1
|
Zhang Y, Li S, Chen H, Song W, Ning Y, Liu Z, Wu Y, Murali K, Sivaguru P, Zhang X. Dimethoxyacetaldehyde- N-triftosylhydrazone: Preparation and Carbene Reactivity in Cyclopropanation and Doyle-Kirmse Reactions. Org Lett 2025. [PMID: 39976213 DOI: 10.1021/acs.orglett.5c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/21/2025]
Abstract
Herein, we developed the new, powerful, and easy-to-handle chemical reagent, dimethoxyacetaldehyde-N-triftosylhydrazone (DMHz-Tfs), as a convenient in situ source of dimethoxydiazoethane under mild conditions. We demonstrate the carbene reactivity of DMHz-Tfs in iron-catalyzed cyclopropanation and Doyle-Kirmse reactions, providing access to diverse acetal functionalized cyclopropanes and homoallylic- and allenyl-sulfides at gram-scale with high stereoselectivity. DFT calculations elucidated the involvement of the most stable doublet spin state iron-carbene intermediate over other possible spin states.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Shuang Li
- Forestry College of Beihua University, Jilin 132013, PR China
| | - Hongzhu Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Wei Song
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Zeyun Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yong Wu
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Karunanidhi Murali
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Paramasivam Sivaguru
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| |
Collapse
|
2
|
Zhang X, Sivaguru P, Pan Y, Wang N, Zhang W, Bi X. The Carbene Chemistry of N-Sulfonyl Hydrazones: The Past, Present, and Future. Chem Rev 2025; 125:1049-1190. [PMID: 39792453 DOI: 10.1021/acs.chemrev.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2025]
Abstract
N-Sulfonyl hydrazones have been extensively used as operationally safe carbene precursors in modern organic synthesis due to their ready availability, facile functionalization, and environmental benignity. Over the past two decades, there has been tremendous progress in the carbene chemistry of N-sulfonyl hydrazones in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Many carbene transfer reactions of N-sulfonyl hydrazones are unique and cannot be achieved by any alternative methods. The discovery of novel N-sulfonyl hydrazones and the development of highly enantioselective new reactions and skeletal editing reactions represent the notable recent achievements in the carbene chemistry of N-sulfonyl hydrazones. This review describes the overall progress made in the carbene chemistry of N-sulfonyl hydrazones, organized based on reaction types, spotlighting the current state-of-the-art and remaining challenges to be addressed in the future. Special emphasis is devoted to identifying, describing, and comparing the scope and limitations of current methodologies, key mechanistic scenarios, and potential applications in the synthesis of complex molecules.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Yongzhen Pan
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Nan Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wenjie Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
He C, Song W, Wei D, Zhao W, Yu Q, Tang J, Ning Y, Murali K, Sivaguru P, de Ruiter G, Bi X. Rhodium-Catalyzed Asymmetric Cyclopropanation of Indoles with N-Triftosylhydrazones. Angew Chem Int Ed Engl 2024:e202408220. [PMID: 39363722 DOI: 10.1002/anie.202408220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Herein we report a general rhodium-catalyzed asymmetric intermolecular dearomative cyclopropanation of indoles using trifluoromethyl N-triftosylhydrazones as carbene precursors. The reaction enables the rapid construction of diverse cyclopropane-fused indolines bearing a trifluoromethylated quaternary stereocenter with high enantioselectivity (up to 99 % ee). This mild method exhibits broad substrate scope, tolerating various functional groups, and can even be utilized for the late-stage diversification of complex bioactive molecules. DFT calculations suggest that the formation of a key zwitterionic intermediate is responsible for the chiral induction. Overall, this approach opens up new possibilities for asymmetric cyclopropanation of challenging aromatic heterocyclic compounds.
Collapse
Affiliation(s)
- Caicai He
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dandan Wei
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Zhao
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qianfei Yu
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiaqi Tang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Karunanidhi Murali
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Li L, Chen H, Liu M, Zhu Q, Zhang H, de Ruiter G, Bi X. Silver-Catalyzed Dearomative Skeletal Editing of Indazoles by Donor Carbene Insertion. Chemistry 2024; 30:e202304227. [PMID: 38199953 DOI: 10.1002/chem.202304227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Given the prevalence of heterocyclic scaffolds in drug-related molecules, converting these highly modular heterocyclic scaffolds into structural diversified and dearomatized analogs is an ideal strategy for improving their physicochemical and pharmacokinetic properties. Here, we described an efficient method for silver carbene-mediated dearomative N-N bond cleavage leading to skeletal hopping between indazole and 1,2-dihydroquinazoline via a highly selective single-carbon insertion procedure. Using this methodology, a series of dihydroquinazoline analogues with diarylmethylene-substituted quaternary carbon centers were constructed with excellent yields and good functional group compatibility, which was further illustrated by the late-stage diversification of important pharmaceutically active ingredients. DFT calculations indicated that the silver catalyst not only induces the formation of the silver carbene, but also activates the diazahexatriene intermediate, which plays a crucial role in the formation of the C-N bond.
