-Bové X, Moreira D, Karpov SA, Burns JA, Sebé-Pedrós A, Völcker E, López-García P. Global transcriptome analysis of the aphelid Paraphelidium tribonemae supports the phagotrophic origin of fungi. Commun Biol 2018; 1:231. [PMID: 30588510 PMCID: PMC6299283 DOI: 10.1038/s42003-018-0235-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Aphelids are little-known phagotrophic parasites of algae whose life cycle and morphology resemble those of the parasitic rozellids (Cryptomycota, Rozellomycota). In previous phylogenetic analyses of RNA polymerase and rRNA genes, aphelids, rozellids and Microsporidia (parasites of animals) formed a clade, named Opisthosporidia, which appeared as the sister group to Fungi. However, the statistical support for the Opisthosporidia was always moderate. Here, we generated full life-cycle transcriptome data for the aphelid species Paraphelidium tribonemae. In-depth multi-gene phylogenomic analyses using several protein datasets place this aphelid as the closest relative of fungi to the exclusion of rozellids and Microsporidia. In contrast with the comparatively reduced Rozella allomycis genome, we infer a rich, free-living-like aphelid proteome, with a metabolism similar to fungi, including cellulases likely involved in algal cell-wall penetration and enzymes involved in chitin biosynthesis. Our results suggest that fungi evolved from complex aphelid-like ancestors that lost phagotrophy and became osmotrophic.
Collapse
Affiliation(s)
- Guifré Torruella
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003 Barcelona, Catalonia Spain
| | - David Moreira
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Sergey A. Karpov
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
- Zoological Institute, Russian Academy of Sciences and St. Petersburg State University, St. Petersburg, Russian Federation 199134
| | - John A. Burns
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, 10024-5192 NY USA
| | | | | | - Purificación López-García
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
19
|
Letcher PM, Powell MJ. A taxonomic summary and revision of Rozella ( Cryptomycota). IMA Fungus 2018; 9:383-399. [PMID: 30622888 PMCID: PMC6317583 DOI: 10.5598/imafungus.2018.09.02.09] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/08/2018] [Indexed: 11/02/2022] Open
Abstract
Rozella is a genus of endoparasites of a broad range of hosts. Most species are known by their morphology and host specificity, while only three have been examined ultrastructurally and had portions of their genome sequenced. Determined in molecular phylogenies to be the earliest diverging lineage in kingdom Fungi, Rozella currently nests among an abundance of environmental sequences in phylum Cryptomycota, superphylum Opisthosporidia. Here we briefly summarize a history of Rozella, provide descriptions of all species, and include a key to the species of Rozella.
Collapse
Affiliation(s)
- Peter M Letcher
- Department of Biological Sciences, The University of Alabama, 1332 SEC, Box 870344, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Martha J Powell
- Department of Biological Sciences, The University of Alabama, 1332 SEC, Box 870344, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| |
Collapse
|
20
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Hibbett DS, Blackwell M, James TY, Spatafora JW, Taylor JW, Vilgalys R. Phylogenetic taxon definitions for Fungi, Dikarya, Ascomycota and Basidiomycota. IMA Fungus 2018; 9:291-298. [PMID: 30622884 PMCID: PMC6317587 DOI: 10.5598/imafungus.2018.09.02.05] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/11/2018] [Indexed: 11/02/2022] Open
Abstract
Phylogenetic taxon definitions (PTDs) are explicit, phylogeny-based statements that specify clades. PTDs are central to the system of rank-free classification that is governed by the PhyloCode, but they can also be used to clarify the meanings of ranked names. We present PTDs for four major groups: Fungi, Dikarya, Ascomycota, and Basidiomycota.
