1
|
Ashique S, Mishra N, Garg A, Garg S, Farid A, Rai S, Gupta G, Dua K, Paudel KR, Taghizadeh-Hesary F. A Critical Review on the Long-Term COVID-19 Impacts on Patients With Diabetes. Am J Med 2025; 138:308-329. [PMID: 38485111 DOI: 10.1016/j.amjmed.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/12/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND The world is currently grappling with the potentially life-threatening coronavirus disease 2019 (COVID-19), marking it as the most severe health crisis in the modern era. COVID-19 has led to a pandemic, with the World Health Organization (WHO) predicting that individuals with diabetes are at a higher risk of contracting the virus compared to the general population. This review aims to provide a practical summary of the long-term impacts of COVID-19 on patients with diabetes. Specifically, it focuses on the effects of SARS-CoV-2 on different types of diabetic patients, the associated mortality rate, the underlying mechanisms, related complications, and the role of vitamin D and zinc in therapeutic and preventive approaches. METHODS Relevant literature was identified through searches on PubMed, Web of Science, and Science Direct in English, up to April 2023. RESULTS COVID-19 can lead to distressing symptoms and pose a significant challenge for individuals living with diabetes. Older individuals and those with pre-existing conditions such as diabetes, coronary illness, and asthma are more susceptible to COVID-19 infection. Managing COVID-19 in individuals with diabetes presents challenges, as it not only complicates the fight against the infection but also potentially prolongs the recovery time. Moreover, the virus may thrive in individuals with high blood glucose levels. Various therapeutic approaches, including antidiabetic drugs, are available to help prevent COVID-19 in diabetic patients. CONCLUSIONS Diabetes increases the morbidity and mortality risk for patients with COVID-19. Efforts are globally underway to explore therapeutic interventions aimed at reducing the impact of diabetes on COVID-19.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh, India
| | - Ashish Garg
- Drug Delivery and Nanotechnology Laboratories, Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Kukrikheda, Barela, Jabalpur, Madhya Pradesh, India
| | - Sweta Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, Madhya Pradesh, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Shweta Rai
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Gyan Vihar Marg, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mataramvura H, Jӓger J, Jordan-Paiz A, Mazengera LR, Gumbo FZ, Bunders MJ, Duri K. Phenotypic characterization of NK cells in 5-year-old children exposed to maternal HIV and antiretroviral therapy in early-life. BMC Immunol 2024; 25:82. [PMID: 39702040 DOI: 10.1186/s12865-024-00674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND HIV-exposed uninfected (HEU) children are at increased risk of morbidity during the first years of life. Although the immune responses of HEU infants in early-life are relatively well described, studies of natural killer (NK) cells in older HEU children are lacking. NK cell subsets were analysed in HEU children and compared to those in HIV unexposed uninfected (HUU) children aged ~ five years. METHODS Multi-parametric flow cytometry was used to characterize peripheral blood-derived NK cell CD56, CD16, CD57, NKG2A and KIR3DL1/KIR2DL2/L3 expression, including intracellular perforin and granzyme B. NK cell subsets were compared between HEU children exposed to prenatal antiretroviral therapy (ART) from conception [long-term (HEULT)]; those exposed to ART during pregnancy [medium-term (HEUMT)] with continued exposure throughout the breastfeeding period and HUU peers. Furthermore, clinical data of the children, including sick clinic visits and hospitalizations documented in morbidity diaries from birth to 5 years were compared between HEU and HUU groups. Frequencies of CD56bright and CD56dim NK cell were correlated with these clinical parameters. RESULTS 139 children were enrolled however, 133 comprising 43 HEULT, 38 HEUMT and 52 HUU were included in the main analyses. Total NK cell, CD56bright nor CD56dim NK cell proportions differed between HEU and HUU children. However, HEULT children had lower frequencies of CD56dim NK cells compared to HEUMT children, (p = 0.002) which maintained significance after controlling for preterm birth, p = 0.012. No differences were observed between HEULT and HUU. The expressions of NKG2A, KIR3DL1/KIR2DL2/L3 and CD57 on CD56bright and CD56dim NK cells were similar between the three groups. Furthermore, the frequencies of granzyme B and perforin double positive NK cells were similar between the HUU with HEULT and HEUMT children. CD56dim NK cell counts had a significant moderate negative correlation with recurrent respiratory infections (rho=-0.38; p = 0.010) in HUU children and negatively correlated with total sick clinic visits in HEUMT (rho=-0.40, p = 0.064). CONCLUSION The proportions of total NK cell, CD56bright and CD56dim NK cells, NK cells inhibitory and differentiation surface marker expression and cytolytic granule-positive cells were similar between HEU and HUU children. These data suggest that early-life HIV/ART exposure may not result in major changes in NK cell subsets at 5 years of age.
