• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4630434)   Today's Articles (296)   Subscriber (49764)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Zhao K, Gao Y, Wang X, Lis BM, Liu J, Jin B, Smith J, Huang C, Gao W, Wang X, Wang X, Zheng A, Huang Z, Hu J, Schömacker R, Wachs IE, Li F. Lithium carbonate-promoted mixed rare earth oxides as a generalized strategy for oxidative coupling of methane with exceptional yields. Nat Commun 2023;14:7749. [PMID: 38012194 PMCID: PMC10682025 DOI: 10.1038/s41467-023-43682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]  Open
2
Takahashi K, Ohyama J, Nishimura S, Fujima J, Takahashi L, Uno T, Taniike T. Catalysts informatics: paradigm shift towards data-driven catalyst design. Chem Commun (Camb) 2023;59:2222-2238. [PMID: 36723221 DOI: 10.1039/d2cc05938j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
3
Joshi H, Wilde N, Asche TS, Wolf D. Developing Catalysts via Structure‐Property Relations Discovered by Machine Learning: An Industrial Perspective. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
4
Tsuji Y, Yoshida M, Kamachi T, Yoshizawa K. Oxidative Addition of Methane and Reductive Elimination of Ethane and Hydrogen on Surfaces: From Pure Metals to Single Atom Alloys. J Am Chem Soc 2022;144:18650-18671. [PMID: 36153993 DOI: 10.1021/jacs.2c08787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
5
Nishimura S, Ohyama J, Li X, Miyazato I, Taniike T, Takahashi K. Machine Learning-Aided Catalyst Modification in Oxidative Coupling of Methane via Manganese Promoter. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
6
Sulphur Oxidative Coupling of Methane process development and its modelling via Machine Learning. AIChE J 2022. [DOI: 10.1002/aic.17793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
7
MacQueen B, Jayarathna R, Lauterbach J. Knowledge extraction in catalysis utilizing design of experiments and machine learning. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
8
Chen K, Tian H, Li B, Rangarajan S. A chemistry‐inspired neural network kinetic model for oxidative coupling of methane from high‐throughput data. AIChE J 2022. [DOI: 10.1002/aic.17584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
9
Nishimura S, Le SD, Miyazato I, Fujima J, Taniike T, Ohyama J, Takahashi K. High-Throughput Screening and Literature Data Driven Machine Learning Assisting Investigation of Multi-component La2O3-based Catalysts for Oxidative Coupling of Methane. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02206g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Trunschke A. Prospects and challenges for autonomous catalyst discovery viewed from an experimental perspective. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00275b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Wang Y, Yang X, Hou C, Yin F, Wang G, Zhu X, Jiang G, Li C. Improved Catalytic Activity and Stability of Ba Substituted SrTiO 3 Perovskite for Oxidative Coupling of Methane. ChemCatChem 2021. [DOI: 10.1002/cctc.202100859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
12
Miyazato I, Nguyen TN, Takahashi L, Taniike T, Takahashi K. Representing Catalytic and Processing Space in Methane Oxidation Reaction via Multioutput Machine Learning. J Phys Chem Lett 2021;12:808-814. [PMID: 33415983 DOI: 10.1021/acs.jpclett.0c03465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA