1
|
Kledus F, Dobrovolná M, Mergny JL, Brázda V. Asymmetric distribution of G-quadruplex forming sequences in genomes of retroviruses. Sci Rep 2025; 15:76. [PMID: 39747944 PMCID: PMC11696869 DOI: 10.1038/s41598-024-82613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment. G-quadruplexes (G4) have emerged as potential therapeutic targets in antiviral therapy and have been identified in important regulatory regions of viral genomes. In this study, we examine the presence of potential G-quadruplex-forming sequences (PQS) across all currently available unique retroviral genomes. Given that these retroviral genomes typically consist of single-stranded RNA (ssRNA) molecules, we also investigated whether the localization of PQSs is strand-dependent. This is particularly relevant since antisense transcripts have been detected in HIV, and ERV integration into the host genome involves reverse transcription from genomic positive strand ssRNA to double-stranded DNA (dsDNA), implicating both strands in this process. We show that in most mammalian retroviruses, including human retroviruses, PQSs are significantly more prevalent on the negative (antisense) strand, with some notable exceptions such as HIV-1. In sharp contrast, avian retroviruses exhibit a higher prevalence of PQSs on the positive (sense) strand.
Collapse
Affiliation(s)
- Filip Kledus
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Faculty of Science , National Centre for Biomolecular Research Masaryk University , Kamenice 5, Brno, 625 00, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Faculty of Chemistry , Brno University of Technology , Purkyňova 118, Brno, 61200, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Laboratoire d'Optique et Biosciences (LOB) , Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris , Palaiseau, 91120, France
| | - Václav Brázda
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic.
- Faculty of Chemistry , Brno University of Technology , Purkyňova 118, Brno, 61200, Czech Republic.
| |
Collapse
|
2
|
Chakraborty G, Balinin K, Villar-Guerra RD, Emondts M, Portale G, Loznik M, Niels Klement WJ, Zheng L, Weil T, Chaires JB, Herrmann A. Supramolecular DNA-based catalysis in organic solvents. iScience 2024; 27:109689. [PMID: 38706840 PMCID: PMC11067378 DOI: 10.1016/j.isci.2024.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/04/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The distinct folding accompanied by its polymorphic character renders DNA G-quadruplexes promising biomolecular building blocks to construct novel DNA-based and supramolecular assemblies. However, the highly polar nature of DNA limits the use of G-quadruplexes to water as a solvent. In addition, the archetypical G-quadruplex fold needs to be stabilized by metal-cations, which is usually a potassium ion. Here, we show that a noncovalent PEGylation process enabled by electrostatic interactions allows the first metal-free G-quadruplexes in organic solvents. Strikingly, incorporation of an iron-containing porphyrin renders the self-assembled metal-free G-quadruplex catalytically active in organic solvents. Hence, these "supraG4zymes" enable DNA-based catalysis in organic media. The results will allow the broad utilization of DNA G-quadruplexes in nonaqueous environments.
Collapse
Affiliation(s)
- Gurudas Chakraborty
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Konstantin Balinin
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rafael del Villar-Guerra
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Giuseppe Portale
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Mark Loznik
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Wiebe Jacob Niels Klement
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Lifei Zheng
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jonathan B. Chaires
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
3
|
Teng Y, Zhu M, Chi Y, Li L, Jin Y. Can G-quadruplex become a promising target in HBV therapy? Front Immunol 2022; 13:1091873. [PMID: 36591216 PMCID: PMC9797731 DOI: 10.3389/fimmu.2022.1091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The chronic infection with hepatitis B virus (HBV) is an important health problem that affects millions of people worldwide. Current therapies for HBV always suffer from a poor response rate, common side effects, and the need for lifelong treatment. Novel therapeutic targets are expected. Interestingly, non-canonical structures of nucleic acids play crucial roles in the regulation of gene expression. Especially the formation of G-quadruplexes (G4s) in G-rich strands has been demonstrated to affect many bioprocesses including replication, transcription, and translation, showing great potential as targets in anticancer and antiviral therapies. In this review, we summarize recent antiviral studies about G4s and discuss the potential roles of G4 structures in antiviral therapy for HBV.
