1
|
Zhao W, Lu J, Yan H, Zhu J, Liu Y, Song X, Suo T, Miao L. Treatment of acute pharyngitis in rats with season tea decoctions from traditional Chinese medicine through a synergistic and subtle regulation of ARNTL and BHLHE40. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118924. [PMID: 39389396 DOI: 10.1016/j.jep.2024.118924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE While the seasonal variations in the human immune function and many infectious diseases are well-known, to develop therapeutic strategies regarding such seasonality is quite challenging. However, some traditional medical practices have already taken the seasonality into account, such as the "Season Tea" (ST) decoctions investigated in the present study. AIM OF THE STUDY We present a study of the ST decoctions from traditional Chinese medicine, which include four formulae designed for the four seasons, aiming to investigate their pharmacological commonality and distinction. MATERIALS AND METHODS A rat model of acute pharyngitis was utilized for the pharmacological study, and the effects of the ST decoctions were evaluated through histology, biomedical assays, microarray analysis, real-time quantitative PCR and Western blot. RESULTS The experimental data show that all of the four ST formulae display good pharmaceutical effects on acute pharyngitis, and circadian rhythm appears to be a significant pathway for investigating their pharmacological commonality and distinction. Specifically, while all of the four ST decoctions can regulate the circadian-rhythm-related genes ARNTL and BHLHE40, the regulation is along different directions with the modification of the supplements and the substrates in each ST formula. CONCLUSION These results indicate the correlation between the acute pharyngitis and circadian rhythm, and illustrate the possibility of synergistically and subtly regulating ARNTL and BHLHE40, which is significant for relevant drug development.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China
| | - Jia Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huimin Yan
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Junjie Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinbo Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tongchuan Suo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Lin Miao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China.
| |
Collapse
|
2
|
Salgado R, Barja I, Hernández MDC, Lucero B, Castro-Arellano I, Bonacic C, Rubio AV. Activity patterns and interactions of rodents in an assemblage composed by native species and the introduced black rat: implications for pathogen transmission. BMC ZOOL 2022; 7:48. [PMID: 36042784 PMCID: PMC9412813 DOI: 10.1186/s40850-022-00152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The degree of temporal overlap between sympatric wild hosts species and their behavioral interactions can be highly relevant to the transmission of pathogens. However, this topic has been scantly addressed. Furthermore, temporal overlap and interactions within an assemblage of wild rodents composed of native and introduced species have been rarely discussed worldwide. We assessed the nocturnal activity patterns and interactions between rodent taxa of an assemblage consisting of native species (Oligoryzomys longicaudatus, Abrothrix hirta, and Abrothrix olivaceus) and the introduced black rat (Rattus rattus) in a temperate forest from southern Chile. All rodent species in this study are known hosts for various zoonotic pathogens.
Results
We found a high nocturnal temporal overlap within the rodent assemblage. However, pairwise comparisons of temporal activity patterns indicated significant differences among all taxa. Rattus rattus showed aggressive behaviors against all native rodents more frequently than against their conspecifics. As for native rodents, agonistic behaviors were the most common interactions between individuals of the same taxon and between individuals of different taxa (O. longicaudatus vs Abrothrix spp.).
Conclusions
Our findings reveal several interactions among rodent taxa that may have implications for pathogens such as hantaviruses, Leptospira spp., and vector-borne pathogens. Furthermore, their transmission may be facilitated by the temporal overlap observed between rodent taxa.
Collapse
|
3
|
Dantzer B, Newman AEM. Expanding the frame around social dynamics and glucocorticoids: From hierarchies within the nest to competitive interactions among species. Horm Behav 2022; 144:105204. [PMID: 35689971 DOI: 10.1016/j.yhbeh.2022.105204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The effect of the social environment on individual state or condition has largely focused on glucocorticoid levels (GCs). As metabolic hormones whose production can be influenced by nutritional, physical, or psychosocial stressors, GCs are a valuable (though singular) measure that may reflect the degree of "stress" experienced by an individual. Most work to date has focused on how social rank influences GCs in group-living species or how predation risk influences GCs in prey. This work has been revealing, but a more comprehensive assessment of the social environment is needed to fully understand how different features of the social environment influence GCs in both group living and non-group living species and across life history stages. Just as there can be intense within-group competition among adult conspecifics, it bears appreciating there can also be competition among siblings from the same brood, among adult conspecifics that do not live in groups, or among heterospecifics. In these situations, dominance hierarchies typically emerge, albeit, do dominants or subordinate individuals or species have higher GCs? We examine the degree of support for hypotheses derived from group-living species about whether differential GCs between dominants and subordinates reflect the "stress of subordination" or "costs of dominance" in these other social contexts. By doing so, we aim to test the generality of these two hypotheses and propose new research directions to broaden the lens that focuses on social hierarchies and GCs.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, 48109, Ann Arbor, MI, USA.
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
4
|
Eleftheriou A, Williams SH, Luis AD. Physiological links with behavior and fitness: The acute adrenocortical response predicts trappability but not survival in male and female deermice. Horm Behav 2022; 143:105183. [PMID: 35533573 DOI: 10.1016/j.yhbeh.2022.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
Abstract
The "Cort-Fitness" hypothesis predicts a negative relationship between baseline glucocorticoids (GCs) and fitness, although evidence for this hypothesis remains mixed. Such ambiguity could partially exist because blood GCs, typically used in field studies, can fluctuate too rapidly to measure accurately, while the relationship between GCs and trappability is often neglected. Here, by addressing these factors, we examined relationships between GC measures and survival of North American deermice (Peromyscus maniculatus; hereafter deermice) as a model system. To do this, we used more stable GC measures, including the integrated measures of baseline and stress response fecal corticosterone metabolites (FCMs), and downstream measures of neutrophil/lymphocyte ratio (N/L ratio), and body condition score (BCS), to characterize their relationships with survival and trappability. Over two years, deermice were live-trapped monthly, evaluated for BCS, and sampled for feces and blood. Stress response FCMs were evaluated only at first capture. Mark-recapture models, with GC measures as predictors of either survival or trappability, were compared to identify top models. We found that stress response FCMs negatively predicted trappability, and weaker evidence that BCS positively predicted survival. Although the latter provides some support for the "Cort-Fitness" hypothesis, there was no support when using integrated measures. Instead, our findings suggest that deermice with a lower adrenocortical response (i.e. stress response FCMs) were more likely to be captured. Therefore, GC-trappability relationships must be investigated in field studies to avoid linking the wrong GC profile to fitness, and physiological measures other than blood GCs may be useful for detecting GC-fitness patterns.
Collapse
Affiliation(s)
- Andreas Eleftheriou
- Wildlife Biology Program, University of Montana, 32 Campus Drive, FOR 109, Missoula, MT 59812, USA.
| | - Sara H Williams
- Wildlife Biology Program, University of Montana, 32 Campus Drive, FOR 109, Missoula, MT 59812, USA
| | - Angela D Luis
- Wildlife Biology Program, University of Montana, 32 Campus Drive, FOR 109, Missoula, MT 59812, USA
| |
Collapse
|