Collapse
Affiliation(s)
- Hope Mataramvura
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, UZ-FMHS), Harare, Zimbabwe.
| | - Julia Jӓger
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Ana Jordan-Paiz
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Lovemore Ronald Mazengera
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, UZ-FMHS), Harare, Zimbabwe
| | | | - Madeleine J Bunders
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- III. Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Kerina Duri
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
3
|
Radovani B, Nimmerjahn F. IgG Glycosylation: Biomarker, Functional Modulator, and Structural Component. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1573-1584. [PMID: 39556784 DOI: 10.4049/jimmunol.2400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/29/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024]
Abstract
The family of IgG Abs is a crucial component of adaptive immunity. Glycosylation of IgG maintains its structural integrity and modulates its effector functions. In this review, we discuss IgG glycosylation covering cell biological as well as therapeutic and disease-related aspects, focusing on the glycan structures in distinct IgG regions (Fab versus Fc). We also cover the impact of IgG glycosylation on disease modulation and therapeutic outcomes, alongside the potential for development of vaccines designed to induce Ag-specific IgG with glycoforms for optimal immune responses. Overall, we emphasize the significance of studying glycosylation to enhance our understanding of the dynamics and functional impacts of IgG glycosylation. These insights could be beneficial for advancing future research and clinical applications.
Collapse
Affiliation(s)
- Barbara Radovani
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Profile Center Immunomedicine, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
4
|
Lakerveld AJ, Gelderloos AT, Schepp RM, de Haan CAM, van Binnendijk RS, Rots NY, van Beek J, van Els CACM, van Kasteren PB. Difference in respiratory syncytial virus-specific Fc-mediated antibody effector functions between children and adults. Clin Exp Immunol 2023; 214:79-93. [PMID: 37605554 PMCID: PMC10711356 DOI: 10.1093/cei/uxad101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a major cause of bronchiolitis and pneumonia in infants and older adults, for which there is no known correlate of protection. Increasing evidence suggests that Fc-mediated antibody effector functions have an important role, but little is known about the development, heterogeneity, and durability of these functional responses. In light of future vaccine strategies, a clear view of the immunological background and differences between various target populations is of crucial importance. In this study, we have assessed both quantitative and qualitative aspects of RSV-specific serum antibodies, including IgG/IgA levels, IgG subclasses, antibody-dependent complement deposition, cellular phagocytosis, and NK cell activation (ADNKA). Samples were collected cross-sectionally in different age groups (11-, 24-, and 46-month-old children, adults, and older adults; n = 31-35 per group) and longitudinally following natural RSV infection in (older) adults (2-36 months post-infection; n = 10). We found that serum of 24-month-old children induces significantly lower ADNKA than the serum of adults (P < 0.01), which is not explained by antibody levels. Furthermore, in (older) adults we observed boosting of antibody levels and functionality at 2-3 months after RSV infection, except for ADNKA. The strongest decrease was subsequently observed within the first 9 months, after which levels remained relatively stable up to three years post-infection. Together, these data provide a comprehensive overview of the functional landscape of RSV-specific serum antibodies in the human population, highlighting that while antibodies reach adult levels already at a young age, ADNKA requires more time to fully develop.
