1
|
Abstract
![]()
Optical
imaging has become an essential tool to study biomolecular
processes in live systems with unprecedented spatial resolution. New
fluorescent technologies and advances in optical microscopy have revolutionized
the ways in which we can study immune cells in real time. For example,
activatable fluorophores that emit signals after target recognition
have enabled direct imaging of immune cell function with enhanced
readouts and minimal background. In this Account, we summarize recent
advances in the chemical synthesis and implementation of activatable
fluorescent probes to monitor the activity and the role of immune
cells in different pathological processes, from infection to inflammatory
diseases or cancer. In addition to the contributions that our group
has made to this field, we review the most relevant literature disclosed
over the past decade, providing examples of different activatable
architectures and their application in diagnostics and drug discovery.
This Account covers the imaging of the three major cell types in the
immune system, that is, neutrophils, macrophages, and lymphocytes.
Attracted by the tunability and target specificity of peptides, many
groups have designed strategies based on fluorogenic peptides whose
fluorescence emission is regulated by the reaction with enzymes (e.g.,
MMPs, cathepsins, granzymes), or through Förster resonance
energy transfer (FRET) mechanisms. Selective imaging of immune cells
has been also achieved by targeting different intracellular metabolic
routes, such as lipid biogenesis. Other approaches involve the implementation
of diversity-oriented fluorescence libraries or the use of environmentally
sensitive fluorescent scaffolds (e.g., molecular rotors). Our group
has made important progress by constructing probes to image metastasis-associated
macrophages in tumors, apoptotic neutrophils, or cytotoxic natural
killer (NK) cells against cancer cells, among other examples. The
chemical probes covered in this Account have been successfully validated
in vitro in cell culture systems, and in vivo in relevant models of
inflammation and cancer. Overall, the range of chemical structures
and activation mechanisms reported to sense immune cell function is
remarkable. However, the emergence of new strategies based on new
molecular targets or activatable mechanisms that are yet to be discovered
will open the door to track unexplored roles of immune cells in different
biological systems. We anticipate that upcoming generations of activatable
probes will find applications in the clinic to help assessing immunotherapies
and advance precision medicine. We hope that this Account will evoke
new ideas and innovative work in the design of fluorescent probes
for imaging cell function.
Collapse
Affiliation(s)
- Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, U.K
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, U.K
| |
Collapse
|
2
|
Muntjewerff EM, Meesters LD, van den Bogaart G, Revelo NH. Reverse Signaling by MHC-I Molecules in Immune and Non-Immune Cell Types. Front Immunol 2020; 11:605958. [PMID: 33384693 PMCID: PMC7770133 DOI: 10.3389/fimmu.2020.605958] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Major histocompatibility complex (MHC) molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells, for example dendritic cells (DCs) and T cells, or immune cells and their targets, such as T cells and virus-infected or tumor cells. However, much less appreciated is the fact that MHC molecules can also act as signaling receptors. In this process, here referred to as reverse MHC class I (MHC-I) signaling, ligation of MHC molecules can lead to signal-transduction and cell regulatory effects in the antigen presenting cell. In the case of MHC-I, reverse signaling can have several outcomes, including apoptosis, migration, induced or reduced proliferation and cytotoxicity towards target cells. Here, we provide an overview of studies showing the signaling pathways and cell outcomes upon MHC-I stimulation in various immune and non-immune cells. Signaling molecules like RAC-alpha serine/threonine-protein kinase (Akt1), extracellular signal-regulated kinases 1/2 (ERK1/2), and nuclear factor-κB (NF-κB) were common signaling molecules activated upon MHC-I ligation in multiple cell types. For endothelial and smooth muscle cells, the in vivo relevance of reverse MHC-I signaling has been established, namely in the context of adverse effects after tissue transplantation. For other cell types, the role of reverse MHC-I signaling is less clear, since aspects like the in vivo relevance, natural MHC-I ligands and the extended downstream pathways are not fully known.The existing evidence, however, suggests that reverse MHC-I signaling is involved in the regulation of the defense against bacterial and viral infections and against malignancies. Thereby, reverse MHC-I signaling is a potential target for therapies against viral and bacterial infections, cancer immunotherapies and management of organ transplantation outcomes.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luca D Meesters
