1
|
Scheuplein NJ, Bzdyl NM, Lohr T, Kibble EA, Hasenkopf A, Herbst C, Sarkar-Tyson M, Holzgrabe U. Analysis of Structure-Activity Relationships of Novel Inhibitors of the Macrophage Infectivity Potentiator (Mip) Proteins of Neisseria meningitidis, Neisseria gonorrhoeae, and Burkholderia pseudomallei. J Med Chem 2023; 66:8876-8895. [PMID: 37389560 DOI: 10.1021/acs.jmedchem.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/01/2023]
Abstract
The macrophage infectivity potentiator (Mip) protein is a promising target for developing new drugs to combat antimicrobial resistance. New rapamycin-derived Mip inhibitors have been designed that may be able to combine two binding modes to inhibit the Mip protein of Burkholderia pseudomallei (BpMip). These novel compounds are characterized by an additional substituent in the middle chain linking the lateral pyridine to the pipecoline moiety, constituting different stereoisomers. These compounds demonstrated high affinity for the BpMip protein in the nanomolar range and high anti-enzymatic activity and ultimately resulted in significantly reduced cytotoxicity of B. pseudomallei in macrophages. They also displayed strong anti-enzymatic activity against the Mip proteins of Neisseria meningitidis and Neisseria gonorrhoeae and substantially improved the ability of macrophages to kill the bacteria. Hence, the new Mip inhibitors are promising, non-cytotoxic candidates for further testing against a broad spectrum of pathogens and infectious diseases.
Collapse
Affiliation(s)
- Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Emily A Kibble
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
- DMTC Limited, Level 1, 620 High Street, Kew, Victoria 3101, Australia
| | - Anja Hasenkopf
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carina Herbst
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Rommasi F. Bacterial-Based Methods for Cancer Treatment: What We Know and Where We Are. Oncol Ther 2022; 10:23-54. [PMID: 34780046 PMCID: PMC9098760 DOI: 10.1007/s40487-021-00177-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
A severe disease, cancer is caused by the exponential and uncontrolled growth of cells, leading to organ dysfunction as well as disorders. This disease has been recognized as one of the significant challenges to health and medicine. Various treatment procedures for cancer are associated with diverse side effects; the most conventional cancer treatments include chemotherapy, surgery, and radiotherapy, among others. Numerous adverse and side effects, low specificity and sensitivity, narrow therapeutic windows, and, recently, the emergence of tumor cells resistant to such treatments have been documented as the shortcomings of conventional treatment strategies. As a group of prokaryotic microorganisms, bacteria have great potential for use in cancer therapy. Currently, utilizing bacteria for cancer treatment has attracted the attention of scientists. The high potential of bacteria to become non-pathogenic by genetic manipulation, their distinguished virulence factors (which can be used as weapons against tumors), their ability to proliferate in tissues, and the contingency to control their population by administrating antibiotics, etc., have made bacteria viable candidates and live micro-medication for cancer therapies. However, the possible cytotoxicity impacts of bacteria, their inability to entirely lyse cancerous cells, as well as the probability of mutations in their genomes are among the significant challenges of bacteria-based methods for cancer treatment. In this article, various available data on bacterial therapeutics, along with their pros and cons, are discussed.
Collapse
Affiliation(s)
- Foad Rommasi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Chen J, Lv S, Liu J, Yu Y, Wang H, Zhang H. An Overview of Bioactive 1,3-Oxazole-Containing Alkaloids from Marine Organisms. Pharmaceuticals (Basel) 2021; 14:ph14121274. [PMID: 34959674 PMCID: PMC8706051 DOI: 10.3390/ph14121274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
1,3-Oxazole chemicals are a unique class of five-membered monocyclic heteroarenes, containing a nitrogen atom and an oxygen. These alkaloids have attracted extensive attention from medicinal chemists and pharmacologists owing to their diverse arrays of chemical structures and biological activities, and a series of 1,3-oxazole derivatives has been developed into therapeutic agents (e.g., almoxatone, befloxatone, cabotegravir, delpazolid, fenpipalone, haloxazolam, inavolisib). A growing amount of evidence indicates that marine organisms are one of important sources of 1,3-oxazole-containing alkaloids. To improve our knowledge regarding these marine-derived substances, as many as 285 compounds are summarized in this review, which, for the first time, highlights their sources, structural features and biological properties, as well as their biosynthesis and chemical synthesis. Perspective for the future discovery of new 1,3-oxazole compounds from marine organisms is also provided.