Collapse
Affiliation(s)
- Anke J Lakerveld
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Medical Microbiology, Leiden University Medical Center, The Netherlands
| | - Anne T Gelderloos
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rutger M Schepp
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cornelis A M de Haan
- Section Virology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, The Netherlands
| | - Robert S van Binnendijk
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Nynke Y Rots
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Josine van Beek
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Section Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Puck B van Kasteren
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
5
|
Brady T, Cayatte C, Roe TL, Speer SD, Ji H, Machiesky L, Zhang T, Wilkins D, Tuffy KM, Kelly EJ. Fc-mediated functions of nirsevimab complement direct respiratory syncytial virus neutralization but are not required for optimal prophylactic protection. Front Immunol 2023; 14:1283120. [PMID: 37901217 PMCID: PMC10600457 DOI: 10.3389/fimmu.2023.1283120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Nirsevimab is an extended half-life (M252Y/S254T/T256E [YTE]-modified) monoclonal antibody to the pre-fusion conformation of the respiratory syncytial virus (RSV) Fusion protein, with established efficacy in preventing RSV-associated lower respiratory tract infection in infants for the duration of a typical RSV season. Previous studies suggest that nirsevimab confers protection via direct virus neutralization. Here we use preclinical models to explore whether fragment crystallizable (Fc)-mediated effector functions contribute to nirsevimab-mediated protection. Methods Nirsevimab, MEDI8897* (i.e., nirsevimab without the YTE modification), and MEDI8897*-TM (i.e., MEDI8897* without Fc effector functions) binding to Fc γ receptors (FcγRs) was evaluated using surface plasmon resonance. Antibody-dependent neutrophil phagocytosis (ADNP), antibody-dependent cellular phagocytosis (ADCP), antibody-dependent complement deposition (ADCD), and antibody-dependent cellular cytotoxicity (ADCC) were assessed through in vitro and ex vivo serological analyses. A cotton rat challenge study was performed with MEDI8897* and MEDI8897*-TM to explore whether Fc effector functions contribute to protection from RSV. Results Nirsevimab and MEDI8897* exhibited binding to a range of FcγRs, with expected reductions in FcγR binding affinities observed for MEDI8897*-TM. Nirsevimab exhibited in vitro ADNP, ADCP, ADCD, and ADCC activity above background levels, and similar ADNP, ADCP, and ADCD activity to palivizumab. Nirsevimab administration increased ex vivo ADNP, ADCP, and ADCD activity in participant serum from the MELODY study (NCT03979313). However, ADCC levels remained similar between nirsevimab and placebo. MEDI8897* and MEDI8897*-TM exhibited similar dose-dependent reduction in lung and nasal turbinate RSV titers in the cotton rat model. Conclusion Nirsevimab possesses Fc effector activity comparable with the current standard of care, palivizumab. However, despite possessing the capacity for Fc effector activity, data from RSV challenge experiments illustrate that nirsevimab-mediated protection is primarily dependent on direct virus neutralization.
Collapse
Affiliation(s)
- Tyler Brady
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Corinne Cayatte
- Early Oncology ICA, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Tiffany L. Roe
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Scott D. Speer
- Virology and Vaccine Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Hong Ji
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - LeeAnn Machiesky
- Process and Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Tianhui Zhang
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Deidre Wilkins
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Kevin M. Tuffy
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Elizabeth J. Kelly
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
6
|
Agac A, Kolbe SM, Ludlow M, Osterhaus ADME, Meineke R, Rimmelzwaan GF. Host Responses to Respiratory Syncytial Virus Infection. Viruses 2023; 15:1999. [PMID: 37896776 PMCID: PMC10611157 DOI: 10.3390/v15101999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.A.); (S.M.K.); (M.L.); (A.D.M.E.O.); (R.M.)
| |
Collapse
|
7
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Oosterhoff JJ, Larsen MD, van der Schoot CE, Vidarsson G. Afucosylated IgG responses in humans - structural clues to the regulation of humoral immunity. Trends Immunol 2022; 43:800-814. [PMID: 36008258 PMCID: PMC9395167 DOI: 10.1016/j.it.2022.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Healthy immune responses require efficient protection without excessive inflammation. Recent discoveries on the degree of fucosylation of a human N-linked glycan at a conserved site in the immunoglobulin IgG-Fc domain might add an additional regulatory layer to adaptive humoral immunity. Specifically, afucosylation of IgG-Fc enhances the interaction of IgG with FcγRIII and thereby its activity. Although plasma IgG is generally fucosylated, afucosylated IgG is raised in responses to enveloped viruses and Plasmodium falciparum proteins expressed on infected erythrocytes, as well as during alloimmune responses. Moreover, while afucosylation can exacerbate some infectious diseases (e.g., COVID-19), it also correlates with traits of protective immunity against malaria and HIV-1. Herein we discuss the implications of IgG afucosylation for health and disease, as well as for vaccination.
Collapse
Affiliation(s)
- Janita J Oosterhoff
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - C Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Bigdelou B, Sepand MR, Najafikhoshnoo S, Negrete JAT, Sharaf M, Ho JQ, Sullivan I, Chauhan P, Etter M, Shekarian T, Liang O, Hutter G, Esfandiarpour R, Zanganeh S. COVID-19 and Preexisting Comorbidities: Risks, Synergies, and Clinical Outcomes. Front Immunol 2022; 13:890517. [PMID: 35711466 PMCID: PMC9196863 DOI: 10.3389/fimmu.2022.890517] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated symptoms, named coronavirus disease 2019 (COVID-19), have rapidly spread worldwide, resulting in the declaration of a pandemic. When several countries began enacting quarantine and lockdown policies, the pandemic as it is now known truly began. While most patients have minimal symptoms, approximately 20% of verified subjects are suffering from serious medical consequences. Co-existing diseases, such as cardiovascular disease, cancer, diabetes, and others, have been shown to make patients more vulnerable to severe outcomes from COVID-19 by modulating host-viral interactions and immune responses, causing severe infection and mortality. In this review, we outline the putative signaling pathways at the interface of COVID-19 and several diseases, emphasizing the clinical and molecular implications of concurring diseases in COVID-19 clinical outcomes. As evidence is limited on co-existing diseases and COVID-19, most findings are preliminary, and further research is required for optimal management of patients with comorbidities.