Collapse
Affiliation(s)
- David S Hibbett
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Meredith Blackwell
- Department of Biology, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Rytas Vilgalys
- Biology Department, Duke University, Durham NC 27708, USA
| |
Collapse
|
22
|
|
23
|
López-Escardó D, López-García P, Moreira D, Ruiz-Trillo I, Torruella G. Parvularia atlantis gen. et sp. nov., a Nucleariid Filose Amoeba (Holomycota, Opisthokonta). J Eukaryot Microbiol 2018; 65:170-179. [PMID: 28741861 PMCID: PMC5708529 DOI: 10.1111/jeu.12450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 12/01/2022]
Abstract
The opisthokonts constitute a eukaryotic supergroup divided into two main clades: the holozoans, which include animals and their unicellular relatives, and the holomycotans, which include fungi, opisthosporidians, and nucleariids. Nucleariids are phagotrophic filose amoebae that phenotypically resemble more their distant holozoan cousins than their holomycotan phylogenetic relatives. Despite their evolutionary interest, the diversity and internal phylogenetic relationships within the nucleariids remain poorly studied. Here, we formally describe and characterize by molecular phylogeny and microscopy observations Parvularia atlantis gen. et sp. nov. (formerly Nuclearia sp. ATCC 50694), and compare its features with those of other nucleariid genera. Parvularia is an amoebal genus characterized by radiating knobbed and branching filopodia. It exhibits prominent vacuoles observable under light microscopy, a cyst-like stage, and completely lacks cilia. P. atlantis possesses one or two nuclei with a central nucleolus, and mitochondria with flat or discoid cristae. These morphological features, although typical of nucleariids, represent a combination of characters different to those of any other described Nuclearia species. Likewise, 18S rRNA-based phylogenetic analyses show that P. atlantis represents a distinct lineage within the nucleariids.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 645, Barcelona 08028, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Guifré Torruella
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
24
|
Muszewska A, Piłsyk S, Perlińska-Lenart U, Kruszewska JS. Diversity of Cell Wall Related Proteins in Human Pathogenic Fungi. J Fungi (Basel) 2017; 4:E6. [PMID: 29371499 PMCID: PMC5872309 DOI: 10.3390/jof4010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/25/2017] [Indexed: 02/06/2023] Open
Abstract
The cell wall is one of the major keys to fungal identity. Fungi use their cell wall to sense the environment, and localize nutrients and competing microorganism. Pathogenic species additionally modify their cell walls to hide from a host's immune system. With the growing number of fungal infections and alarming shortage of available drugs, we are in need of new approaches to fight pathogens. The cell wall seems to be a natural target, since animal host cells are devoid of it. The current knowledge about fungal cell wall components is often limited, and there is huge diversity both in structure and composition between species. In order to compare the distribution of diverse proteins involved in cell wall biosynthesis and maintenance, we performed sequence homology searches against 24 fungal proteomes from distinct taxonomic groups, all reported as human pathogens. This approach led to identification of 4014 cell wall proteins (CWPs), and enabled us to speculate about cell wall composition in recently sequenced pathogenic fungi with limited experimental information. We found large expansions of several CWP families, in particular taxa, and a number of new CWPs possibly involved in evading host immune recognition. Here, we present a comprehensive evolutionary history of fungal CWP families in the context of the fungal tree of life.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| | | | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| |
Collapse
|
25
|
Dornburg A, Townsend JP, Wang Z. Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. ADVANCES IN GENETICS 2017; 100:1-47. [PMID: 29153398 DOI: 10.1016/bs.adgen.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its original inception over 150 years ago by Darwin, we have made tremendous progress toward the reconstruction of the Tree of Life. In particular, the transition from analyzing datasets comprised of small numbers of loci to those comprised of hundreds of loci, if not entire genomes, has aided in resolving some of the most vexing of evolutionary problems while giving us a new perspective on biodiversity. Correspondingly, phylogenetic trees have taken a central role in fields that span ecology, conservation, and medicine. However, the rise of big data has also presented phylogenomicists with a new set of challenges to experimental design, quantitative analyses, and computation. The sequencing of a number of very first genomes presented significant challenges to phylogenetic inference, leading fungal phylogenomicists to begin addressing pitfalls and postulating solutions to the issues that arise from genome-scale analyses relevant to any lineage across the Tree of Life. Here we highlight insights from fungal phylogenomics for topics including systematics and species delimitation, ecological and phenotypic diversification, and biogeography while providing an overview of progress made on the reconstruction of the fungal Tree of Life. Finally, we provide a review of considerations to phylogenomic experimental design for robust tree inference. We hope that this special issue of Advances in Genetics not only excites the continued progress of fungal evolutionary biology but also motivates the interdisciplinary development of new theory and methods designed to maximize the power of genomic scale data in phylogenetic analyses.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, United States
| | | | - Zheng Wang
- Yale University, New Haven, CT, United States.
| |
Collapse
|
26
|
Berbee ML, James TY, Strullu-Derrien C. Early Diverging Fungi: Diversity and Impact at the Dawn of Terrestrial Life. Annu Rev Microbiol 2017; 71:41-60. [DOI: 10.1146/annurev-micro-030117-020324] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mary L. Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
27
|
Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M. The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0053-2016. [PMID: 28917057 PMCID: PMC11687545 DOI: 10.1128/microbiolspec.funk-0053-2016] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 12/23/2022] Open
Abstract
The kingdom Fungi is one of the more diverse clades of eukaryotes in terrestrial ecosystems, where they provide numerous ecological services ranging from decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and animals. The evolutionary relationships of the kingdom have represented some of the more recalcitrant problems in systematics and phylogenetics. The advent of molecular phylogenetics, and more recently phylogenomics, has greatly advanced our understanding of the patterns and processes associated with fungal evolution, however. In this article, we review the major phyla, subphyla, and classes of the kingdom Fungi and provide brief summaries of ecologies, morphologies, and exemplar taxa. We also provide examples of how molecular phylogenetics and evolutionary genomics have advanced our understanding of fungal evolution within each of the phyla and some of the major classes. In the current classification we recognize 8 phyla, 12 subphyla, and 46 classes within the kingdom. The ancestor of fungi is inferred to be zoosporic, and zoosporic fungi comprise three lineages that are paraphyletic to the remainder of fungi. Fungi historically classified as zygomycetes do not form a monophyletic group and are paraphyletic to Ascomycota and Basidiomycota. Ascomycota and Basidiomycota are each monophyletic and collectively form the subkingdom Dikarya.