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Microbiology and Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
3
|
IL-2 receptors preassemble and signal in the ER/Golgi causing resistance to antiproliferative anti-IL-2Rα therapies. Proc Natl Acad Sci U S A 2019; 116:21120-21130. [PMID: 31570576 DOI: 10.1073/pnas.1901382116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interleukin-2 (IL-2) and IL-15 play pivotal roles in T cell activation, apoptosis, and survival, and are implicated in leukemias and autoimmune diseases. Their heterotrimeric receptors share their β- and γc-chains, but have distinct α-chains. Anti-IL-2Rα (daclizumab) therapy targeting cell surface-expressed receptor subunits to inhibit T cell proliferation has only brought limited success in adult T cell leukemia/lymphoma (ATL) and in multiple sclerosis. We asked whether IL-2R subunits could already preassemble and signal efficiently in the endoplasmic reticulum (ER) and the Golgi. A combination of daclizumab and anti-IL-2 efficiently blocked IL-2-induced proliferation of IL-2-dependent wild-type (WT) ATL cells but not cells transfected with IL-2, suggesting that in IL-2-producing cells signaling may already take place before receptors reach the cell surface. In the Golgi fraction isolated from IL-2-producing ATL cells, we detected by Western blot phosphorylated Jak1, Jak3, and a phosphotyrosine signal attributed to the γc-chain, which occurred at much lower levels in the Golgi of WT ATL cells. We expressed EGFP- and mCherry-tagged receptor chains in HeLa cells to study their assembly along the secretory pathway. Confocal microscopy, Förster resonance energy transfer, and imaging fluorescence cross-correlation spectroscopy analysis revealed partial colocalization and molecular association of IL-2 (and IL-15) receptor chains in the ER/Golgi, which became more complete in the plasma membrane, further confirming our hypothesis. Our results define a paradigm of intracellular autocrine signaling and may explain resistance to antagonistic antibody therapies targeting receptors at the cell surface.
Collapse
|
4
|
Nizsalóczki E, Nagy P, Mocsár G, Szabó Á, Csomós I, Waldmann TA, Vámosi G, Mátyus L, Bodnár A. Minimum degree of overlap between IL-9R and IL-2R on human T lymphoma cells: A quantitative CLSM and FRET analysis. Cytometry A 2018; 93:1106-1117. [PMID: 30378727 PMCID: PMC8108070 DOI: 10.1002/cyto.a.23634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023]
Abstract
The heterodimeric receptor complex of IL-9 consists of the cytokine-specific α-subunit and the common γc -chain shared with other cytokines, including IL-2, a central regulator of T cell function. We have shown previously the bipartite spatial relationship of IL-9 and IL-2 receptors at the surface of human T lymphoma cells: in addition to common clusters, expression of the two receptor kinds could also be observed in segregated membrane areas. Here we analyzed further the mutual cell surface organization of IL-9 and IL-2 receptors. Complementing Pearson correlation data with co-occurrence analysis of confocal microscopic images revealed that a minimum degree of IL-9R/IL-2R co-localization exists at the cell surface regardless of the overall spatial correlation of the two receptor kinds. Moreover, our FRET experiments demonstrated molecular scale assemblies of the elements of the IL-9/IL-2R system. Binding of IL-9 altered the structure and/or composition of these clusters. It is hypothesized, that by sequestering receptor subunits in common membrane areas, the overlapping domains of IL-9R and IL-2R provide a platform enabling both the formation of the appropriate receptor complex as well as subunit sharing between related cytokines. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Enikő Nizsalóczki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Csomós
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, Maryland
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Mátyus
