1
|
Human IL12p80 Promotes Murine Oligodendrocyte Differentiation to Repair Nerve Injury. Int J Mol Sci 2022; 23:ijms23137002. [PMID: 35806005 PMCID: PMC9266749 DOI: 10.3390/ijms23137002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
Nerve injury of the central nervous system and the peripheral nervous system still poses a major challenge in modern clinics. Understanding the roles of neurotrophic factors and their molecular mechanisms on neuro-regeneration will not only benefit patients with neural damage but could potentially treat neurodegenerative disorders, such as amyotrophic lateral sclerosis. In this study, we showed that human IL12 p40-p40 homodimer (hIL12p80) within PLA and PLGA conduits improved sciatic nerve regeneration in mice. As such, the group of conduits with NSCs and hIL12p80 (CNI) showed the best recovery among the groups in the sciatic functional index (SFI), compound muscle action potential (CMAP), and Rotarod performance analyses. In addition, the CNI group had a faster recovery and outperformed the other groups in SFI and Rotarod performance tests beginning in the fourth week post-surgery. Immunohistochemistry showed that the CNI group increased the diameter of the newly regenerated nerve by two-fold (p < 0.01). In vitro studies showed that hIL12p80 stimulated differentiation of mouse NSCs to oligodendrocyte lineages through phosphorylation of Stat3 at Y705 and S727. Furthermore, implantation using PLGA conduits (C2.0 and C2.1) showed better recovery in the Rotarod test and CMAP than using PLA conduits in FVB mice. In B6 mice, the group with C2.1 + NSCs + hIL12p80 (C2.1NI) not only promoted sciatic functional recovery but also reduced the rate of experimental autotomy. These results suggested that hIL12p80, combined with NSCs, enhanced the functional recovery and accelerated the regeneration of damaged nerves in the sciatic nerve injury mice. Our findings could further shed light on IL12′s application not only in damaged nerves but also in rectifying the oligodendrocytes’ defects in neurodegenerative diseases, such as amyotrophic lateral sclerosis and multiple sclerosis.
Collapse
|
2
|
Abstract
Traumatic spinal cord injury (SCI) results in direct and indirect damage to neural tissues, which results in motor and sensory dysfunction, dystonia, and pathological reflex that ultimately lead to paraplegia or tetraplegia. A loss of cells, axon regeneration failure, and time-sensitive pathophysiology make tissue repair difficult. Despite various medical developments, there are currently no effective regenerative treatments. Stem cell therapy is a promising treatment for SCI due to its multiple targets and reactivity benefits. The present review focuses on SCI stem cell therapy, including bone marrow mesenchymal stem cells, umbilical mesenchymal stem cells, adipose-derived mesenchymal stem cells, neural stem cells, neural progenitor cells, embryonic stem cells, induced pluripotent stem cells, and extracellular vesicles. Each cell type targets certain features of SCI pathology and shows therapeutic effects via cell replacement, nutritional support, scaffolds, and immunomodulation mechanisms. However, many preclinical studies and a growing number of clinical trials found that single-cell treatments had only limited benefits for SCI. SCI damage is multifaceted, and there is a growing consensus that a combined treatment is needed.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, 34753West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| |
Collapse
|
3
|
Liu SW, Hsu CH, Chen MR, Chiu IM, Lin KM. A Tri-fusion Reporter Mouse Reveals Tissue-Specific FGF1B Promoter Activity in vivo. Sci Rep 2019; 9:11143. [PMID: 31367001 PMCID: PMC6668445 DOI: 10.1038/s41598-019-47641-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023] Open
Abstract
Transgenic mice harboring imaging reporters take full advantage of imaging technologies in studies using living mice. Here, we established a tri-fusion multimodal reporter gene containing fragments from firefly luciferase, enhanced green fluorescent protein, and herpes simplex virus type 1 thymidine kinase and generated tri-fusion reporter Tg mice. Fibroblast growth factor type 1 (FGF1), a multifunctional mitogen to a wide range of tissues, regulates proliferation of neural stem cells of the brain, where FGF1 expression is initiated through activation of the FGF1B (F1B) promoter. The reporter mouse under the control of the human F1B promoter enables visualization in vivo where F1B activity is elevated, including tissues not only in the brain but also in the nasopharynx, skull, spine, and testes, particularly in Leydig cells. Treating Tg mice with the alkylating agent busulfan, which is known to eradicate Leydig cells and disrupt spermatogenesis in mice, eliminated the reporter signals. Restoring Leydig cells recovered reporter expression, indicating that the reporter can be used as a surrogate marker for Leydig cells. The F1B tri-fusion reporter mouse model can be utilized in longitudinal monitoring of the health status of the male reproductive system, such as in studies exploring the toxicity of chemicals to spermatogenesis.