Collapse
Affiliation(s)
- Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598
| | - Francis Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521
| | - Meredith Blackwell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
28
|
Letcher PM, Longcore JE, James TY, Leite DS, Simmons DR, Powell MJ. Morphology, Ultrastructure, and Molecular Phylogeny of
Rozella multimorpha
, a New Species in Cryptomycota. J Eukaryot Microbiol 2017; 65:180-190. [DOI: 10.1111/jeu.12452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Peter M. Letcher
- Department of Biological Sciences The University of Alabama Tuscaloosa Alabama 35487 USA
| | - Joyce E. Longcore
- School of Biology and Ecology University of Maine Orono Maine 04469 USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109 USA
| | - Domingos S. Leite
- Departamento de Genética, Evolução e Bioagentes Universidade Estadual de Campinas Campinas SP 13082‐862 Brazil
| | - David Rabern Simmons
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109 USA
| | - Martha J. Powell
- Department of Biological Sciences The University of Alabama Tuscaloosa Alabama 35487 USA
| |
Collapse
|
29
|
Richards TA, Leonard G, Wideman JG. What Defines the "Kingdom" Fungi? Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0044-2017. [PMID: 28643626 PMCID: PMC11687502 DOI: 10.1128/microbiolspec.funk-0044-2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 12/30/2022] Open
Abstract
The application of environmental DNA techniques and increased genome sequencing of microbial diversity, combined with detailed study of cellular characters, has consistently led to the reexamination of our understanding of the tree of life. This has challenged many of the definitions of taxonomic groups, especially higher taxonomic ranks such as eukaryotic kingdoms. The Fungi is an example of a kingdom which, together with the features that define it and the taxa that are grouped within it, has been in a continual state of flux. In this article we aim to summarize multiple lines of data pertinent to understanding the early evolution and definition of the Fungi. These include ongoing cellular and genomic comparisons that, we will argue, have generally undermined all attempts to identify a synapomorphic trait that defines the Fungi. This article will also summarize ongoing work focusing on taxon discovery, combined with phylogenomic analysis, which has identified novel groups that lie proximate/adjacent to the fungal clade-wherever the boundary that defines the Fungi may be. Our hope is that, by summarizing these data in the form of a discussion, we can illustrate the ongoing efforts to understand what drove the evolutionary diversification of fungi.
Collapse
Affiliation(s)
- Thomas A Richards
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| | - Guy Leonard
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jeremy G Wideman
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
30
|
Kittelmann S, Manohar CS, Kearney R, Natvig DO, Gleason FH. Chapter 18 Adaptations of Fungi and Fungal-Like Organisms for Growth under Reduced Dissolved Oxygen Concentrations. Mycology 2017. [DOI: 10.1201/9781315119496-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
31
|
Powell MJ, Letcher PM, James TY. Ultrastructural characterization of the host-parasite interface between Allomyces anomalus (Blastocladiomycota) and Rozella allomycis (Cryptomycota). Fungal Biol 2017; 121:561-572. [PMID: 28606351 DOI: 10.1016/j.funbio.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022]
Abstract
Rozella allomycis is an obligate endoparasite of the water mold Allomyces and a member of a clade (= Opisthosporidia) sister to the traditional Fungi. Gaining insights into Rozella's development as a phylogenetically pivotal endoparasite can aid our understanding of structural adaptations and evolution of the Opisthosporidia clade, especially within the context of genomic information. The purpose of this study is to characterize the interface between R. allomycis and Allomyces anomalus. Electron microscopy of developing plasmodia of R. allomycis in host hyphae shows that the interface consists of three-membrane layers, interpreted as the parasite's plasma membrane (inner one layer) and a host cisterna (outer two layers). As sporangial and resting spore plasmodia develop, host mitochondria typically cluster at the surface of the parasite and eventually align parallel to the three-membrane layered interface. The parasite's mitochondria have only a few cristae and the mitochondrial matrix is sparse, clearly distinguishing parasite mitochondria from those of the host. Consistent with the expected organellar topology if the parasite plasmodia phagocytize host cytoplasm, phagocytic vacuoles are at first bounded by three-membrane layers with host-type mitochondria lining the inner membrane. Thus, Rozella's nutrition, at least in part, is phagotrophic in contrast to osmotrophic nutrition of traditional fungi.