Collapse
Affiliation(s)
- Linxuan Li
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Hongzhu Chen
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Menglin Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Qingwen Zhu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Hongru Zhang
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
5
|
Li L, Ning Y, Chen H, Ning Y, Sivaguru P, Liao P, Zhu Q, Ji Y, de Ruiter G, Bi X. Dearomative Insertion of Fluoroalkyl Carbenes into Azoles Leading to Fluoroalkyl Heterocycles with a Quaternary Center. Angew Chem Int Ed Engl 2024; 63:e202313807. [PMID: 37966100 DOI: 10.1002/anie.202313807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
The skeletal ring expansion of heteroarenes through carbene insertion is gaining popularity in synthetic chemistry. Efficient strategies for heterocyclic ring expansion to access heterocycles containing a fluoroalkyl quaternary carbon center through fluoroalkyl carbene insertion are highly desirable because of their broad applications in medicinal chemistry. Herein, we report a general strategy for the dearomative one-carbon insertion of azoles using fluoroalkyl N-triftosylhydrazones as fluoroalkyl carbene precursors, resulting in ring-expanded heterocycles in excellent yields with good functional-group compatibility. The broad generality of this methodology in the late-stage diversification of pharmaceutically interesting bioactive molecules and versatile transformations of the products has been demonstrated.
Collapse
Affiliation(s)
- Linxuan Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Hongzhu Chen
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongyue Ning
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Peiqiu Liao
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qingwen Zhu
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yong Ji
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Ma Y, Zhang X, Zhu L, Feng X, Kowah JAH, Jiang J, Wang L, Jiang L, Liu X. Machine Learning and Quantum Calculation for Predicting Yield in Cu-Catalyzed P-H Reactions. Molecules 2023; 28:5995. [PMID: 37630247 PMCID: PMC10458182 DOI: 10.3390/molecules28165995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The paper discussed the use of machine learning (ML) and quantum chemistry calculations to predict the transition state and yield of copper-catalyzed P-H insertion reactions. By analyzing a dataset of 120 experimental data points, the transition state was determined using density functional theory (DFT). ML algorithms were then applied to analyze 16 descriptors derived from the quantum chemical transition state to predict the product yield. Among the algorithms studied, the Support Vector Machine (SVM) achieved the highest prediction accuracy of 97%, with over 80% correlation in Leave-One-Out Cross-Validation (LOOCV). Sensitivity analysis was performed on each descriptor, and a comprehensive investigation of the reaction mechanism was conducted to better understand the transition state characteristics. Finally, the ML model was used to predict reaction plans for experimental design, demonstrating strong predictive performance in subsequent experimental validation.
Collapse
Affiliation(s)
- Youfu Ma
- Medical College, Guangxi University, Nanning 530004, China; (Y.M.); (L.Z.); (X.F.); (J.A.H.K.); (J.J.)
| | - Xianwei Zhang
- Medical College, Guangxi University, Nanning 530004, China; (Y.M.); (L.Z.); (X.F.); (J.A.H.K.); (J.J.)
| | - Lin Zhu
- Medical College, Guangxi University, Nanning 530004, China; (Y.M.); (L.Z.); (X.F.); (J.A.H.K.); (J.J.)
| | - Xiaowei Feng
- Medical College, Guangxi University, Nanning 530004, China; (Y.M.); (L.Z.); (X.F.); (J.A.H.K.); (J.J.)
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jamal A. H. Kowah
- Medical College, Guangxi University, Nanning 530004, China; (Y.M.); (L.Z.); (X.F.); (J.A.H.K.); (J.J.)
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jun Jiang
- Medical College, Guangxi University, Nanning 530004, China; (Y.M.); (L.Z.); (X.F.); (J.A.H.K.); (J.J.)
| | - Lisheng Wang
- Medical College, Guangxi University, Nanning 530004, China; (Y.M.); (L.Z.); (X.F.); (J.A.H.K.); (J.J.)
| | - Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xu Liu
- Medical College, Guangxi University, Nanning 530004, China; (Y.M.); (L.Z.); (X.F.); (J.A.H.K.); (J.J.)