Collapse
Affiliation(s)
- Shan-Wen Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Department of Biomedical Engineering and Environmental Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ching-Han Hsu
- Department of Biomedical Engineering and Environmental Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Mei-Ru Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Kurt M Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan. .,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
4
|
Hultman K, Scarlett JM, Baquero AF, Cornea A, Zhang Y, Salinas CBG, Brown J, Morton GJ, Whalen EJ, Grove KL, Koegler FH, Schwartz MW, Mercer AJ. The central fibroblast growth factor receptor/beta klotho system: Comprehensive mapping in Mus musculus and comparisons to nonhuman primate and human samples using an automated in situ hybridization platform. J Comp Neurol 2019; 527:2069-2085. [PMID: 30809795 DOI: 10.1002/cne.24668] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022]
Abstract
Central activation of fibroblast growth factor (FGF) receptors regulates peripheral glucose homeostasis and reduces food intake in preclinical models of obesity and diabetes. The current work was undertaken to advance our understanding of the receptor expression, as sites of ligand action by FGF19, FGF21, and FGF1 in the mammalian brain remains unresolved. Recent advances in automated RNAscope in situ hybridization and droplet digital PCR (ddPCR) technology allowed us to interrogate central FGFR/beta klotho (Klb) system at the cellular level in the mouse, with relevant comparisons to nonhuman primate and human brain. FGFR1-3 gene expression was broadly distributed throughout the CNS in Mus musculus, with FGFR1 exhibiting the greatest heterogeneity. FGFR4 expression localized only in the medial habenula and subcommissural organ of mice. Likewise, Klb mRNA was restricted to the suprachiasmatic nucleus (SCh) and select midbrain and hindbrain nuclei. ddPCR in the rodent hypothalamus confirmed that, although expression levels are indeed low for Klb, there is nonetheless a bonafide subpopulation of Klb+ cells in the hypothalamus. In NHP and human midbrain and hindbrain, Klb + cells are quite rare, as is expression of FGFR4. Collectively, these data provide the most robust central map of the FGFR/Klb system to date and highlight central regions that may be of critical importance to assess central ligand effects with pharmacological dosing, such as the putative interactions between the endocrine FGFs and FGFR1/Klb, or FGF19 with FGFR4.
Collapse
Affiliation(s)
| | - Jarrad M Scarlett
- Diabetes & Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington.,Department of Pediatric Gastroenterology & Hepatology, Seattle Children's Hospital, Seattle, Washington
| | - Arian F Baquero
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Anda Cornea
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Yu Zhang
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | | | - Jenny Brown
- Diabetes & Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Gregory J Morton
- Diabetes & Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Erin J Whalen
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Kevin L Grove
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Frank H Koegler
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Michael W Schwartz
- Diabetes & Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington
| | - Aaron J Mercer
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| |
Collapse
|
5
|
Abstract
A hypercaloric diet combined with a sedentary lifestyle is a major risk factor for the development of insulin resistance, type 2 diabetes mellitus (T2DM) and associated comorbidities. Standard treatment for T2DM begins with lifestyle modification, and includes oral medications and insulin therapy to compensate for progressive β-cell failure. However, current pharmaceutical options for T2DM are limited in that they do not maintain stable, durable glucose control without the need for treatment intensification. Furthermore, each medication is associated with adverse effects, which range from hypoglycaemia to weight gain or bone loss. Unexpectedly, fibroblast growth factor 1 (FGF1) and its low mitogenic variants have emerged as potentially safe candidates for restoring euglycaemia, without causing overt adverse effects. In particular, a single peripheral injection of FGF1 can lower glucose to normal levels within hours, without the risk of hypoglycaemia. Similarly, a single intracerebroventricular injection of FGF1 can induce long-lasting remission of the diabetic phenotype. This Review discusses potential mechanisms by which centrally administered FGF1 improves central glucose-sensing and peripheral glucose uptake in a sustained manner. Specifically, we explore the potential crosstalk between FGF1 and glucose-sensing neuronal circuits, hypothalamic neural stem cells and synaptic plasticity. Finally, we highlight therapeutic considerations of FGF1 and compare its metabolic actions with FGF15 (rodents), FGF19 (humans) and FGF21.