Collapse
Affiliation(s)
- Martha J Powell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Peter M Letcher
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Nagy LG, Szöllősi G. Fungal Phylogeny in the Age of Genomics: Insights Into Phylogenetic Inference From Genome-Scale Datasets. ADVANCES IN GENETICS 2017; 100:49-72. [DOI: 10.1016/bs.adgen.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Morphological, molecular, and ultrastructural characterization of Rozella rhizoclosmatii, a new species in Cryptomycota. Fungal Biol 2016; 121:1-10. [PMID: 28007212 DOI: 10.1016/j.funbio.2016.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 11/21/2022]
Abstract
Rozella is a genus of unwalled endoparasites of a variety of hosts including Oomycota (Stramenopiles), Blastocladiomycota and Chytridiomycota (Fungi), and one green alga (Coleochaete, Chlorophyceae). It currently includes more than 20 formally described species, and no new species of Rozella have been described since 1987. We discovered a new Rozella species parasitizing Rhizoclosmatium globosum (Chytridiales, Chytridiomycota) and investigated its morphology, ultrastructure, and phylogenetic position. Herein named as Rozella rhizoclosmatii sp. nov., the organism induces hypertrophy of the host. Its zoospore is ultrastructurally similar to that of Rozella allomycis, although it has a unique zoospore ultrastructural feature, a lattice of perpendicular rods about the nucleus. The 18S rDNA molecular sequence of R. rhizoclosmatii is similar to that of the previously sequenced 'Rozella ex Rhizoclosmatium'. This is the first study to inclusively characterize a new species of Rozella with morphological, ultrastructural and molecular data. As this is only the second Rozella species to be examined ultrastructurally, and because it is parasitic on a member of Chytridiomycota and not Blastocladiomycota, this research supports the conservative nature of zoospore ultrastructure to help define the genus.
Collapse
|
34
|
Barnes CJ, Maldonado C, Frøslev TG, Antonelli A, Rønsted N. Unexpectedly High Beta-Diversity of Root-Associated Fungal Communities in the Bolivian Andes. Front Microbiol 2016; 7:1377. [PMID: 27630629 PMCID: PMC5006319 DOI: 10.3389/fmicb.2016.01377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Bolivia is one of the most biologically diverse countries on the planet. Between the Andes and the Amazon drainage basin spans the Yungas, a vast forested region shown to be extremely species rich in macro-organisms. However, it remains unclear whether this high diversity is also reflected in microbial diversity. Here we assess the genetic, taxonomic and functional diversity of root-associated fungi surrounding Cinchona calisaya trees, a typical element of the intermediate altitudes of the Bolivian Yungas. We determine the relative effects of edaphic properties, climate, and geography in regulating fungal community assembly. We show that α-diversity for these fungal communities was similar to temperate and arid ecosystems, averaging 90.1 operational taxonomic units (OTUs) per sample, with reads predominantly assigned to the Ascomycota phylum and with a saprotrophic lifestyle. ß-diversity was calculated as the distance-decay rate, and in contrast to α-diversity, was exceptionally high with a rate of −0.407. Soil properties (pH and P) principally regulated fungal community assembly in an analogous manner to temperate environments, with pH and phosphorus explaining 7.8 and 7.2% of community variation respectively. Surprisingly, altitude does not influence community formation, and there is limited evidence that climate (precipitation and temperature) play a role. Our results suggest that sampling should be performed over a wide geographical and environmental range in order to capture the full root-associated fungal diversity in subtropical regions. This study sheds further light on the diversity and distribution of the world's “hidden biodiversity.”
