1
|
Koliada OM, Vdovichenko NI, Kolyada TI, Bilozorov OP. Functional and metabolic characteristics of peripheral blood mononuclear phagocytes in patients with different clinical courses of multiple sclerosis. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
Functional and metabolic features of intact and stimulated mononuclear phagocytes were studied in patients with different clinical courses of multiple sclerosis, the study included 66 patients with relapsing-remitting and 32 patients with progressive course of multiple sclerosis. The state of the mononuclear phagocytes was characterized by expression of costimulatory molecules and direction of L-arginine metabolism. Relative quantities of CD80, CD86 and PD-L1 positive monocytes were determined with Phycoerytrin-labeled monoclonal antibodies in immunofluorescence test in peripheral blood and after culture in parallel series with addition of: (a) E.coli lipopolysaccharide (a stimulator of TLR4), (b) a single-stranded RNA – preparation ssRNA40/LyoVec (a stimulator of TLR7/8), (c) IL-4 (an anti-inflammatory interleukin). The formation of NO was determined by the amount of nitrite in the culture supernatants, arginase activity was determined in cell lysates of the monocyte fraction. We showed that functional and phenotypic characteristics of monocytes depend on the clinical course of multiple sclerosis. In patients with progressive course, the relative number of CD86+ cells was significantly higher and PD-L1+ cells significantly lower than in patients with relapsing-remitting course and healthy persons, in patients with relapsing-remitting course the number of PD-L1+ cells was increased. The number of CD80+ cells did not show any significant difference in the investigated groups of patients relative to the control group. In vitro stimulation of peripheral blood monocytes with TLR4/8 produced a significant increase in the number of CD86+ and decrease in the number of PD-L1+ cells in patients with the progressive course. In patients with the relapsing-remitting course LPS produced an increase in number of PD-L1+ cells. We did not find any difference in activity of the arginase pathway of L-arginine metabolism in the intact monocyte fraction of peripheral blood in patients with multiple sclerosis versus the control group, but stimulation with TLR4 agonist of mononuclear cells of patients with progressive course caused significant increased arginase activity versus baseline. At the same time, versus control cells arginase activity in patients with the progressive course decreased after LPS treatment, but trended to increase after TLR7/8 treatment. In patients with the relapsing-remitting course these changes had a similar direction but were less expressed. The results may be considered as an indication of the activation of peripheral blood monocytes and their polarization trend in the M1 direction in patients with the progressive course of multiple sclerosis, these changes could be considered as signs of violation of autoimmune regulatory mechanisms in multiple sclerosis.
Collapse
|
2
|
Herrera-Uribe J, Liu H, Byrne KA, Bond ZF, Loving CL, Tuggle CK. Changes in H3K27ac at Gene Regulatory Regions in Porcine Alveolar Macrophages Following LPS or PolyIC Exposure. Front Genet 2020; 11:817. [PMID: 32973863 PMCID: PMC7468443 DOI: 10.3389/fgene.2020.00817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Changes in chromatin structure, especially in histone modifications (HMs), linked with chromatin accessibility for transcription machinery, are considered to play significant roles in transcriptional regulation. Alveolar macrophages (AM) are important immune cells for protection against pulmonary pathogens, and must readily respond to bacteria and viruses that enter the airways. Mechanism(s) controlling AM innate response to different pathogen-associated molecular patterns (PAMPs) are not well defined in pigs. By combining RNA sequencing (RNA-seq) with chromatin immunoprecipitation and sequencing (ChIP-seq) for four histone marks (H3K4me3, H3K4me1, H3K27ac and H3K27me3), we established a chromatin state map for AM stimulated with two different PAMPs, lipopolysaccharide (LPS) and Poly(I:C), and investigated the potential effect of identified histone modifications on transcription factor binding motif (TFBM) prediction and RNA abundance changes in these AM. The integrative analysis suggests that the differential gene expression between non-stimulated and stimulated AM is significantly associated with changes in the H3K27ac level at active regulatory regions. Although global changes in chromatin states were minor after stimulation, we detected chromatin state changes for differentially expressed genes involved in the TLR4, TLR3 and RIG-I signaling pathways. We found that regions marked by H3K27ac genome-wide were enriched for TFBMs of TF that are involved in the inflammatory response. We further documented that TF whose expression was induced by these stimuli had TFBMs enriched within H3K27ac-marked regions whose chromatin state changed by these same stimuli. Given that the dramatic transcriptomic changes and minor chromatin state changes occurred in response to both stimuli, we conclude that regulatory elements (i.e. active promoters) that contain transcription factor binding motifs were already active/poised in AM for immediate inflammatory response to PAMPs. In summary, our data provides the first chromatin state map of porcine AM in response to bacterial and viral PAMPs, contributing to the Functional Annotation of Animal Genomes (FAANG) project, and demonstrates the role of HMs, especially H3K27ac, in regulating transcription in AM in response to LPS and Poly(I:C).