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Dirscherl C, Hein Z, Ramnarayan VR, Jacob-Dolan C, Springer S. A two-hybrid antibody micropattern assay reveals specific in cis interactions of MHC I heavy chains at the cell surface. eLife 2018; 7:e34150. [PMID: 30180933 PMCID: PMC6125123 DOI: 10.7554/elife.34150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
We demonstrate a two-hybrid assay based on antibody micropatterns to study protein-protein interactions at the cell surface of major histocompatibility complex class I (MHC I) proteins. Anti-tag and conformation-specific antibodies are used for individual capture of specific forms of MHC I proteins that allow for location- and conformation-specific analysis by fluorescence microscopy. The assay is used to study the in cis interactions of MHC I proteins at the cell surface under controlled conditions and to define the involved protein conformations. Our results show that homotypic in cis interactions occur exclusively between MHC I free heavy chains, and we identify the dissociation of the light chain from the MHC I protein complex as a condition for MHC I in cis interactions. The functional role of these MHC I protein-protein interactions at the cell surface needs further investigation. We propose future technical developments of our two-hybrid assay for further analysis of MHC I protein-protein interactions.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
| | - Zeynep Hein
- Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
| | | | | | | |
Collapse
|
6
|
Nagy É, Mocsár G, Sebestyén V, Volkó J, Papp F, Tóth K, Damjanovich S, Panyi G, Waldmann TA, Bodnár A, Vámosi G. Membrane Potential Distinctly Modulates Mobility and Signaling of IL-2 and IL-15 Receptors in T Cells. Biophys J 2018; 114:2473-2482. [PMID: 29754714 PMCID: PMC6129476 DOI: 10.1016/j.bpj.2018.04.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022] Open
Abstract
The high electric field across the plasma membrane might influence the conformation and behavior of transmembrane proteins that have uneven charge distributions in or near their transmembrane regions. Membrane depolarization of T cells occurs in the tumor microenvironment and in inflamed tissues because of K+ release from necrotic cells and hypoxia affecting the expression of K+ channels. However, little attention has been given to the effect of membrane potential (MP) changes on membrane receptor function. Therefore, we studied the influence of membrane de- and hyperpolarization on the biophysical properties and signaling of interleukin-2 (IL-2) and interleukin-15 (IL-15) receptors, which play important roles in T cell function. We investigated the mobility, clustering, and signaling of these receptors and major histocompatibility complex (MHC) I/II glycoproteins forming coclusters in lipid rafts of T cells. Depolarization by high K+ buffer or K+ channel blockers resulted in a decrease in the mobility of IL-2Rα and MHC glycoproteins, as shown by fluorescence correlation spectroscopy, whereas hyperpolarization by the K+ ionophore valinomycin increased their mobility. Contrary to this, the mobility of IL-15Rα decreased upon both de- and hyperpolarization. These changes in protein mobility are not due to an alteration of membrane fluidity, as evidenced by fluorescence anisotropy measurements. Förster resonance energy transfer measurements showed that most homo- or heteroassociations of IL-2R, IL-15R, and MHC I did not change considerably, either. MP changes modulated signaling by the two cytokines in distinct ways: depolarization caused a significant increase in the IL-2-induced phosphorylation of signal transducer and activator of transcription 5, whereas hyperpolarization evoked a decrease only in the IL-15-induced signal. Our data imply that the MP may be an important modulator of interleukin receptor signaling and dynamics. Enhanced IL-2 signaling in depolarized Treg cells highly expressing IL-2R may contribute to suppression of antitumor immune surveillance.
Collapse
Affiliation(s)
- Éva Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine
| | | | - Julianna Volkó
- Department of Biophysics and Cell Biology, Faculty of Medicine
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine; MTA-DE- NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Hungary
| | - Katalin Tóth
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | | | - György Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine; MTA-DE- NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Hungary
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, Maryland
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Faculty of Medicine
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine.
