1
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Li X, Zhang Q, Xu M, Li X. Modulation of metal nanocatalysts for enhanced selectivity of chemoselective reduction and addition hydrogenation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
3
|
Mild-temperature chemoselective hydrogenation of cinnamaldehyde over amorphous Pt/Fe-Asp-A nanocatalyst with enhanced stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Chen B, Yang X, Xu Y, Hu S, Zeng X, Liu Y, Tan KB, Huang J, Zhan G. Semi-hydrogenation of α,β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al 2O 3 to Al-TCPP. NANOSCALE 2022; 14:15749-15759. [PMID: 36226736 DOI: 10.1039/d2nr04474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The semi-hydrogenation of α,β-unsaturated aldehydes to the desired unsaturated alcohols with both high conversion and high selectivity remains a big challenge. Herein, we designed a sandwich-structured nanocatalyst for the highly selective hydrogenation of various α,β-unsaturated aldehydes (e.g., cinnamaldehyde, furfural, crotonaldehyde, and 3-methyl-2-butenal) to the targeted unsaturated alcohols. Highly accessible platinum nanoparticles were sandwiched between a metal-organic framework (MOF) core (i.e., MIL-88B(Fe)) and a MOF shell (i.e., Al-TCPP). In particular, the growth of the Al-TCPP shell was achieved by atomic layer deposition (ALD) of thin-film Al2O3 followed by phase transformation with a tetrakis(4-carboxyphenyl)porphyrin (H4TCPP) linker. The thickness of the Al-TCPP shell can be finely controlled by adjusting the cycle number of alumina ALD and the concentration of the H4TCPP linker during the phase transformation of Al2O3 to Al-TCPP. It was proven that the permeable MOF shells could serve as selectivity regulators for the activation of the CO bonds in α,β-unsaturated aldehydes (in preference to the CC bonds), leading to higher selectivity towards unsaturated alcohols as compared to the conventional surface supported Pt catalysts. Mechanistic insights showed that the enhanced catalytic performance was attributed to (i) the modified electronic state of sandwiched Pt nanoparticles by the two MOF layers and (ii) the steric hindrance effect on substrate diffusion through the sandwich-structured catalysts.
Collapse
Affiliation(s)
- Bin Chen
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China.
| | - Xin Yang
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Yinan Xu
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Siyuan Hu
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Xiaoli Zeng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Yiping Liu
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Kok Bing Tan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China.
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China.
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| |
Collapse
|
5
|
Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Chen T, Zhao P, Li J, Sun Z, Huang W. Construction of a novel Co-based coordination polymer and its study of non-enzymatic glucose sensors. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Metalloporphyrin functionalized multivariate IRMOF-74-IV analogs for photocatalytic CO2 reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Wang Y, Zhang X, Chang K, Zhao Z, Huang J, Kuang Q. MOF Encapsulated AuPt Bimetallic Nanoparticles for Improved Plasmonic‐induced Photothermal Catalysis of CO
2
Hydrogenation. Chemistry 2022; 28:e202104514. [DOI: 10.1002/chem.202104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Xibo Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Kuan Chang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zhiying Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jiayu Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Qin Kuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
9
|
Yang Y, Xu D, Kong L, Qiao J, Li B, Ding X, Liu J, Liu W, Wang F. Construction of Ni-Zn bimetal sulfides Heterostructured-hybrids for High-performance electromagnetic wave absorption. J Colloid Interface Sci 2022; 606:1410-1420. [PMID: 34492476 DOI: 10.1016/j.jcis.2021.08.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/28/2022]
Abstract
Utilizing the synergistic effect of multiple components in heterostructured composites has been regarded as a promising strategy for achieving high-performance electromagnetic wave absorption. Nonetheless, rationally collocate the components of absorbers in order to legitimately achieve synergy remains an intractable problem. By adjusting the NiS and ZnS composition ratios in the ZnS/NiS/C composites, the optimal impedance matching and dissipation capability can be obtained. The formation of a ZnS/NiS heterostructure is found to significantly enhance polarization relaxation, and the relative ratios of ZnS and NiS have a significant effect on the electromagnetic properties. The optimal performance was obtained on Z1N2, with a minimum reflection loss of -51.45 dB at 4.72 GHz and -56.69 dB at 11.12 GHz, respectively, and an effective absorption bandwidth of up to 3.68 GHz at 1.16 mm. The potential of heterogeneous bimetal sulfides as high-performance absorbers is demonstrated in this study.
Collapse
Affiliation(s)
- Yunfei Yang
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Dongmei Xu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Shandong, 250100, China
| | - Lingxin Kong
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Jing Qiao
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Bin Li
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xiuwei Ding
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Jiurong Liu
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China.
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Shandong, 250100, China
| | - Fenglong Wang
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
10
|
Liu Q, Liu Q, Chen Y, Li Y, Su H, Liu Q, Li G. Ir nanoclusters confined within hollow MIL-101(Fe) for selective hydrogenation of α,β-unsaturated aldehyde. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang H, Zheng F, Xue G, Wang Y, Li G, Tang Z. Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1095-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Yun R, Ma ZW, Hu Y, Zhan F, Qiu C, Zheng B, Sheng T. Nano-Ni-MOFs: High Active Catalysts on the Cascade Hydrogenation of Quinolines. Catal Letters 2021. [DOI: 10.1007/s10562-020-03491-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Chen X, Cao H, Chen X, Du Y, Qi J, Luo J, Armbrüster M, Liang C. Synthesis of Intermetallic Pt-Based Catalysts by Lithium Naphthalenide-Driven Reduction for Selective Hydrogenation of Cinnamaldehyde. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18551-18561. [PMID: 32239903 DOI: 10.1021/acsami.0c01987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intermetallic nanoparticles (NPs) with a well-defined atom binding environment and a long-range ordering structure can be used as ideal models to understand their physical and catalytic properties. In this work, several kinds of nanostructured and carbon nanotube (CNT)-supported Pt-based intermetallic compounds (IMCs) have been synthesized by one-step lithium naphthalenide-driven reduction at room temperature without the use of surfactants in light of the reduction potential of metals. In the chemoselective hydrogenation of cinnamaldehyde, the second metal in Pt-M IMCs significantly creates a suitable reaction environment through construction of a good geometric and electronic structure. The Pt3Sn/CNT catalyst presents highly efficient and good chemoselective hydrogenation of cinnamaldehyde to cinnamyl alcohol. This can be attributed to the fact that the incorporated Sn atoms effectively dilute large Pt ensembles and increase the electron density of Pt. The in situ-formed SnOx interfaces as Lewis acid sites facilitate the coordination of C═O bonds, enhancing the selectivity to cinnamyl alcohol. In addition, the SnOx interface as the joint between Pt3Sn IMCs NPs and CNTs significantly improves the stability of the catalyst in the reaction environment.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - He Cao
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhen Chen
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Du
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ji Qi
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingjie Luo
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Marc Armbrüster
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, Chemnitz 09107, Germany
| | - Changhai Liang
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Zhang W, Shi W, Ji W, Wu H, Gu Z, Wang P, Li X, Qin P, Zhang J, Fan Y, Wu T, Fu Y, Zhang W, Huo F. Microenvironment of MOF Channel Coordination with Pt NPs for Selective Hydrogenation of Unsaturated Aldehydes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00682] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenlei Zhang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Wenxiong Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, People’s Republic of China
| | - Wenlan Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Haibo Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Zhida Gu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Peng Wang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Xiaohan Li
- College of Science, Northeastern University, Shenyang 100819, China
| | - Peishan Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Jia Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Yun Fan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Tianyu Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|