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Haibo Liu
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Kristen A Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | - Zahra F Bond
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | | |
Collapse
|
3
|
Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2020; 21:267-297. [PMID: 31167103 DOI: 10.1146/annurev-bioeng-062117-121224] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
4
|
Lee E, Lee TA, Kim JH, Park A, Ra EA, Kang S, Choi HJ, Choi JL, Huh HD, Lee JE, Lee S, Park B. CNBP acts as a key transcriptional regulator of sustained expression of interleukin-6. Nucleic Acids Res 2017; 45:3280-3296. [PMID: 28168305 PMCID: PMC5389554 DOI: 10.1093/nar/gkx071] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
The transcription of inflammatory genes is an essential step in host defense activation. Here, we show that cellular nucleic acid-binding protein (CNBP) acts as a transcription regulator that is required for activating the innate immune response. We identified specific CNBP-binding motifs present in the promoter region of sustained inflammatory cytokines, thus, directly inducing the expression of target genes. In particular, lipopolysaccharide (LPS) induced cnbp expression through an NF-κB-dependent manner and a positive autoregulatory mechanism, which enables prolonged il-6 gene expression. This event depends strictly on LPS-induced CNBP nuclear translocation through phosphorylation-mediated dimerization. Consequently, cnbp-depleted zebrafish are highly susceptible to Shigella flexneri infection in vivo. Collectively, these observations identify CNBP as a key transcriptional regulator required for activating and maintaining the immune response.
Collapse
Affiliation(s)
- Eunhye Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
- These authors contributed equally to the paper as first authors
| | - Taeyun A. Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
- These authors contributed equally to the paper as first authors
| | - Ji Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea
- These authors contributed equally to the paper as first authors
| | - Areum Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Eun A. Ra
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Hyun jin Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Junhee L. Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Hyunbin D. Huh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea
- Samsung Genome Institute (SGI), Samsung Medical Center, Seoul 06351, South Korea
- To whom correspondence should be addressed. Tel: +82 2 2123 5655; Fax: +82 2 312 5657; . Correspondence may also be addressed to Ji Eun Lee. Tel: +82 2 3410 6129; Fax: +82 2 3410 0534; . Correspondence may also be addressed to Sungwook Lee. Tel: +82 31 920 2537; Fax: +82 31 920 2542;
| | - Sungwook Lee
- Cancer Immunology Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, South Korea
- To whom correspondence should be addressed. Tel: +82 2 2123 5655; Fax: +82 2 312 5657; . Correspondence may also be addressed to Ji Eun Lee. Tel: +82 2 3410 6129; Fax: +82 2 3410 0534; . Correspondence may also be addressed to Sungwook Lee. Tel: +82 31 920 2537; Fax: +82 31 920 2542;
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
- To whom correspondence should be addressed. Tel: +82 2 2123 5655; Fax: +82 2 312 5657; . Correspondence may also be addressed to Ji Eun Lee. Tel: +82 2 3410 6129; Fax: +82 2 3410 0534; . Correspondence may also be addressed to Sungwook Lee. Tel: +82 31 920 2537; Fax: +82 31 920 2542;
| |
Collapse
|
5
|
Thomas AC, Mattila JT. "Of mice and men": arginine metabolism in macrophages. Front Immunol 2014; 5:479. [PMID: 25339954 PMCID: PMC4188127 DOI: 10.3389/fimmu.2014.00479] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2014] [Accepted: 09/19/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Anita C Thomas
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Joshua T Mattila
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
6
|
Raza S, Barnett MW, Barnett-Itzhaki Z, Amit I, Hume DA, Freeman TC. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators. J Leukoc Biol 2014; 96:167-83. [PMID: 24721704 PMCID: PMC4378362 DOI: 10.1189/jlb.6hi0313-169r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2013] [Revised: 01/17/2014] [Accepted: 02/23/2014] [Indexed: 01/09/2023] Open
Abstract
Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables--LPS dose, LPS versus IFN-β and -γ, and genetic background--on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-γ signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli.