Collapse
Affiliation(s)
- Christopher J Barnes
- Nina Rønsted Lab, Natural History Museum of Denmark, University of Copenhagen Copenhagen, Denmark
| | - Carla Maldonado
- Nina Rønsted Lab, Natural History Museum of Denmark, University of CopenhagenCopenhagen, Denmark; Herbario Nacional de Bolivia, Universidad Mayor de San AndresLa Paz, Bolivia
| | - Tobias G Frøslev
- Department of Biological and Environmental Sciences, University of GothenburgGothenburg, Sweden; Gothenburg Botanical GardenGothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of GothenburgGothenburg, Sweden; Gothenburg Botanical GardenGothenburg, Sweden
| | - Nina Rønsted
- Nina Rønsted Lab, Natural History Museum of Denmark, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
35
|
Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation. Nat Microbiol 2016; 1:16149. [DOI: 10.1038/nmicrobiol.2016.149] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/21/2016] [Indexed: 11/09/2022]
|
36
|
Grossart HP, Wurzbacher C, James TY, Kagami M. Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2015.06.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Benny GL, Smith ME, Kirk PM, Tretter ED, White MM. Challenges and Future Perspectives in the Systematics of Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. BIOLOGY OF MICROFUNGI 2016. [DOI: 10.1007/978-3-319-29137-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Torruella G, de Mendoza A, Grau-Bové X, Antó M, Chaplin MA, del Campo J, Eme L, Pérez-Cordón G, Whipps CM, Nichols KM, Paley R, Roger AJ, Sitjà-Bobadilla A, Donachie S, Ruiz-Trillo I. Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi. Curr Biol 2015; 25:2404-10. [PMID: 26365255 DOI: 10.1016/j.cub.2015.07.053] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 06/30/2015] [Accepted: 07/22/2015] [Indexed: 11/28/2022]
Abstract
The Opisthokonta are a eukaryotic supergroup divided in two main lineages: animals and related protistan taxa, and fungi and their allies [1, 2]. There is a great diversity of lifestyles and morphologies among unicellular opisthokonts, from free-living phagotrophic flagellated bacterivores and filopodiated amoebas to cell-walled osmotrophic parasites and saprotrophs. However, these characteristics do not group into monophyletic assemblages, suggesting rampant convergent evolution within Opisthokonta. To test this hypothesis, we assembled a new phylogenomic dataset via sequencing 12 new strains of protists. Phylogenetic relationships among opisthokonts revealed independent origins of filopodiated amoebas in two lineages, one related to fungi and the other to animals. Moreover, we observed that specialized osmotrophic lifestyles evolved independently in fungi and protistan relatives of animals, indicating convergent evolution. We therefore analyzed the evolution of two key fungal characters in Opisthokonta, the flagellum and chitin synthases. Comparative analyses of the flagellar toolkit showed a previously unnoticed flagellar apparatus in two close relatives of animals, the filasterean Ministeria vibrans and Corallochytrium limacisporum. This implies that at least four different opisthokont lineages secondarily underwent flagellar simplification. Analysis of the evolutionary history of chitin synthases revealed significant expansions in both animals and fungi, and also in the Ichthyosporea and C. limacisporum, a group of cell-walled animal relatives. This indicates that the last opisthokont common ancestor had a complex toolkit of chitin synthases that was differentially retained in extant lineages. Thus, our data provide evidence for convergent evolution of specialized lifestyles in close relatives of animals and fungi from a generalist ancestor.
Collapse
Affiliation(s)
- Guifré Torruella
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain; Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal 645, Barcelona 08028, Catalonia, Spain
| | - Alex de Mendoza
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain; Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal 645, Barcelona 08028, Catalonia, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain; Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal 645, Barcelona 08028, Catalonia, Spain
| | - Meritxell Antó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain
| | - Mark A Chaplin
- Department of Microbiology, University of Hawaii at Manoa, Snyder Hall, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Gregorio Pérez-Cordón
- Institute of Aquaculture Torre de la Sal, IATS-CSIC, Ribera de Cabanes s/n, Castelló 12595, Spain
| | - Christopher M Whipps
- Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY 13210, USA
| | - Krista M Nichols
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Richard Paley
- Centre for Environment Fisheries and Aquaculture Science, Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ariadna Sitjà-Bobadilla
- Institute of Aquaculture Torre de la Sal, IATS-CSIC, Ribera de Cabanes s/n, Castelló 12595, Spain
| | - Stuart Donachie
- Department of Microbiology, University of Hawaii at Manoa, Snyder Hall, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain; Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal 645, Barcelona 08028, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Catalonia, Spain.
| |
Collapse
|
39
|
Lazarus KL, James TY. Surveying the biodiversity of the Cryptomycota using a targeted PCR approach. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2014.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Letcher PM, Powell MJ, Lopez S, Lee PA, McBride RC. A new isolate of Amoeboaphelidium protococcarum, and Amoeboaphelidium occidentale, a new species in phylum Aphelida (Opisthosporidia). Mycologia 2015; 107:522-31. [PMID: 25661716 DOI: 10.3852/14-064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 01/11/2015] [Indexed: 11/10/2022]
Abstract
Microalgae used in the production of biofuels represents an alternative to fossil fuels. One problem in the production of algae for biofuels is attacks by algal parasitoids that can cause population crashes when algae are cultivated in outdoor ponds (Greenwell et al. 2010). Integrated solutions are being sought to mitigate this problem, and an initial step is pest identification. We isolated an algal parasitoid from an open pond of Scenedesmus dimorphus used for biofuel production in New Mexico and examined its morphology, ultrastructure and molecular phylogeny. A phylogenetic analysis placed this organism in Aphelida as conspecific with Amoeboaphelidium protococcarum sensu Karpov et al. 2013. As a result we re-evaluated the taxonomy of Amoeboaphelidium protococcarum sensu Letcher et al. 2013 and here designate it as a new species, Amoeboaphelidium occidentale.