Collapse
Affiliation(s)
- Banafsheh Bigdelou
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Mohammad Reza Sepand
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Sahar Najafikhoshnoo
- Department of Electrical Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Laboratory for Integrated Nano Bio Electronics Innovation, The Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Jorge Alfonso Tavares Negrete
- Department of Electrical Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Laboratory for Integrated Nano Bio Electronics Innovation, The Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Mohammed Sharaf
- Department of Chemical and Biomolecular Engineering, New York University, New York, NY, United States
| | - Jim Q Ho
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian Sullivan
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Prashant Chauhan
- Institute of Parasitology, Biology Centre Czech Academy of Science, Ceske Budejovice, Czech Republic
| | - Manina Etter
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Tala Shekarian
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Olin Liang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Gregor Hutter
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Rahim Esfandiarpour
- Department of Electrical Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Laboratory for Integrated Nano Bio Electronics Innovation, The Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Steven Zanganeh
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| |
Collapse
|
10
|
Yao L, Hao Y, Wen G, Xiao Q, Wu P, Wang J, Liu J. Induction of Heme Oxygenase-1 Modifies the Systemic Immunity and Reduces Atherosclerotic Lesion Development in ApoE Deficient Mice. Front Pharmacol 2022; 13:809469. [PMID: 35281895 PMCID: PMC8908104 DOI: 10.3389/fphar.2022.809469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has been reported to protect against oxidation and inflammation in atherosclerosis. It remains unclear how the immune system participates in the cytoprotective function of HO-1 in the context of atherosclerosis. In this study, we attempted to investigate the potential effect of a HO-1 inducer, hemin, and a HO-1 inhibitor, Tin-protoporphyrin IX (SnPP), on the progression of atherosclerosis in ApoE deficient mice. Using mass cytometry, 15 immune cell populations and 29 T cell sub-clusters in spleen and peripheral blood were thoroughly analyzed after hemin or SnPP treatment. SnPP elevated risk factors of atherosclerosis, whereas hemin reduced them. In-depth analysis showed that hemin significantly modified the immune system in both spleen and peripheral blood. Hemin increased dendritic (DC) and myeloid-derived suppressor cells (MDSCs), but decreased natural killer (NK) cells. An opposite effect was observed with SnPP treatment in terms of NK cells. NK cells and MDSCs were positively and negatively correlated with total cholesterol and low-density lipoprotein, respectively. Moreover, the T cell profiles were significantly reshaped by hemin, whereas only minor changes were observed with SnPP. Several hemin-modulated T cell clusters associated with atherosclerosis were also identified. In summary, we have unraveled an important regulatory role for HO-1 pathway in immune cell regulation and atherosclerosis. Our finding suggests that modulating HO-1 signaling represents a potential therapeutic strategy against atherosclerosis.
Collapse
Affiliation(s)
- Leyi Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Institute of Digestive Disease of Guangzhou Medical University, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yali Hao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Guanmei Wen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingzhong Xiao
- Clinical Pharmacology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Penglong Wu
- Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
van Stigt AH, Oude Rengerink K, Bloemenkamp KWM, de Waal W, Prevaes SMPJ, Le TM, van Wijk F, Nederend M, Hellinga AH, Lammers CS, den Hartog G, van Herwijnen MJC, Garssen J, Knippels LMJ, Verhagen LM, de Theije CGM, Lopez-Rincon A, Leusen JHW, Van't Land B, Bont L. Analysing the protection from respiratory tract infections and allergic diseases early in life by human milk components: the PRIMA birth cohort. BMC Infect Dis 2022; 22:152. [PMID: 35164699 PMCID: PMC8842741 DOI: 10.1186/s12879-022-07107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2020] [Accepted: 01/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background Many studies support the protective effect of breastfeeding on respiratory tract infections. Although infant formulas have been developed to provide adequate nutritional solutions, many components in human milk contributing to the protection of newborns and aiding immune development still need to be identified. In this paper we present the methodology of the “Protecting against Respiratory tract lnfections through human Milk Analysis” (PRIMA) cohort, which is an observational, prospective and multi-centre birth cohort aiming to identify novel functions of components in human milk that are protective against respiratory tract infections and allergic diseases early in life. Methods For the PRIMA human milk cohort we aim to recruit 1000 mother–child pairs in the first month postpartum. At one week, one, three, and six months after birth, fresh human milk samples will be collected and processed. In order to identify protective components, the level of pathogen specific antibodies, T cell composition, Human milk oligosaccharides, as well as extracellular vesicles (EVs) will be analysed, in the milk samples in relation to clinical data which are collected using two-weekly parental questionnaires. The primary outcome of this study is the number of parent-reported medically attended respiratory infections. Secondary outcomes that will be measured are physician diagnosed (respiratory) infections and allergies during the first year of life. Discussion The PRIMA human milk cohort will be a large prospective healthy birth cohort in which we will use an integrated, multidisciplinary approach to identify the longitudinal effect human milk components that play a role in preventing (respiratory) infections and allergies during the first year of life. Ultimately, we believe that this study will provide novel insights into immunomodulatory components in human milk. This may allow for optimizing formula feeding for all non-breastfed infants. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07107-w.