Collapse
Affiliation(s)
- Sobia Raza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom; and
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom; and
| | | | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom; and
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom; and
| |
Collapse
|
7
|
Dimitrov DV, Hoeng J. Systems approaches to computational modeling of the oral microbiome. Front Physiol 2013; 4:172. [PMID: 23847548 PMCID: PMC3706740 DOI: 10.3389/fphys.2013.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2013] [Accepted: 06/20/2013] [Indexed: 12/15/2022] Open
Abstract
Current microbiome research has generated tremendous amounts of data providing snapshots of molecular activity in a variety of organisms, environments, and cell types. However, turning this knowledge into whole system level of understanding on pathways and processes has proven to be a challenging task. In this review we highlight the applicability of bioinformatics and visualization techniques to large collections of data in order to better understand the information that contains related diet—oral microbiome—host mucosal transcriptome interactions. In particular, we focus on systems biology of Porphyromonas gingivalis in the context of high throughput computational methods tightly integrated with translational systems medicine. Those approaches have applications for both basic research, where we can direct specific laboratory experiments in model organisms and cell cultures, and human disease, where we can validate new mechanisms and biomarkers for prevention and treatment of chronic disorders.
Collapse
|
8
|
Zaslavsky E, Nudelman G, Marquez S, Hershberg U, Hartmann BM, Thakar J, Sealfon SC, Kleinstein SH. Reconstruction of regulatory networks through temporal enrichment profiling and its application to H1N1 influenza viral infection. BMC Bioinformatics 2013; 14 Suppl 6:S1. [PMID: 23734902 PMCID: PMC3633009 DOI: 10.1186/1471-2105-14-s6-s1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Background H1N1 influenza viruses were responsible for the 1918 pandemic that caused millions of deaths worldwide and the 2009 pandemic that caused approximately twenty thousand deaths. The cellular response to such virus infections involves extensive genetic reprogramming resulting in an antiviral state that is critical to infection control. Identifying the underlying transcriptional network driving these changes, and how this program is altered by virally-encoded immune antagonists, is a fundamental challenge in systems immunology. Results Genome-wide gene expression patterns were measured in human monocyte-derived dendritic cells (DCs) infected in vitro with seasonal H1N1 influenza A/New Caledonia/20/1999. To provide a mechanistic explanation for the timing of gene expression changes over the first 12 hours post-infection, we developed a statistically rigorous enrichment approach integrating genome-wide expression kinetics and time-dependent promoter analysis. Our approach, TIme-Dependent Activity Linker (TIDAL), generates a regulatory network that connects transcription factors associated with each temporal phase of the response into a coherent linked cascade. TIDAL infers 12 transcription factors and 32 regulatory connections that drive the antiviral response to influenza. To demonstrate the generality of this approach, TIDAL was also used to generate a network for the DC response to measles infection. The software implementation of TIDAL is freely available at http://tsb.mssm.edu/primeportal/?q=tidal_prog. Conclusions We apply TIDAL to reconstruct the transcriptional programs activated in monocyte-derived human dendritic cells in response to influenza and measles infections. The application of this time-centric network reconstruction method in each case produces a single transcriptional cascade that recapitulates the known biology of the response with high precision and recall, in addition to identifying potentially novel antiviral factors. The ability to reconstruct antiviral networks with TIDAL enables comparative analysis of antiviral responses, such as the differences between pandemic and seasonal influenza infections.