Collapse
Affiliation(s)
- Ye Teng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ming Zhu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuan Chi
- Pharmaceutical Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Lijing Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Lijing Li, ; Ye Jin,
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Lijing Li, ; Ye Jin,
| |
Collapse
|
4
|
Matsumoto S, Takahashi S, Bhowmik S, Ohyama T, Sugimoto N. Volumetric Strategy for Quantitatively Elucidating a Local Hydration Network around a G-Quadruplex. Anal Chem 2022; 94:7400-7407. [PMID: 35535999 DOI: 10.1021/acs.analchem.2c01075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydration around nucleic acids, such as DNA and RNA, is an important factor not only for the stability of nucleic acids but also for their interaction with binding molecules. Thus, it is necessary to quantitatively elucidate the hydration properties of nucleic acids around a certain structure. In this study, volumetric changes in G-quadruplex (G4) RNA formation were investigated by systematically changing the number of G-quartet stacks under high pressure. The volumetric contribution at the level of each G4 structural unit revealed that the core G4 helix was significantly more dehydrated than the other parts, including the edges of G-quartets and loops. These findings will help in predicting the binding of G4 ligands on the surface of G4, depending on the chemical structure of the ligand and solution environment. Therefore, the preset volumetric parameter provides information that can predict molecular interactions in G4 formations during molecular crowding in cells.
Collapse
Affiliation(s)
- Saki Matsumoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Sudipta Bhowmik
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Tatsuya Ohyama
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.,FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
5
|
Tateishi-Karimata H, Sugimoto N. Chemical biology of non-canonical structures of nucleic acids for therapeutic applications. Chem Commun (Camb) 2020; 56:2379-2390. [PMID: 32022004 DOI: 10.1039/c9cc09771f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA forms not only the canonical duplex structure but also non-canonical structures. Most potential sequences that induce the formation of non-canonical structures are present in disease-related genes. Interestingly, biological reactions are inhibited or dysregulated by non-canonical structure formation in disease-related genes. To control biological reactions, methods for inducing the formation of non-canonical structures have been developed using small molecules and oligonucleotides. In this feature article, we review biological reactions such as replication, transcription, and reverse transcription controlled by non-canonical DNA structures formed by disease-related genes. Furthermore, we discuss recent studies aimed at developing methods for regulating these biological reactions using drugs targeting the DNA structure.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| | | |
Collapse
|
6
|
New Modified Deoxythymine with Dibranched Tetraethylene Glycol Stabilizes G-Quadruplex Structures. Molecules 2020; 25:molecules25030705. [PMID: 32041318 PMCID: PMC7036917 DOI: 10.3390/molecules25030705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 11/24/2022] Open
Abstract
Methods for stabilizing G-quadruplex formation is a promising therapeutic approach for cancer treatment and other biomedical applications because stable G-quadruplexes efficiently inhibit biological reactions. Oligo and polyethylene glycols are promising biocompatible compounds, and we have shown that linear oligoethylene glycols can stabilize G-quadruplexes. Here, we developed a new modified deoxythymine with dibranched or tribranched tetraethylene glycol (TEG) and incorporated these TEG-modified deoxythymines into a loop region that forms an antiparallel G-quadruplex. We analyzed the stability of the modified G-quadruplexes, and the results showed that the tribranched TEG destabilized G-quadruplexes through entropic contributions, likely through steric hindrance. Interestingly, the dibranched TEG modification increased G-quadruplex stability relative to the unmodified DNA structures due to favorable enthalpic contributions. Molecular dynamics calculations suggested that dibranched TEG interacts with the G-quadruplex through hydrogen bonding and CH-π interactions. Moreover, these branched TEG-modified deoxythymine protected the DNA oligonucleotides from degradation by various nucleases in human serum. By taking advantage of the unique interactions between DNA and branched TEG, advanced DNA materials can be developed that affect the regulation of DNA structure.
Collapse
|
7
|
Takahashi S, Kim KT, Podbevšek P, Plavec J, Kim BH, Sugimoto N. Recovery of the Formation and Function of Oxidized G-Quadruplexes by a Pyrene-Modified Guanine Tract. J Am Chem Soc 2018; 140:5774-5783. [PMID: 29608858 DOI: 10.1021/jacs.8b01577] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidation is one of the frequent causes of DNA damage, especially to guanine bases. Guanine bases in the G-quadruplex (G4) are sensitive to damage by oxidation, resulting in transformation to 8-oxo-7,8-dihydroguanine (8-oxoG). Because the formation of G4 represses the expression of some cancer-related genes, the presence of 8-oxoG in a G4 sequence might affect G4 formation and induce cancer progression. Thus, oxidized-G4 formation must be controlled using a chemical approach. In the present study, we investigated the effect of introduction of 8-oxoG into a G4 sequence on the formation and function of the G4 structure. The 8-oxoG-containing G4 derived from the promoter region of the human vascular endothelial growth factor ( VEGF) gene differed topologically from unoxidized G4. The oxidized VEGF G4 did not act as a replication block and was not stabilized by the G4-binding protein nucleolin. To recover G4 function, we developed an oligonucleotide consisting of a pyrene-modified guanine tract that replaces the oxidized guanine tract and forms stable intermolecular G4s with the other intact guanine tracts. When this oligonucleotide was used, the oxidized G4 stalled replication and was stabilized by nucleolin as with the unmodified G4. This strategy generally enables recovery of the function of any oxidized G4s and therefore has potential for cancer therapy.