| |
Collapse
|
7
|
Mocsár G, Volkó J, Rönnlund D, Widengren J, Nagy P, Szöllősi J, Tóth K, Goldman CK, Damjanovich S, Waldmann TA, Bodnár A, Vámosi G. MHC I Expression Regulates Co-clustering and Mobility of Interleukin-2 and -15 Receptors in T Cells. Biophys J 2017; 111:100-12. [PMID: 27410738 DOI: 10.1016/j.bpj.2016.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
MHC glycoproteins form supramolecular clusters with interleukin-2 and -15 receptors in lipid rafts of T cells. The role of highly expressed MHC I in maintaining these clusters is unknown. We knocked down MHC I in FT7.10 human T cells, and studied protein clustering at two hierarchic levels: molecular aggregations and mobility by Förster resonance energy transfer and fluorescence correlation spectroscopy; and segregation into larger domains or superclusters by superresolution stimulated emission depletion microscopy. Fluorescence correlation spectroscopy-based molecular brightness analysis revealed that the studied molecules diffused as tight aggregates of several proteins of a kind. Knockdown reduced the number of MHC I containing molecular aggregates and their average MHC I content, and decreased the heteroassociation of MHC I with IL-2Rα/IL-15Rα. The mobility of not only MHC I but also that of IL-2Rα/IL-15Rα increased, corroborating the general size decrease of tight aggregates. A multifaceted analysis of stimulated emission depletion images revealed that the diameter of MHC I superclusters diminished from 400-600 to 200-300 nm, whereas those of IL-2Rα/IL-15Rα hardly changed. MHC I and IL-2Rα/IL-15Rα colocalized with GM1 ganglioside-rich lipid rafts, but MHC I clusters retracted to smaller subsets of GM1- and IL-2Rα/IL-15Rα-rich areas upon knockdown. Our results prove that changes in expression level may significantly alter the organization and mobility of interacting membrane proteins.
Collapse
Affiliation(s)
- Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Julianna Volkó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Rönnlund
- Department of Applied Physics/Experimental Biomolecular Physics, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden
| | - Jerker Widengren
- Department of Applied Physics/Experimental Biomolecular Physics, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences and the University of Debrecen, Debrecen, Hungary
| | - Katalin Tóth
- German Cancer Research Center, Biophysics of Macromolecules, Heidelberg, Germany
| | - Carolyn K Goldman
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sándor Damjanovich
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
8
|
Interleukin-9 Promotes Pancreatic Cancer Cells Proliferation and Migration via the miR-200a/Beta-Catenin Axis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2831056. [PMID: 28349057 PMCID: PMC5352879 DOI: 10.1155/2017/2831056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 01/30/2023]
Abstract
Background. Both IL-9 and miR-200a are involved in the pathogenesis of cancers; however, the role of IL-9 in pancreatic cancer and the possible underlying mechanisms remain unknown. The aim of this study was to investigate the effect of IL-9 on pancreatic cancer cells and its interaction with miR-200a. Methods. Pancreatic cancer cells (PANC-1 and AsPC-1) were treated with IL-9 and the expression of miR-200a and β-catenin in pancreatic cancer cells was measured. β-Catenin was examined as a target gene of miR-200a in pancreatic cancer cells. The interaction between IL-9 and miR-200a in pancreatic cancer cells was determined by infecting miR-200a mimics prior to IL-9 treatment and then measuring miR-200a and β-catenin expression. Results. IL-9 significantly promoted the proliferation, invasion, and migration of pancreatic cancer cells; however, the effect on pancreatic cancer cell apoptosis was insignificant. β-Catenin was verified as a target gene of miR-200a in pancreatic cancer cells. Overexpression of miR-200a in pancreatic cancer cells significantly attenuated proliferation and metastasis and reduced β-catenin expression. IL-9 treatment of pancreatic cancer cells decreased miR-200a expression and increased β-catenin expression. The effect of miR-200a on pancreatic cancer cells decreased following IL-9 treatment. Conclusions. IL-9 promotes proliferation and metastasis in pancreatic cancer cells; this effect may partly involve regulation of the miR-200a/β-catenin axis.
Collapse
|
9
|
Bechara C, Robinson CV. Different Modes of Lipid Binding to Membrane Proteins Probed by Mass Spectrometry. J Am Chem Soc 2015; 137:5240-7. [DOI: 10.1021/jacs.5b00420] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chérine Bechara
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|