Collapse
Affiliation(s)
- Elena Zaslavsky
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fu Y, Glaros T, Zhu M, Wang P, Wu Z, Tyson JJ, Li L, Xing J. Network topologies and dynamics leading to endotoxin tolerance and priming in innate immune cells. PLoS Comput Biol 2012; 8:e1002526. [PMID: 22615556 PMCID: PMC3355072 DOI: 10.1371/journal.pcbi.1002526] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2011] [Accepted: 04/04/2012] [Indexed: 12/18/2022] Open
Abstract
The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.
Collapse
Affiliation(s)
- Yan Fu
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Interdisciplinary PhD Program of Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Trevor Glaros
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Meng Zhu
- School of Computing, Clemson University, Clemson, South Carolina, United States of America
| | - Ping Wang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Zhanghan Wu
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Interdisciplinary PhD Program of Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - John J. Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (LL); (JX)
| | - Jianhua Xing
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (LL); (JX)
| |
Collapse
|
10
|
Abstract
M-CSF-driven differentiation of peripheral blood monocytes is one of the sources of tissue macrophages. In humans and mice, the differentiation process involves the activation of caspases that cleave a limited number of proteins. One of these proteins is nucleophosmin (NPM1), a multifunctional and ubiquitous protein. Here, we show that caspases activated in monocytes exposed to M-CSF cleave NPM1 at D213 to generate a 30-kDa N-terminal fragment. The protein is further cleaved into a 20-kDa fragment, which involves cathepsin B. NPM1 fragments contribute to the limited motility, migration, and phagocytosis capabilities of resting macrophages. Their activation with lipopolysaccharides inhibits proteolytic processes and restores expression of the full-length protein that negatively regulates the transcription of genes encoding inflammatory cytokines (eg, NPM1 is recruited with NF-κB on the MCP1 gene promoter to decrease its transcription). In mice with heterozygous npm gene deletion, cytokine production in response to lipopolysaccharides, including CXCL1 (KC), MCP1, and MIP2, is dramatically enhanced. These results indicate a dual function of NPM1 in M-CSF-differentiated macrophages. Proteolysis of the protein participates in the establishment of a mature macrophage phenotype. In response to inflammatory stimuli, the full-length protein negatively regulates inflammatory cytokine production.
Collapse
|
11
|
Fairbairn L, Kapetanovic R, Sester DP, Hume DA. The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J Leukoc Biol 2011; 89:855-71. [PMID: 21233410 DOI: 10.1189/jlb.1110607] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
The biology of cells of the mononuclear phagocyte system has been studied extensively in the mouse. Studies of the pig as an experimental model have commonly been consigned to specialist animal science journals. In this review, we consider some of the many ways in which the innate immune systems of humans differ from those of mice, the ways that pigs may address the shortcomings of mice as models for the study of macrophage differentiation and activation in vitro, and the biology of sepsis and other pathologies in the living animal. With the completion of the genome sequence and the characterization of many key regulators and markers, the pig has emerged as a tractable model of human innate immunity and disease that should address the limited, predictive value of rodents in preclinical studies.
Collapse
Affiliation(s)
- Lynsey Fairbairn
- The Roslin Institute and Royal (Dick) School of Veterinary Medicine, University of Edinburgh, Roslin BioCentre, Scotland, United Kingdom
| | | | | | | |
Collapse
|
12
|
Abstract
This review provides an overview of the current understanding of the biology of monocytes and macrophages. It focuses on four rapidly advancing areas that underpin recent conceptual advances, namely: (1) the bone marrow origins of monocytes and macrophages, (2) monocyte heterogeneity, (3) the early inflammatory consequences of tissue injury, and (4) current concepts of macrophage activation and their limitations.