Collapse
Affiliation(s)
- Peter M Letcher
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Martha J Powell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Salvador Lopez
- Crop Protection Group, Sapphire Energy, Inc., Las Cruces, New Mexico 88007
| | - Philip A Lee
- Crop Protection Group, Sapphire Energy, Inc., Las Cruces, New Mexico 88007
| | - Robert C McBride
- Crop Protection Group, Sapphire Energy, Inc., San Diego, California 92121
| |
Collapse
|
41
|
Sebé-Pedrós A, Grau-Bové X, Richards TA, Ruiz-Trillo I. Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol Evol 2015; 6:290-305. [PMID: 24443438 PMCID: PMC3942036 DOI: 10.1093/gbe/evu013] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Myosins are key components of the eukaryotic cytoskeleton, providing motility for a broad diversity of cargoes. Therefore, understanding the origin and evolutionary history of myosin classes is crucial to address the evolution of eukaryote cell biology. Here, we revise the classification of myosins using an updated taxon sampling that includes newly or recently sequenced genomes and transcriptomes from key taxa. We performed a survey of eukaryotic genomes and phylogenetic analyses of the myosin gene family, reconstructing the myosin toolkit at different key nodes in the eukaryotic tree of life. We also identified the phylogenetic distribution of myosin diversity in terms of number of genes, associated protein domains and number of classes in each taxa. Our analyses show that new classes (i.e., paralogs) and domain architectures were continuously generated throughout eukaryote evolution, with a significant expansion of myosin abundance and domain architectural diversity at the stem of Holozoa, predating the origin of animal multicellularity. Indeed, single-celled holozoans have the most complex myosin complement among eukaryotes, with paralogs of most myosins previously considered animal specific. We recover a dynamic evolutionary history, with several lineage-specific expansions (e.g., the myosin III-like gene family diversification in choanoflagellates), convergence in protein domain architectures (e.g., fungal and animal chitin synthase myosins), and important secondary losses. Overall, our evolutionary scheme demonstrates that the ancestral eukaryote likely had a complex myosin repertoire that included six genes with different protein domain architectures. Finally, we provide an integrative and robust classification, useful for future genomic and functional studies on this crucial eukaryotic gene family.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
42
|
Haag KL, James TY, Pombert JF, Larsson R, Schaer TMM, Refardt D, Ebert D. Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites. Proc Natl Acad Sci U S A 2014; 111:15480-5. [PMID: 25313038 PMCID: PMC4217409 DOI: 10.1073/pnas.1410442111] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular parasitism results in extreme adaptations, whose evolutionary history is difficult to understand, because the parasites and their known free-living relatives are so divergent from one another. Microsporidia are intracellular parasites of humans and other animals, which evolved highly specialized morphological structures, but also extreme physiologic and genomic simplification. They are suggested to be an early-diverging branch on the fungal tree, but comparisons to other species are difficult because their rates of molecular evolution are exceptionally high. Mitochondria in microsporidia have degenerated into organelles called mitosomes, which have lost a genome and the ability to produce ATP. Here we describe a gut parasite of the crustacean Daphnia that despite having remarkable morphological similarity to the microsporidia, has retained genomic features of its fungal ancestors. This parasite, which we name Mitosporidium daphniae gen. et sp. nov., possesses a mitochondrial genome including genes for oxidative phosphorylation, yet a spore stage with a highly specialized infection apparatus--the polar tube--uniquely known only from microsporidia. Phylogenomics places M. daphniae at the root of the microsporidia. A comparative genomic analysis suggests that the reduction in energy metabolism, a prominent feature of microsporidian evolution, was preceded by a reduction in the machinery controlling cell cycle, DNA recombination, repair, and gene expression. These data show that the morphological features unique to M. daphniae and other microsporidia were already present before the lineage evolved the extreme host metabolic dependence and loss of mitochondrial respiration for which microsporidia are well known.
Collapse
Affiliation(s)
- Karen L Haag
- Zoological Institute, Basel University, 4051 Basel, Switzerland; Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, 91501-970 RS, Brazil;
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - Jean-François Pombert
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Ronny Larsson
- Department of Biology, University of Lund, SE-223 62 Lund, Sweden; and
| | | | - Dominik Refardt
- Zoological Institute, Basel University, 4051 Basel, Switzerland; Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Dieter Ebert
- Zoological Institute, Basel University, 4051 Basel, Switzerland
| |
Collapse
|
43
|
Rediscovery of Nucleophaga amoebae, a novel member of the Rozellomycota. Parasitol Res 2014; 113:4491-8. [PMID: 25258042 DOI: 10.1007/s00436-014-4138-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Recent studies showed that the huge diversity branching at or near the phylogenetic root of the fungal kingdom, mostly constituted by uncultured environmental clones, is actually characterized by intracellular predators/parasites of various eukaryotes. These form three related lineages: the Aphelidea, endoparasites of algae; the Rozellomycota, with Rozella species mainly endoparasites of water moulds, and Paramicrosporidium species endonuclear parasites of amoebae; and the Microsporidia, mainly endoparasites of animals. Increasing evidence suggests the emergence of Microsporidia from within Rozellomycota; however, their fungal or protistan nature is still unclear. Here, we report the molecular phylogeny based on the small subunit ribosomal RNA (SSU rDNA) gene, of an additional endoparasite of amoebae, corresponding to the old enigmatic chytrid Nucleophaga amoebae described in the nineteenth century. Our results show that Nucleophaga, possessing a morphotype intermediate between Rozella and Paramicrosporidium, emerges as a unique lineage within the Rozellomycota. The recovery and characterization of new members of Rozellomycota are of high value for the understanding of the early evolutionary history of the Fungi and related lineages.