Collapse
Affiliation(s)
- Arthur H van Stigt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katrien Oude Rengerink
- Department of Biostatistics and Research Support, Clinical Trial Methodology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kitty W M Bloemenkamp
- Department of Gynaecology and Obstetrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter de Waal
- Department of Pediatrics, Diakonessenhuis, Utrecht, The Netherlands
| | - Sabine M P J Prevaes
- Department of Pediatric Pulmonology and Allergology, Wilhelmina Children's Hospital/University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Thuy-My Le
- Department of Dermatology/Allergology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anneke H Hellinga
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christianne S Lammers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerco den Hartog
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martijn J C van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Léon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Lilly M Verhagen
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Belinda Van't Land
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Louis Bont
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands. .,Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands. .,ReSViNET Foundation, Zeist, The Netherlands.
| | | |
Collapse
|
12
|
Saeland E, van der Fits L, Bolder R, Heemskerk-van der Meer M, Drijver J, van Polanen Y, Vaneman C, Tettero L, Serroyen J, Schuitemaker H, Callendret B, Langedijk JPM, Zahn RC. Immunogenicity and protective efficacy of adenoviral and subunit RSV vaccines based on stabilized prefusion F protein in pre-clinical models. Vaccine 2021; 40:934-944. [PMID: 34973849 DOI: 10.1016/j.vaccine.2021.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2021] [Revised: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Respiratory Syncytial Virus (RSV) remains a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously described the derivation of an RSV Fusion protein (F) stabilized in its prefusion conformation (preF) as vaccine immunogen and demonstrated superior immunogenicity in naive mice of preF versus wild type RSV F protein, both as protein and when expressed from an Ad26 vaccine vector. Here we address the question if there are qualitative differences between the two vaccine platforms for induction of protective immunity. In naïve mice, both Ad26.RSV.preF and preF protein induced humoral responses, whereas cellular responses were only elicited by Ad26.RSV.preF. In RSV pre-exposed mice, a single dose of either vaccine induced cellular responses and strong humoral responses. Ad26-induced RSV-specific cellular immune responses were detected systemically and locally in the lungs. Both vaccines showed protective efficacy in the cotton rat model, but Ad26.RSV.preF conferred protection at lower virus neutralizing titers in comparison to RSV preF protein. Factors that may contribute to the protective capacity of Ad26.RSV.preF elicited immunity are the induced IgG2a antibodies that are able to engage Fcγ receptors mediating Antibody Dependent Cellular Cytotoxicity (ADCC), and the induction of systemic and lung resident RSV specific CD8 + T cells. These data demonstrate qualitative improvement of immune responses elicited by an adenoviral vector based vaccine encoding the RSV preF antigen compared to the subunit vaccine in small animal models which may inform RSV vaccine development.
Collapse
Affiliation(s)
| | | | - Renske Bolder
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | - Joke Drijver
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | | | | | - Jan Serroyen
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | | | | | - Roland C Zahn
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| |
Collapse
|
13
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
14
|
Estrogen-Driven Changes in Immunoglobulin G Fc Glycosylation. EXPERIENTIA. SUPPLEMENTUM 2021. [PMID: 34687016 DOI: 10.1007/978-3-030-76912-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 08/24/2023]
Abstract
Glycosylation within the immunoglobulin G (IgG) Fc region modulates its ability to engage complement and Fc receptors, affording the opportunity to fine-tune effector functions. Mechanisms regulating IgG Fc glycans remain poorly understood. Changes accompanying menarche, menopause, and pregnancy have long implicated hormonal factors. Intervention studies now confirm that estrogens enhance IgG Fc galactosylation, in females and also in males, defining the first pathway modulating Fc glycans and thereby a new link between sex and immunity. This mechanism may participate in fetal-maternal immunity, antibody-mediated inflammation, and other aspects of age- and sex-specific immune function. Here we review the changes affecting the IgG Fc glycome from childhood through old age, the evidence establishing a role for estrogens, and research directions to uncover associated mechanisms that may inform therapeutic intervention.