Collapse
|
13
|
Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology 2010; 215:724-36. [PMID: 20580463 DOI: 10.1016/j.imbio.2010.05.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2010] [Accepted: 05/20/2010] [Indexed: 12/15/2022]
Abstract
In order to address fundamental questions associated with the relationships between mononuclear phagocytes and other myeloid and lymphoid cell populations, we have taken advantage of the growing body of expression data available in the public domain. We collated a large number of published expression studies on mouse haemopoietic cell lineages comprising 304 cell samples from 29 independent experiments performed on a single microarray platform (Affymetrix MOE430-2). The data were subjected to network-based cluster analysis using Biolayout Express(3D). Genes with related function clustered together in distinct regions of the graph reaffirming many known associations between gene expression and role in specific pathways and defining most major cell types of the immune system. Promoters of genes within individual clusters were distinguished by over-representation of regulatory motifs recognised by specific transcription factors. However, these data indicate that commonly used myeloid subpopulation markers, such as CD11c (Itgax), do not correlate with expression of other genes, and further bring into question their use in defining myeloid cell lineage, activation (M1 vs. M2) and antigen-presenting cell function. In particular, there were few mRNA markers that clearly distinguished classical dendritic cells (DC) from macrophages, other than low expression of genes required for phagocytic activity. Bone marrow-derived DC, grown in GM-CSF, were clearly identified as phagocytes and distinguished from isolated lymphoid tissue DC. Thus, through pooling datasets from public data and examining the gene expression clusters within, we can learn a great deal about the transcriptional networks that underpin the differences in functional activities between cell populations of the immune system.
Collapse
|
14
|
Martinon F, Chen X, Lee AH, Glimcher LH. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 2010; 11:411-8. [PMID: 20351694 PMCID: PMC3113706 DOI: 10.1038/ni.1857] [Citation(s) in RCA: 805] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2010] [Accepted: 02/22/2010] [Indexed: 02/06/2023]
Abstract
Sensors of pathogens, such as Toll-like receptors (TLRs), detect microbes to activate transcriptional programs that orchestrate adaptive responses to specific insults. Here we report that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER) stress sensor kinase IRE1alpha and its downstream target, the transcription factor XBP1. Previously described ER-stress target genes of XBP1 were not induced by TLR signaling. Instead, TLR-activated XBP1 was required for optimal and sustained production of proinflammatory cytokines in macrophages. Consistent with that finding, activation of IRE1alpha by ER stress acted in synergy with TLR activation for cytokine production. Moreover, XBP1 deficiency resulted in a much greater bacterial burden in mice infected with the TLR2-activating human intracellular pathogen Francisella tularensis. Our findings identify an unsuspected critical function for XBP1 in mammalian host defenses.
Collapse
Affiliation(s)
- Fabio Martinon
- Dept. of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
| | - Xi Chen
- Dept. of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
| | - Ann-Hwee Lee
- Dept. of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
- Dept of Medicine, MIT and Harvard, Harvard Medical School, 651 Huntington Ave, Boston, MA 02115, USA
| | - Laurie H. Glimcher
- Dept. of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
- Dept of Medicine, MIT and Harvard, Harvard Medical School, 651 Huntington Ave, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, 651 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
15
|
Phillips R, Svensson M, Aziz N, Maroof A, Brown N, Beattie L, Signoret N, Kaye PM. Innate killing of Leishmania donovani by macrophages of the splenic marginal zone requires IRF-7. PLoS Pathog 2010; 6:e1000813. [PMID: 20300600 PMCID: PMC2837405 DOI: 10.1371/journal.ppat.1000813] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2009] [Accepted: 02/08/2010] [Indexed: 01/09/2023] Open
Abstract
Highly phagocytic macrophages line the marginal zone (MZ) of the spleen and the lymph node subcapsular sinus. Although these macrophages have been attributed with a variety of functions, including the uptake and clearance of blood and lymph-borne pathogens, little is known about the effector mechanisms they employ after pathogen uptake. Here, we have combined gene expression profiling and RNAi using a stromal macrophage cell line with in situ analysis of the leishmanicidal activity of marginal zone macrophages (MZM) and marginal metallophilic macrophages (MMM) in wild type and gene targeted mice. Our data demonstrate a critical role for interferon regulatory factor-7 (IRF-7) in regulating the killing of intracellular Leishmania donovani by these specialised splenic macrophage sub-populations. This study, therefore, identifies a new role for IRF-7 as a regulator of innate microbicidal activity against this, and perhaps other, non-viral intracellular pathogens. This study also highlights the importance of selecting appropriate macrophage populations when studying pathogen interactions with this functionally diverse lineage of cells.