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| |
Collapse
|
7
|
Zhang X, Ning Y, Tian C, Zanoni G, Bi X. Asymmetric [2+1] cycloaddition of difluoroalkyl-substituted carbenes with alkenes under rhodium catalysis: Synthesis of chiral difluoroalkyl-substituted cyclopropanes. iScience 2023; 26:105896. [PMID: 36994182 PMCID: PMC10040897 DOI: 10.1016/j.isci.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 02/17/2023] Open
Abstract
Herein, we report a novel strategy for the synthesis of chiral difluoroalkyl-substituted cyclopropanes through enantioselective [2 + 1] cyclopropanation of alkenes and difluoroalkyl-substituted carbenes under rhodium catalysis, wherein the newly designed α, α-difluoro-β-carbonyl ketone N-triftosylhydrazones are used as the difluoroalkyl-substituted carbenes precursors. This approach represents the first asymmetric cyclopropanation of alkenes with difluoroalkyl carbenes, featuring high yield, high enantioselectivity, and broad substrate scope. Gram-scale synthesis and further interconversion of diverse functional groups demonstrate the usefulness of this protocol in the preparation of diverse functionalized chiral difluoroalkyl-substituted cyclopropanes.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Chunqi Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of ChemistryUniversity of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
- Corresponding author
| |
Collapse
|
8
|
Abstract
Catalytic carbene transfer reactions are fundamental transformations in modern organic synthesis, which enable direct access to diverse structurally complex molecules. Despite diazo precursors playing a crucial role in catalytic carbene transfer reactions, most reported methodologies take into account only diazoacetates or related compounds. This is primarily because diazoalkanes, unless they contain a resonance stabilizing group, are more susceptible to violent exothermic decomposition. In this feature article, we present an alternative approach to carbene-transfer reactions based on the formation of highly electrophilic silver carbenes from N-sulfonylhydrazones, where the high electrophilicity of silver carbenes stems from the weak interaction between silver and the carbenic carbon. These precursors are readily accessible, stable, and environmentally sustainable. Using the strategy that employs highly electrophilic silver carbenes, it is possible to develop novel intermolecular transformations involving non-stabilized carbenes, including C(sp3)-H insertion, C(sp3)-C(O) insertion, cycloaddition, and defluorinative functionalization. The silver-catalyzed carbene transfer reactions described here have high efficiency, unusual reactivity, exceptional selectivity, and a reaction pathway that differs from typical transition metal-catalyzed reactions. Our research provided fundamental insight into silver carbene chemistry, and we hope to apply this mode of catalysis to other more general transformations, including asymmetric transformations.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Linxuan Li
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Paramasivam Sivaguru
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| |
Collapse
|
9
|
Wu Y, Ning Y, Han X, Liao P, Xia Y, Sivaguru P, Bi X. Silver-Catalyzed Vinylcarbene Insertion into C–C Bonds of 1,3-Diketones with Vinyl- N-triftosylhydrazones. Org Lett 2022; 24:8136-8141. [DOI: 10.1021/acs.orglett.2c03176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinyue Han
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Peiqiu Liao
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ying Xia
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Ning Y, Huo M, Wu L, Bi X. Silver-catalyzed cyclopropanation of alkenes with alkynyl N-nosylhydrazones leading to alkynyl cyclopropanes. Chem Commun (Camb) 2022; 58:3485-3488. [PMID: 35191450 DOI: 10.1039/d2cc00099g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Here, a novel method for the stereoselective synthesis of alkynyl cyclopropanes, by the silver-catalyzed alkynylcyclopropanation of alkenes using alkynyl N-nosylhydrazones as alkynyl carbene precursors, is reported. This method provides a straightforward and powerful approach for preparing various alkynyl cyclopropanes in high yield with excellent stereoselectivities. In addition, the practicality of this method was demonstrated by gram-scale synthesis and late-stage modification of bioactive molecules.
Collapse
Affiliation(s)
- Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Mengtian Huo
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Lizuo Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China. .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Ning Y, Song Q, Sivaguru P, Wu L, Anderson EA, Bi X. Ag-Catalyzed Insertion of Alkynyl Carbenes into C-C Bonds of β-Ketocarbonyls: A Formal C(sp 2) Insertion. Org Lett 2022; 24:631-636. [PMID: 34985288 DOI: 10.1021/acs.orglett.1c04081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
Here we report a silver-catalyzed alkynyl carbene insertion into β-ketocarbonyls using alkynyl N-nosylhydrazones as alkynyl carbene precursors, which provides access to trisubstituted allenyl ketones. This reaction represents the first example of an alkynyl carbene insertion into a C-C σ bond, affording products homologated with an sp2 carbon center. The products are useful substrates for further transformations. Experimental investigations and theoretical calculations suggest the reaction proceeds through a stepwise enol cyclopropanation/retro-aldol pathway.
Collapse
Affiliation(s)
- Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qingmin Song
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Lizuo Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Fang Z, Ma Y, Liu S, Bai H, Li S, Ning Y, Zanoni G, Liu Z. Silver-catalyzed [4 + 3] cycloaddition of 1,3-dienes with alkenyl- N-triftosylhydrazones: a practical approach to 1,4-cycloheptadienes. Org Chem Front 2022. [DOI: 10.1039/d2qo00806h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
A formal [4 + 3] cycloaddition of 1,3-dienes with alkenyl-N-triftosylhydrazones was developed using silver catalysis, producing a broad spectrum of complex 1,4-cycloheptadienes with high yields and predictable stereochemistry.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yiming Ma
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Huricha Bai
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
13
|
Mechanism of P-H insertion of α-imino copper carbenes: 1,1-Insertion or 1,3-insertion? Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
14
|
Zhang X, Tian C, Wang Z, Sivaguru P, Nolan SP, Bi X. Fluoroalkyl N-Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Chunqi Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhanjing Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Wang Y, Wang H, Liu Z. Research Progress on EWG-Substituted N-Arylsulfonylhydrazones as the Diazo Compound Precursor. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|