Collapse
|
44
|
Abstract
Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry.
Collapse
Affiliation(s)
| | - Todd W Lane
- Systems Biology Department, Sandia National Laboratories Livermore, CA, USA
| |
Collapse
|
45
|
Karpov SA, Mamkaeva MA, Benzerara K, Moreira D, López-García P. Molecular phylogeny and ultrastructure of Aphelidium aff. melosirae (Aphelida, Opisthosporidia). Protist 2014; 165:512-26. [PMID: 24995586 DOI: 10.1016/j.protis.2014.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 11/26/2022]
Abstract
Aphelids are a poorly known group of parasitoids of algae that have raised considerable interest due to their pivotal phylogenetic position. Together with Cryptomycota and the highly derived Microsporidia, they have been recently re-classified as Opisthosporidia, being the sister group to fungi. Despite their huge diversity, as revealed by molecular environmental studies, and their phylogenetic interest, only three genera have been described (Aphelidium, Amoeboaphelidium, and Pseudaphelidium), from which 18S rRNA gene sequences exist only for Amoeboaphelidium species. Here, we describe the life cycle and ultrastructure of Aphelidium aff. melosirae, and provide the first 18S rRNA gene sequence obtained for this genus. Molecular phylogeny analysis indicates that Aphelidium is very distantly related to Amoebaphelidium, highlighting the wide genetic diversity of the aphelids. The parasitoid encysts and penetrates the host alga, Tribonema gayanum through an infection tube. Cyst germination leads to a young trophont that phagocytes the algal cell content and progressively develops a plasmodium, which becomes a zoospore-producing sporangium. Aphelidium aff. melosirae has amoeboflagellate zoospores, tubular/lamellar mitochondrial cristae, a metazoan type of centrosome, and closed orthomitosis with an intranuclear spindle. These features together with trophont phagocytosis distinguish Aphelidium from fungi and support the erection of the new superphylum Opisthosporidia as sister to fungi.
Collapse
Affiliation(s)
- Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation; St. Petersburg State University, St. Petersburg 199034, Russian Federation; Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie et CNRS, 4 place Jussieu. 75252 Paris cedex 05, France.
| | - Maria A Mamkaeva
- St. Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Karim Benzerara
- Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie et CNRS, 4 place Jussieu. 75252 Paris cedex 05, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, UMR CNRS 8079, Université Paris-Sud. 91405 Orsay cedex, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, UMR CNRS 8079, Université Paris-Sud. 91405 Orsay cedex, France.
| |
Collapse
|
46
|
Wurzbacher C, Rösel S, Rychła A, Grossart HP. Importance of saprotrophic freshwater fungi for pollen degradation. PLoS One 2014; 9:e94643. [PMID: 24732324 PMCID: PMC3986395 DOI: 10.1371/journal.pone.0094643] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/17/2014] [Indexed: 11/18/2022] Open
Abstract
Fungi and bacteria are the major organic matter (OM) decomposers in aquatic ecosystems. While bacteria are regarded as primary mineralizers in the pelagic zone of lakes and oceans, fungi dominate OM decomposition in streams and wetlands. Recent findings indicate that fungal communities are also active in lakes, but little is known about their diversity and interactions with bacteria. Therefore, the decomposer niche overlap of saprotrophic fungi and bacteria was studied on pollen (as a seasonally recurring source of fine particulate OM) by performing microcosm experiments with three different lake types. Special emphasis was placed on analysis of fungal community composition and diversity. We hypothesized that (I) pollen select for small saprotrophic fungi and at the same time for typical particle-associated bacteria; (II) fungal communities form specific free-living and attached sub-communities in each lake type; (III) the ratio between fungi or bacteria on pollen is controlled by the lake's chemistry. Bacteria-to-fungi ratios were determined by quantitative PCR (qPCR), and bacterial and fungal diversity were studied by clone libraries and denaturing gradient gel electrophoresis (DGGE) fingerprints. A protease assay was used to identify functional differences between treatments. For generalization, systematic differences in bacteria-to-fungi ratios were analyzed with a dataset from the nearby Baltic Sea rivers. High abundances of Chytridiomycota as well as occurrences of Cryptomycota and yeast-like fungi confirm the decomposer niche overlap of saprotrophic fungi and bacteria on pollen. As hypothesized, microbial communities consistently differed between the lake types and exhibited functional differences. Bacteria-to-fungi ratios correlated well with parameters such as organic carbon and pH. The importance of dissolved organic carbon and nitrogen for bacteria-to-fungi ratios was supported by the Baltic Sea river dataset. Our findings highlight the fact that carbon-to-nitrogen ratios may also control fungal contributions to OM decomposition in aquatic ecosystems.