Collapse
Affiliation(s)
- Rebecca Phillips
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine, F59, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Naveed Aziz
- The Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Asher Maroof
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Najmeeyah Brown
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Lynette Beattie
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Nathalie Signoret
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Zaslavsky E, Hershberg U, Seto J, Pham AM, Marquez S, Duke JL, Wetmur JG, Tenoever BR, Sealfon SC, Kleinstein SH. Antiviral response dictated by choreographed cascade of transcription factors. THE JOURNAL OF IMMUNOLOGY 2010; 184:2908-17. [PMID: 20164420 DOI: 10.4049/jimmunol.0903453] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
The dendritic cell (DC) is a master regulator of immune responses. Pathogenic viruses subvert normal immune function in DCs through the expression of immune antagonists. Understanding how these antagonists interact with the host immune system requires knowledge of the underlying genetic regulatory network that operates during an uninhibited antiviral response. To isolate and identify this network, we studied DCs infected with Newcastle disease virus, which is able to stimulate innate immunity and DC maturation through activation of RIG-I signaling, but lacks the ability to evade the human IFN response. To analyze this experimental model, we developed a new approach integrating genome-wide expression kinetics and time-dependent promoter analysis. We found that the genetic program underlying the antiviral cell-state transition during the first 18 h postinfection could be explained by a single convergent regulatory network. Gene expression changes were driven by a stepwise multifactor cascading control mechanism, where the specific transcription factors controlling expression changed over time. Within this network, most individual genes were regulated by multiple factors, indicating robustness against virus-encoded immune evasion genes. In addition to effectively recapitulating current biological knowledge, we predicted, and validated experimentally, antiviral roles for several novel transcription factors. More generally, our results show how a genetic program can be temporally controlled through a single regulatory network to achieve the large-scale genetic reprogramming characteristic of cell-state transitions.
Collapse
Affiliation(s)
- Elena Zaslavsky
- Center for Translational Systems Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Valledor AF, Comalada M, Santamaría-Babi LF, Lloberas J, Celada A. Macrophage Proinflammatory Activation and Deactivation. Adv Immunol 2010; 108:1-20. [DOI: 10.1016/b978-0-12-380995-7.00001-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
|
18
|
Abstract
Inflammation is a multicomponent response to tissue stress, injury and infection, and a crucial point of its control is at the level of gene transcription. The inducible inflammatory gene expression programme--such as that triggered by Toll-like receptor signalling in macrophages--is comprised of several coordinately regulated sets of genes that encode key functional programmes; these are controlled by three classes of transcription factors, as well as various transcriptional co-regulators and chromatin modifications. Here, we discuss the mechanisms of and the emerging principles in the transcriptional regulation of inflammatory responses in diverse physiological settings.
Collapse
|
19
|
Stow JL, Ching Low P, Offenhäuser C, Sangermani D. Cytokine secretion in macrophages and other cells: Pathways and mediators. Immunobiology 2009; 214:601-12. [DOI: 10.1016/j.imbio.2008.11.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 01/21/2023]
|
20
|
Abstract
Microglia, the macrophages of the central nervous system parenchyma, have in the normal healthy brain a distinct phenotype induced by molecules expressed on or secreted by adjacent neurons and astrocytes, and this phenotype is maintained in part by virtue of the blood-brain barrier's exclusion of serum components. Microglia are continually active, their processes palpating and surveying their local microenvironment. The microglia rapidly change their phenotype in response to any disturbance of nervous system homeostasis and are commonly referred to as activated on the basis of the changes in their morphology or expression of cell surface antigens. A wealth of data now demonstrate that the microglia have very diverse effector functions, in line with macrophage populations in other organs. The term activated microglia needs to be qualified to reflect the distinct and very different states of activation-associated effector functions in different disease states. Manipulating the effector functions of microglia has the potential to modify the outcome of diverse neurological diseases.