Collapse
|
15
|
Shang Z, Tan S, Ma D. Respiratory syncytial virus: from pathogenesis to potential therapeutic strategies. Int J Biol Sci 2021; 17:4073-4091. [PMID: 34671221 PMCID: PMC8495404 DOI: 10.7150/ijbs.64762] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2021] [Accepted: 09/18/2021] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most important viral pathogens causing respiratory tract infection in infants, the elderly and people with poor immune function, which causes a huge disease burden worldwide every year. It has been more than 60 years since RSV was discovered, and the palivizumab monoclonal antibody, the only approved specific treatment, is limited to use for passive immunoprophylaxis in high-risk infants; no other intervention has been approved to date. However, in the past decade, substantial progress has been made in characterizing the structure and function of RSV components, their interactions with host surface molecules, and the host innate and adaptive immune response to infection. In addition, basic and important findings have also piqued widespread interest among researchers and pharmaceutical companies searching for effective interventions for RSV infection. A large number of promising monoclonal antibodies and inhibitors have been screened, and new vaccine candidates have been designed for clinical evaluation. In this review, we first briefly introduce the structural composition, host cell surface receptors and life cycle of RSV virions. Then, we discuss the latest findings related to the pathogenesis of RSV. We also focus on the latest clinical progress in the prevention and treatment of RSV infection through the development of monoclonal antibodies, vaccines and small-molecule inhibitors. Finally, we look forward to the prospects and challenges of future RSV research and clinical intervention.
Collapse
Affiliation(s)
- Zifang Shang
- Institute of Pediatrics, Shenzhen Children's Hospital, 518026 Shenzhen, Guangdong Province, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101Beijing, China
| | - Dongli Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, 518026 Shenzhen, Guangdong Province, China
| |
Collapse
|
16
|
Islam H, Chamberlain TC, Mui AL, Little JP. Elevated Interleukin-10 Levels in COVID-19: Potentiation of Pro-Inflammatory Responses or Impaired Anti-Inflammatory Action? Front Immunol 2021; 12:677008. [PMID: 34234779 PMCID: PMC8255680 DOI: 10.3389/fimmu.2021.677008] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Thomas C Chamberlain
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Alice L Mui
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
17
|
Yaffe ZA, Naiman NE, Slyker J, Wines BD, Richardson BA, Hogarth PM, Bosire R, Farquhar C, Ngacha DM, Nduati R, John-Stewart G, Overbaugh J. Improved HIV-positive infant survival is correlated with high levels of HIV-specific ADCC activity in multiple cohorts. Cell Rep Med 2021; 2:100254. [PMID: 33948582 PMCID: PMC8080236 DOI: 10.1016/j.xcrm.2021.100254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2020] [Revised: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 02/04/2023]
Abstract
Defining immune responses that protect humans against diverse HIV strains has been elusive. Studying correlates of protection from mother-to-child transmission provides a benchmark for HIV vaccine protection because passively transferred HIV antibodies are present during infant exposure to HIV through breast milk. A previous study by our group illustrated that passively acquired antibody-dependent cellular cytotoxicity (ADCC) activity is associated with improved infant survival whereas neutralization is not. Here, we show, in another cohort and with two effector measures, that passively acquired ADCC antibodies correlate with infant survival. In combined analyses of data from both cohorts, there are highly statistically significant associations between higher infant survival and passively acquired ADCC levels (p = 0.029) as well as dimeric FcγRIIa (p = 0.002) or dimeric FcγRIIIa binding (p < 0.001). These results suggest that natural killer (NK) cell- and monocyte antibody-mediated effector functions may contribute to the observed survival benefit and support a role of pre-existing ADCC-mediating antibodies in clinical outcome.