Collapse
Affiliation(s)
| | - Ki Tae Kim
- Department of Chemistry, Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Peter Podbevšek
- Slovenian NMR Center , National Institute of Chemistry , SI-1000 Ljubljana , Slovenia
| | - Janez Plavec
- Slovenian NMR Center , National Institute of Chemistry , SI-1000 Ljubljana , Slovenia
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | | |
Collapse
|
8
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
9
|
Tateishi-Karimata H, Ohyama T, Muraoka T, Podbevsek P, Wawro AM, Tanaka S, Nakano SI, Kinbara K, Plavec J, Sugimoto N. Newly characterized interaction stabilizes DNA structure: oligoethylene glycols stabilize G-quadruplexes CH-π interactions. Nucleic Acids Res 2017; 45:7021-7030. [PMID: 28453855 PMCID: PMC5499538 DOI: 10.1093/nar/gkx299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022] Open
Abstract
Oligoethylene glycols are used as crowding agents in experiments that aim to understand the effects of intracellular environments on DNAs. Moreover, DNAs with covalently attached oligoethylene glycols are used as cargo carriers for drug delivery systems. To investigate how oligoethylene glycols interact with DNAs, we incorporated deoxythymidine modified with oligoethylene glycols of different lengths, such as tetraethylene glycol (TEG), into DNAs that form antiparallel G-quadruplex or hairpin structures such that the modified residues were incorporated into loop regions. Thermodynamic analysis showed that because of enthalpic differences, the modified G-quadruplexes were stable and the hairpin structures were slightly unstable relative to unmodified DNA. The stability of G-quadruplexes increased with increasing length of the ethylene oxides and the number of deoxythymidines modified with ethylene glycols in the G-quadruplex. Nuclear magnetic resonance analyses and molecular dynamics calculations suggest that TEG interacts with bases in the G-quartet and loop via CH–π and lone pair–π interactions, although it was previously assumed that oligoethylene glycols do not directly interact with DNAs. The results suggest that numerous cellular co-solutes likely affect DNA function through these CH–π and lone pair–π interactions.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahiro Muraoka
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Peter Podbevsek
- Slovenian NMR Center, National Institute of Chemistry, Slovenia
| | - Adam M Wawro
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shu-Ichi Nakano
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazushi Kinbara
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Slovenia
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
10
|
Slavíčková M, Pohl R, Hocek M. Additions of Thiols to 7-Vinyl-7-deazaadenine Nucleosides and Nucleotides. Synthesis of Hydrophobic Derivatives of 2'-Deoxyadenosine, dATP and DNA. J Org Chem 2016; 81:11115-11125. [PMID: 27709938 DOI: 10.1021/acs.joc.6b02098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Additions of alkyl- or arylthiols to 7-vinyl-7-deaza-2'-deoxyadenosine gave a series of 7-[2-(alkyl- or arylsulfanyl)ethyl]-7-deaza-2'-deoxyadenosines in 45-85% yields. The nucleosides were converted to 5'-O-mono-(dASRMP) or triphosphates (dASRTP) by phosphorylation. The modified triphosphates were also prepared by thiol addition to 7-vinyl-7-deaza-dATP. The triphosphates dASRTP were good substrates for DNA polymerases useful in the enzymatic synthesis of base-modified oligonucleotides (ONs) or DNA containing flexibly linked hydrophobic substituents in the major groove. Primer extension was used for the synthesis of ONs with one or several modifications, PCR was used for the synthesis of heavily modified DNA, whereas terminal deoxynucleotidyl transferase was used for a single-nucleotide labeling of the 3'-end.
Collapse
Affiliation(s)
- Michaela Slavíčková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, Prague-2 12843, Czech Republic
| |
Collapse
|