Collapse
Affiliation(s)
- Emanuel Gasser
- Gene Expression Laboratory, Salk Institute for Biological Studies
| | - Christopher P Moutos
- Gene Expression Laboratory, Salk Institute for Biological Studies
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
- College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
6
|
Pirou C, Montazer-Torbati F, Jah N, Delmas E, Lasbleiz C, Mignotte B, Renaud F. FGF1 protects neuroblastoma SH-SY5Y cells from p53-dependent apoptosis through an intracrine pathway regulated by FGF1 phosphorylation. Cell Death Dis 2017; 8:e3023. [PMID: 29048426 PMCID: PMC5596585 DOI: 10.1038/cddis.2017.404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Abstract
Neuroblastoma, a sympathetic nervous system tumor, accounts for 15% of cancer deaths in children. In contrast to most human tumors, p53 is rarely mutated in human primary neuroblastoma, suggesting impaired p53 activation in neuroblastoma. Various studies have shown correlations between fgf1 expression levels and both prognosis severity and tumor chemoresistance. As we previously showed that fibroblast growth factor 1 (FGF1) inhibited p53-dependent apoptosis in neuron-like PC12 cells, we initiated the study of the interaction between the FGF1 and p53 pathways in neuroblastoma. We focused on the activity of either extracellular FGF1 by adding recombinant rFGF1 in media, or of intracellular FGF1 by overexpression in human SH-SY5Y and mouse N2a neuroblastoma cell lines. In both cell lines, the genotoxic drug etoposide induced a classical mitochondrial p53-dependent apoptosis. FGF1 was able to inhibit p53-dependent apoptosis upstream of mitochondrial events in SH-SY5Y cells by both extracellular and intracellular pathways. Both rFGF1 addition and etoposide treatment increased fgf1 expression in SH-SY5Y cells. Conversely, rFGF1 or overexpressed FGF1 had no effect on p53-dependent apoptosis and fgf1 expression in neuroblastoma N2a cells. Using different FGF1 mutants (that is, FGF1K132E, FGF1S130A and FGF1S130D), we further showed that the C-terminal domain and phosphorylation of FGF1 regulate its intracrine anti-apoptotic activity in neuroblastoma SH-SY5Y cells. This study provides the first evidence for a role of an intracrine growth factor pathway on p53-dependent apoptosis in neuroblastoma, and could lead to the identification of key regulators involved in neuroblastoma tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Caroline Pirou
- Laboratoire de Génétique et Biologie Cellulaire, EA4589, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris-Saclay, École Pratique des Hautes Etudes (EPHE), PSL Research University, 2 Avenue de la Source de la Bièvre, Montigny-Le-Bretonneux 78180, France
| | - Fatemeh Montazer-Torbati
- Laboratoire de Génétique et Biologie Cellulaire, EA4589, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris-Saclay, École Pratique des Hautes Etudes (EPHE), PSL Research University, 2 Avenue de la Source de la Bièvre, Montigny-Le-Bretonneux 78180, France
| | - Nadège Jah
- Laboratoire de Génétique et Biologie Cellulaire, EA4589, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris-Saclay, École Pratique des Hautes Etudes (EPHE), PSL Research University, 2 Avenue de la Source de la Bièvre, Montigny-Le-Bretonneux 78180, France
| | - Elisabeth Delmas
- Laboratoire de Génétique et Biologie Cellulaire, EA4589, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris-Saclay, École Pratique des Hautes Etudes (EPHE), PSL Research University, 2 Avenue de la Source de la Bièvre, Montigny-Le-Bretonneux 78180, France
