1
|
Shen CK, Huang BR, Charoensaensuk V, Yang LY, Tsai CF, Liu YS, Lai SW, Lu DY, Yeh WL, Lin C. Inhibitory Effects of Urolithins, Bioactive Gut Metabolites from Natural Polyphenols, against Glioblastoma Progression. Nutrients 2023; 15:4854. [PMID: 38068712 PMCID: PMC10708538 DOI: 10.3390/nu15234854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
We previously reported that proinflammatory cytokines, particularly tumor necrosis factor (TNF)-α, promoted tumor migration, invasion, and proliferation, thus worsening the prognosis of glioblastoma (GBM). Urolithins, the potent metabolites produced by the gut from pomegranate polyphenols, have anticancer properties. To develop an effective therapy for GBM, this study aimed to study the effects of urolithins against GBM. Urolithin A and B significantly reduced GBM migration, reduced epithelial-mesenchymal transition, and inhibited tumor growth. Moreover, urolithin A and B inhibited TNF-α-induced vascular cell adhesion molecule (VCAM)-1 and programmed death ligand 1 (PD-L1) expression, thereby reducing human monocyte (HM) binding to GBM cells. Aryl hydrocarbon receptor (AhR) level had higher expression in patients with glioma than in healthy individuals. Urolithins are considered pharmacological antagonists of AhR. We demonstrated that the inhibition of AhR reduced TNF-α-stimulated VCAM-1 and PD-L1 expression. Furthermore, human macrophage condition medium enhanced expression of PD-L1 in human GBM cells. Administration of the AhR antagonist attenuated the enhancement of PD-L1, indicating the AhR modulation in GBM progression. The modulatory effects of urolithins in GBM involve inhibiting the Akt and epidermal growth factor receptor pathways. The present study suggests that urolithins can inhibit GBM progression and provide valuable information for anti-GBM strategy.
Collapse
Affiliation(s)
- Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404328, Taiwan;
| | - Bor-Ren Huang
- School of Medicine, Tzu Chi University, Taichung 404, Taiwan
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 404, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 404327, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|