Collapse
Affiliation(s)
- Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Nicole E. Naiman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Bruce D. Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - P. Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Rose Bosire
- Centre for Public Health Research, Kenya Medical Research Institute, 20752-00202 Nairobi, Kenya
| | - Carey Farquhar
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Dorothy Mbori Ngacha
- HIV Section, United Nations Children’s Fund, 3 United Nations Plaza, New York, NY 10017, USA
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Grace John-Stewart
- Department of Global Health, University of Washington, 325 9 Avenue, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
18
|
Ochayon DE, Waggoner SN. The Effect of Unconventional Cytokine Combinations on NK-Cell Responses to Viral Infection. Front Immunol 2021; 12:645850. [PMID: 33815404 PMCID: PMC8017335 DOI: 10.3389/fimmu.2021.645850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble and membrane-bound factors that dictate immune responses. Dogmatically, cytokines are divided into families that promote type 1 cell-mediated immune responses (e.g., IL-12) or type 2 humoral responses (e.g., IL-4), each capable of antagonizing the opposing family of cytokines. The discovery of additional families of cytokines (e.g., IL-17) has added complexity to this model, but it was the realization that immune responses frequently comprise mixtures of different types of cytokines that dismantled this black-and-white paradigm. In some cases, one type of response may dominate these mixed milieus in disease pathogenesis and thereby present a clear therapeutic target. Alternatively, synergistic or blended cytokine responses may obfuscate the origins of disease and perplex clinical decision making. Most immune cells express receptors for many types of cytokines and can mediate a myriad of functions important for tolerance, immunity, tissue damage, and repair. In this review, we will describe the unconventional effects of a variety of cytokines on the activity of a prototypical type 1 effector, the natural killer (NK) cell, and discuss how this may impact the contributions of these cells to health and disease.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
19
|
Roles of the Fc Receptor γ-Chain in Inducing Protective Immune Responses after Heterologous Vaccination against Respiratory Syncytial Virus Infection. Vaccines (Basel) 2021; 9:vaccines9030232. [PMID: 33800349 PMCID: PMC7998258 DOI: 10.3390/vaccines9030232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
The roles of the Fc receptor (FcR) in protection or inflammatory disease after respiratory syncytial virus (RSV) vaccination and infection remain unknown. Virus-like particles containing RSV fusion proteins (RSV F-VLPs) induce T-helper type 1 antibody responses and protection against RSV. Heterologous RSV F-VLP prime and formalin-inactivated RSV (FI-RSV) boost vaccination has been reported to be effective in providing protection without inflammatory disease. Here, we investigated whether the FcRγ-chain is important for immune protection by the heterologous F-VLP and FI-RSV vaccination using FcRγ-chain knockout (-/-) mice. RSV F-VLP-primed and FI-RSV-boosted FcRγ -/- mice displayed less protective efficacy, as shown by higher lung viral titers upon RSV challenge, compared to RSV F-VLP-primed and FI-RSV-boosted immunized wild-type mice. RSV F-VLP and FI-RSV immunization induced lower levels of neutralizing activity and interferon-γ-producing CD8 T-cells in the bronchoalveolar lavage cells of FcRγ -/- mice than in those of wild-type mice. In addition, FcRγ -/- mice displayed a trend of enhancing lung histopathology after RSV vaccination and infection. This study suggests that the FcRγ-chain plays an important role in inducing antiviral protection and CD8 T-cell responses in RSV F-VLP prime and FI-RSV boost vaccination after RSV infections.
Collapse
|
20
|
Abstract
Changes in immunoglobulin G (IgG) glycosylation pattern have been observed in a vast array of auto- and alloimmune, infectious, cardiometabolic, malignant, and other diseases. This chapter contains an updated catalog of over 140 studies within which IgG glycosylation analysis was performed in a disease setting. Since the composition of IgG glycans is known to modulate its effector functions, it is suggested that a changed IgG glycosylation pattern in patients might be involved in disease development and progression, representing a predisposition and/or a functional effector in disease pathology. In contrast to the glycopattern of bulk serum IgG, which likely relates to the systemic inflammatory background, the glycosylation profile of antigen-specific IgG probably plays a direct role in disease pathology in several infectious and allo- and autoimmune antibody-dependent diseases. Depending on the specifics of any given disease, IgG glycosylation read-out might therefore in the future be developed into a useful clinical biomarker or a supplementary to currently used biomarkers.