Collapse
Affiliation(s)
- Richard M Ransohoff
- Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
21
|
Weigelt K, Lichtinger M, Rehli M, Langmann T. Transcriptomic profiling identifies a PU.1 regulatory network in macrophages. Biochem Biophys Res Commun 2009; 380:308-12. [PMID: 19167354 DOI: 10.1016/j.bbrc.2009.01.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 11/30/2022]
Abstract
PU.1 is a key transcription factor for hematopoiesis and macrophage differentiation. Using chromatin immunoprecipitation we have previously identified several PU.1 target genes in macrophages and microglia. With the aim to complement these studies, we performed a transcriptomic analysis of PU.1(-/-) progenitors after restoration of PU.1 activity. PUER cells committed to macrophage differentiation were analyzed with novel Affymetrix exon 1.0 ST arrays and Affymetrix 430 2.0 genome arrays for crosswise validation. We combined these genome-wide expression data with a publicly-available microarray dataset of PU.1-knockdown hematopoietic stem cells for an integrated analysis. Bibliographic gene connections, binding site prediction and ChIP-Chip data were used to define a multi-level PU.1 regulatory network in macrophages. Moreover, an alternative transcript of the novel PU.1 target gene Ptpro was identified by exon arrays and PU.1 binding to an intronic promoter was demonstrated. In conclusion, we present a PU.1 transcriptional network with novel validated PU.1 target genes.
Collapse
Affiliation(s)
- Karin Weigelt
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | | | | | | |
Collapse
|
22
|
Abstract
Over the last 10 years - in Microbes and Infection - the publications dealing with protozoan parasites were mainly providing insights on the pathogenic processes leading to the local or systemic damages in the mammals, these parasitic organisms exploit/subvert as hosts. As a result, many investigators introduced the objectives of their analysis by referring to "host-pathogen" interactions. Though we, as investigators, are all determined to decipher the pathogenic processes which can indeed be coupled to the parasite uncontrolled development, I think that the parasites - alike the living organisms they subvert as hosts - need to be considered as living organisms per se, instead of being considered as "pathogens". Such a conceptual frame will promote research on the processes on which relies their perpetuation whatever the level under investigations - individual and/or population level. Only the unicellular protozoan parasites of the genus Leishmania known to be hosted by blood-feeding insects and mammals will be further considered in this brief contribution.
Collapse
Affiliation(s)
- Geneviève Milon
- Institut Pasteur, Unité d'Immunophysiologie et Parasitisme Intracellulaire,75724 Paris Cedex 15, France.
| |
Collapse
|
23
|
Weigelt K, Moehle C, Stempfl T, Weber B, Langmann T. An integrated workflow for analysis of ChIP-chip data. Biotechniques 2008; 45:131-2, 134, 136 passim. [DOI: 10.2144/000112819] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022] Open
Abstract
Although ChIP-chip is a powerful tool for genome-wide discovery of transcription factor target genes, the steps involving raw data analysis, identification of promoters, and correlation with binding sites are still laborious processes. Therefore, we report an integrated workflow for the analysis of promoter tiling arrays with the Genomatix ChipInspector system. We compare this tool with open-source software packages to identify PU.1 regulated genes in mouse macrophages. Our results suggest that ChipInspector data analysis, comparative genomics for binding site prediction, and pathway/network modeling significantly facilitate and enhance whole-genome promoter profiling to reveal in vivo sites of transcription factor-DNA interactions.
Collapse
Affiliation(s)
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, Regensburg, Germany
| | - Thomas Stempfl
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|