Collapse
Affiliation(s)
- Jinyun Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.C.); (S.L.); (J.L.); (H.W.)
| | - Sunyan Lv
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.C.); (S.L.); (J.L.); (H.W.)
| | - Jia Liu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.C.); (S.L.); (J.L.); (H.W.)
| | - Yanlei Yu
- Collaborative Innovation Center of Green Pharmaceutics of Delta Yangzi Region, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.C.); (S.L.); (J.L.); (H.W.)
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.C.); (S.L.); (J.L.); (H.W.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
4
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
5
|
Molloy EM, Dell M, Hänsch VG, Dunbar KL, Feldmann R, Oberheide A, Seyfarth L, Kumpfmüller J, Horch T, Arndt H, Hertweck C. Enzyme‐Primed Native Chemical Ligation Produces Autoinducing Cyclopeptides in Clostridia. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Affiliation(s)
- Evelyn M. Molloy
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Maria Dell
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Veit G. Hänsch
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Kyle L. Dunbar
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Romy Feldmann
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Ansgar Oberheide
- Institute for Organic Chemistry and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
| | - Lydia Seyfarth
- Institute for Organic Chemistry and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
| | - Jana Kumpfmüller
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Therese Horch
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Hans‐Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
| | - Christian Hertweck
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
6
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
7
|
Molloy EM, Dell M, Hänsch VG, Dunbar KL, Feldmann R, Oberheide A, Seyfarth L, Kumpfmüller J, Horch T, Arndt HD, Hertweck C. Enzyme-Primed Native Chemical Ligation Produces Autoinducing Cyclopeptides in Clostridia. Angew Chem Int Ed Engl 2021; 60:10670-10679. [PMID: 33625794 PMCID: PMC8251862 DOI: 10.1002/anie.202016378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Clostridia coordinate many important processes such as toxin production, infection, and survival by density‐dependent communication (quorum sensing) using autoinducing peptides (AIPs). Although clostridial AIPs have been proposed to be (thio)lactone‐containing peptides, their true structures remain elusive. Here, we report the genome‐guided discovery of an AIP that controls endospore formation in Ruminiclostridium cellulolyticum. Through a combination of chemical synthesis and chemical complementation assays with a mutant strain, we reveal that the genuine chemical mediator is a homodetic cyclopeptide (cAIP). Kinetic analyses indicate that the mature cAIP is produced via a cryptic thiolactone intermediate that undergoes a rapid S→N acyl shift, in a manner similar to intramolecular native chemical ligation (NCL). Finally, by implementing a chemical probe in a targeted screen, we show that this novel enzyme‐primed, intramolecular NCL is a widespread feature of clostridial AIP biosynthesis.
Collapse
Affiliation(s)
- Evelyn M Molloy
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Maria Dell
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Veit G Hänsch
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Kyle L Dunbar
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Romy Feldmann
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Ansgar Oberheide
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Lydia Seyfarth
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Jana Kumpfmüller
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Therese Horch
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Christian Hertweck
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
8
|
Moreira R, Noden M, Taylor SD. Synthesis of Azido Acids and Their Application in the Preparation of Complex Peptides. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Abstract