Collapse
Affiliation(s)
- Marija Pezer
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
21
|
Antibody and Local Cytokine Response to Respiratory Syncytial Virus Infection in Community-Dwelling Older Adults. mSphere 2020; 5:5/5/e00577-20. [PMID: 32878928 PMCID: PMC7471002 DOI: 10.1128/msphere.00577-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause severe morbidity and mortality in certain risk groups, especially infants and older adults. Currently no (prophylactic) treatment is available, except for a partially effective yet highly expensive monoclonal antibody. RSV therefore remains a major public health concern. To allow targeted development of novel vaccines and therapeutics, it is of great importance to understand the immunological mechanisms that underlie (protection from) severe disease in specific risk populations. Since most RSV-related studies focus on infants, there are only very limited data available concerning the response to RSV in the elderly population. Therefore, in this study, RSV-induced antibody responses and local cytokine secretion were assessed in community-dwelling older adults. These data provide novel insights that will benefit ongoing efforts to design safe and effective prevention and treatment strategies for RSV in an understudied risk group. Respiratory syncytial virus (RSV) is increasingly recognized for causing severe morbidity and mortality in older adults, but there are few studies on the RSV-induced immune response in this population. Information on the immunological processes at play during RSV infection in specific risk groups is essential for the rational and targeted design of novel vaccines and therapeutics. Here, we assessed the antibody and local cytokine response to RSV infection in community-dwelling older adults (≥60 years of age). During three winters, serum and nasopharyngeal swab samples were collected from study participants during acute respiratory infection and recovery. RSV IgG enzyme-linked immunosorbent assays (ELISA) and virus neutralization assays were performed on serum samples from RSV-infected individuals (n = 41) and controls (n = 563 and n = 197, respectively). Nasal RSV IgA and cytokine concentrations were determined using multiplex immunoassays in a subset of participants. An in vitro model of differentiated primary bronchial epithelial cells was used to assess RSV-induced cytokine responses over time. A statistically significant increase in serum neutralization titers and IgG concentrations was observed in RSV-infected participants compared to controls. During acute RSV infection, a statistically significant local upregulation of beta interferon (IFN-β), IFN-λ1, IFN-γ, interleukin 1β (IL-1β), tumor necrosis factor alpha (TNF-α), IL-6, IL-10, CXCL8, and CXCL10 was found. IFN-β, IFN-λ1, CXCL8, and CXCL10 were also upregulated in the epithelial model upon RSV infection. In conclusion, this study provides novel insights into the basic immune response to RSV infection in an important and understudied risk population, providing leads for future studies that are essential for the prevention and treatment of severe RSV disease in older adults. IMPORTANCE Respiratory syncytial virus (RSV) can cause severe morbidity and mortality in certain risk groups, especially infants and older adults. Currently no (prophylactic) treatment is available, except for a partially effective yet highly expensive monoclonal antibody. RSV therefore remains a major public health concern. To allow targeted development of novel vaccines and therapeutics, it is of great importance to understand the immunological mechanisms that underlie (protection from) severe disease in specific risk populations. Since most RSV-related studies focus on infants, there are only very limited data available concerning the response to RSV in the elderly population. Therefore, in this study, RSV-induced antibody responses and local cytokine secretion were assessed in community-dwelling older adults. These data provide novel insights that will benefit ongoing efforts to design safe and effective prevention and treatment strategies for RSV in an understudied risk group.
Collapse
|
22
|
van Eeden C, Khan L, Osman MS, Cohen Tervaert JW. Natural Killer Cell Dysfunction and Its Role in COVID-19. Int J Mol Sci 2020; 21:E6351. [PMID: 32883007 PMCID: PMC7503862 DOI: 10.3390/ijms21176351] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
When facing an acute viral infection, our immune systems need to function with finite precision to enable the elimination of the pathogen, whilst protecting our bodies from immune-related damage. In many instances however this "perfect balance" is not achieved, factors such as ageing, cancer, autoimmunity and cardiovascular disease all skew the immune response which is then further distorted by viral infection. In SARS-CoV-2, although the vast majority of COVID-19 cases are mild, as of 24 August 2020, over 800,000 people have died, many from the severe inflammatory cytokine release resulting in extreme clinical manifestations such as acute respiratory distress syndrome (ARDS) and hemophagocytic lymphohistiocytosis (HLH). Severe complications are more common in elderly patients and patients with cardiovascular diseases. Natural killer (NK) cells play a critical role in modulating the immune response and in both of these patient groups, NK cell effector functions are blunted. Preliminary studies in COVID-19 patients with severe disease suggests a reduction in NK cell number and function, resulting in decreased clearance of infected and activated cells, and unchecked elevation of tissue-damaging inflammation markers. SARS-CoV-2 infection skews the immune response towards an overwhelmingly inflammatory phenotype. Restoration of NK cell effector functions has the potential to correct the delicate immune balance required to effectively overcome SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | - Jan Willem Cohen Tervaert
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.v.E.); (L.K.); (M.S.O.)
| |
Collapse
|
23
|
Silla L. Double-bright (CD56bright/CD16bright) natural killer cell adoptive immunotherapy for SARS-CoV-2. Br J Haematol 2020; 190:e322-e323. [PMID: 32645204 PMCID: PMC7404630 DOI: 10.1111/bjh.17010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lúcia Silla
- Hematologia e Hemoterapia, Hospital de Clínicas, Porto Alegre, Brazil
| |
Collapse
|
24
|
Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate Immune Components that Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections. Viruses 2020; 12:E637. [PMID: 32545470 PMCID: PMC7354512 DOI: 10.3390/v12060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Gaspar A. Pacheco
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Nicolas M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|