Collapse
Affiliation(s)
- Christian Wurzbacher
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department Experimental Limnology, Stechlin, Brandenburg, Germany
- * E-mail:
| | - Stefan Rösel
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department Experimental Limnology, Stechlin, Brandenburg, Germany
| | - Anna Rychła
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department Experimental Limnology, Stechlin, Brandenburg, Germany
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department Experimental Limnology, Stechlin, Brandenburg, Germany
- Potsdam University, Institute for Biochemistry and Biology, Potsdam, Brandenburg, Germany
| |
Collapse
|
47
|
Karpov SA, Mamkaeva MA, Aleoshin VV, Nassonova E, Lilje O, Gleason FH. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol 2014; 5:112. [PMID: 24734027 PMCID: PMC3975115 DOI: 10.3389/fmicb.2014.00112] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/05/2014] [Indexed: 11/24/2022] Open
Abstract
The aphelids are a small group of intracellular parasitoids of common species of eukaryotic phytoplankton with three known genera Aphelidium, Amoeboaphelidium, and Pseudaphelidium, and 10 valid species, which form along with related environmental sequences a very diversified group. The phyla Microsporidia and Cryptomycota, and the class Aphelidea have recently been considered to be a deep branch of the Holomycota lineage forming the so called the ARM-clade which is sister to the fungi. In this review we reorganize the taxonomy of ARM-clade, and establish a new superphylum the Opisthosporidia with three phyla: Aphelida phyl. nov., Cryptomycota and Microsporidia. We discuss here all aspects of aphelid investigations: history of our knowledge, life cycle peculiarities, the morphology (including the ultrastructure), molecular phylogeny, ecology, and provide a taxonomic revision of the phylum supplied with a list of species. We compare the aphelids with their nearest relatives, the species of Rozella, and improve the diagnosis of the phylum Cryptomycota.
Collapse
Affiliation(s)
- Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences St. Petersburg, Russian Federation ; St. Petersburg State University St. Petersburg, Russian Federation
| | - Maria A Mamkaeva
- St. Petersburg State University St. Petersburg, Russian Federation
| | - Vladimir V Aleoshin
- A. N. Belozersky Institute for Physico-Chemical Biology, Lononosov Moscow State University Moscow, Russian Federation
| | - Elena Nassonova
- St. Petersburg State University St. Petersburg, Russian Federation ; Institute of Cytology, Russian Academy of Sciences St. Petersburg, Russian Federation
| | - Osu Lilje
- School of Biological Sciences F07, University of Sydney Sydney, NSW, Australia
| | - Frank H Gleason
- School of Biological Sciences F07, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
48
|
Corsaro D, Walochnik J, Venditti D, Steinmann J, Müller KD, Michel R. Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitol Res 2014; 113:1909-18. [DOI: 10.1007/s00436-014-3838-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/24/2014] [Indexed: 12/28/2022]
|
49
|
James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 2013; 23:1548-53. [PMID: 23932404 DOI: 10.1016/j.cub.2013.06.057] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022]
Abstract
Fungi grow within their food, externally digesting it and absorbing nutrients across a semirigid chitinous cell wall. Members of the new phylum Cryptomycota were proposed to represent intermediate fungal forms, lacking a chitinous cell wall during feeding and known almost exclusively from ubiquitous environmental ribosomal RNA sequences that cluster at the base of the fungal tree [1, 2]. Here, we sequence the first Cryptomycotan genome (the water mold endoparasite Rozella allomycis) and unite the Cryptomycota with another group of endoparasites, the microsporidia, based on phylogenomics and shared genomic traits. We propose that Cryptomycota and microsporidia share a common endoparasitic ancestor, with the clade unified by a chitinous cell wall used to develop turgor pressure in the infection process [3, 4]. Shared genomic elements include a nucleotide transporter that is used by microsporidia for stealing energy in the form of ATP from their hosts [5]. Rozella harbors a mitochondrion that contains a very rapidly evolving genome and lacks complex I of the respiratory chain. These degenerate features are offset by the presence of nuclear genes for alternative respiratory pathways. The Rozella proteome has not undergone major contraction like microsporidia; instead, several classes have undergone expansion, such as host-effector, signal-transduction, and folding proteins.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hibbett DS, Taylor JW. Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 2013; 11:129-33. [DOI: 10.1038/nrmicro2963] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|