| | - Christelle Lasbleiz
- Laboratoire de Génétique et Biologie Cellulaire, EA4589, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris-Saclay, École Pratique des Hautes Etudes (EPHE), PSL Research University, 2 Avenue de la Source de la Bièvre, Montigny-Le-Bretonneux 78180, France
| | - Bernard Mignotte
- Laboratoire de Génétique et Biologie Cellulaire, EA4589, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris-Saclay, École Pratique des Hautes Etudes (EPHE), PSL Research University, 2 Avenue de la Source de la Bièvre, Montigny-Le-Bretonneux 78180, France
| | - Flore Renaud
- Laboratoire de Génétique et Biologie Cellulaire, EA4589, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris-Saclay, École Pratique des Hautes Etudes (EPHE), PSL Research University, 2 Avenue de la Source de la Bièvre, Montigny-Le-Bretonneux 78180, France
| |
Collapse
|
7
|
Hsu YC, Kao CY, Chung YF, Lee DC, Liu JW, Chiu IM. Activation of Aurora A kinase through the FGF1/FGFR signaling axis sustains the stem cell characteristics of glioblastoma cells. Exp Cell Res 2016; 344:153-66. [PMID: 27138904 DOI: 10.1016/j.yexcr.2016.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Fibroblast growth factor 1 (FGF1) binds and activates FGF receptors, thereby regulating cell proliferation and neurogenesis. Human FGF1 gene 1B promoter (-540 to +31)-driven SV40 T antigen has been shown to result in tumorigenesis in the brains of transgenic mice. FGF1B promoter (-540 to +31)-driven green fluorescent protein (F1BGFP) has also been used in isolating neural stem cells (NSCs) with self-renewal and multipotency from developing and adult mouse brains. In this study, we provide six lines of evidence to demonstrate that FGF1/FGFR signaling is implicated in the expression of Aurora A (AurA) and the activation of its kinase domain (Thr288 phosphorylation) in the maintenance of glioblastoma (GBM) cells and NSCs. First, treatment of FGF1 increases AurA expression in human GBM cell lines. Second, using fluorescence-activated cell sorting, we observed that F1BGFP reporter facilitates the isolation of F1BGFP(+) GBM cells with higher expression levels of FGFR and AurA. Third, both FGFR inhibitor (SU5402) and AurA inhibitor (VX680) could down-regulate F1BGFP-dependent AurA activity. Fourth, inhibition of AurA activity by two different AurA inhibitors (VX680 and valproic acid) not only reduced neurosphere formation but also induced neuronal differentiation of F1BGFP(+) GBM cells. Fifth, flow cytometric analyses demonstrated that F1BGFP(+) GBM cells possessed different NSC cell surface markers. Finally, inhibition of AurA by VX680 reduced the neurosphere formation of different types of NSCs. Our results show that activation of AurA kinase through FGF1/FGFR signaling axis sustains the stem cell characteristics of GBM cells. IMPLICATIONS This study identified a novel mechanism for the malignancy of GBM, which could be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chien-Yu Kao
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Fen Chung
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Don-Ching Lee
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Wei Liu
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ing-Ming Chiu
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
8
|
Jiang L, Zhang S, Dong C, Chen B, Feng J, Peng W, Mahboob S, Al-Ghanim KA, Xu P. Genome-wide identification, phylogeny, and expression of fibroblast growth genes in common carp. Gene 2016; 578:225-31. [DOI: 10.1016/j.gene.2015.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 01/21/2023]
|