AbstractAzido acids are important synthons for the synthesis of complex peptides. As a protecting group, the azide moiety is atom-efficient, easy to install and can be reduced in the presence of many other protecting groups, making it ideal for the synthesis of branched and/or cyclic peptides. α-Azido acids are less bulky than urethane-protected counterparts and react more effectively in coupling reactions of difficult-to-form peptide and ester bonds. Azido acids can also be used to form azoles on complex intermediates. This review covers the synthesis of azido acids and their application to the total synthesis of complex peptide natural products.1 Introduction2 Synthesis of α-Azido Acids2.1 From α-Amino Acids or Esters2.2 Via α-Substitution2.3 Via Electrophilic Azidation2.4 Via Condensation of N-2-Azidoacetyl-4-Phenylthiazolidin- 2-Thi one Enolates with Aldehydes and Acetals2.5 Synthesis of α,β-Unsaturated α-Azido Acids and Esters3 Synthesis of β-Azido Acids3.1 Preparation of Azidoalanine and 3-Azido-2-aminobutanoic Acids3.2 General Approaches to Preparing β-Azido Acids Other Than Azi doalanine and AABA4 Azido Acids in Total Synthesis4.1 α-Azido Acids4.2 β-Azido Acids and Azido Acids Containing an Azide on the Side
Chain5 Conclusions
Collapse
|
9
|
Pithan PM, Kuhlmann C, Engelhard C, Ihmels H. Synthesis of 5-Alkyl- and 5-Phenylamino-Substituted Azothiazole Dyes with Solvatochromic and DNA-Binding Properties. Chemistry 2019; 25:16088-16098. [PMID: 31523866 PMCID: PMC6973281 DOI: 10.1002/chem.201903657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2019] [Revised: 09/09/2019] [Indexed: 01/24/2023]
Abstract
A series of new 5-mono- and 5,5'-bisamino-substituted azothiazole derivatives was synthesized from the readily available diethyl azothiazole-4,4'-dicarboxylate. This reaction most likely comprises an initial Michael-type addition by the respective primary alkyl and aromatic amines at the carbon atom C5 of the substrate. Subsequently, the resulting intermediates are readily oxidized by molecular oxygen to afford the amino-substituted azothiazole derivatives. The latter exhibit remarkably red-shifted absorption bands (λabs =507-661 nm) with high molar extinction coefficients and show a strong positive solvatochromism. As revealed by spectrometric titrations and circular and linear dichroism studies, the water-soluble, bis-(dimethylaminopropylamino)-substituted azo dye associates with duplex DNA by formation of aggregates along the phosphate backbone at high ligand-DNA ratios (LDR) and by intercalation at low LDR, which also leads to a significant increase of the otherwise low emission intensity at 671 nm.
Collapse
Affiliation(s)
- Phil M. Pithan
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Christopher Kuhlmann
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Carsten Engelhard
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| |
Collapse
|
10
|
Oberheide A, Schwenk S, Ronco C, Semmrau LM, Görls H, Arndt HD. Synthesis, Structure, and Cytotoxicity of Urukthapelstatin A Polyazole Cyclopeptide Analogs. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ansgar Oberheide
- Institut für Organische Chemie und Makromolekulare Chemie; Friedrich-Schiller-Universität; Humboldtstr. 10 07743 Jena Germany
| | - Sebastian Schwenk
- Institut für Organische Chemie und Makromolekulare Chemie; Friedrich-Schiller-Universität; Humboldtstr. 10 07743 Jena Germany
| | - Cyril Ronco
- CNRS UMR7272; Université Côte d'Azur; Institut de Chimie de Nice 28, Avenue Valrose 06108 Nice France
| | - Lisa Maria Semmrau
- Institut für Organische Chemie und Makromolekulare Chemie; Friedrich-Schiller-Universität; Humboldtstr. 10 07743 Jena Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie; Friedrich-Schiller-Universität; Humboldtstr. 8 07743 Jena Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie; Friedrich-Schiller-Universität; Humboldtstr. 10 07743 Jena Germany
| |
Collapse
|
11
|
Devreux M, Henoumont C, Dioury F, Stanicki D, Boutry S, Larbanoix L, Ferroud C, Muller RN, Laurent S. Bimodal Probe for Magnetic Resonance Imaging and Photoacoustic Imaging Based on a PCTA-Derived Gadolinium(III) Complex and ZW800-1. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marie Devreux
- NMR and Molecular Imaging; University of Mons; 19 Avenue Maistriau 7000 Mons Belgium
| | - Céline Henoumont
- NMR and Molecular Imaging; University of Mons; 19 Avenue Maistriau 7000 Mons Belgium
| | - Fabienne Dioury
- Laboratoire de Génomique; Bioinformatique et Chimie Moléculaire, EA 7528, Conservatoire National des Arts et Métiers; HESAM Université; 2 rue Conté 75003 Paris France
| | - Dimitri Stanicki
- NMR and Molecular Imaging; University of Mons; 19 Avenue Maistriau 7000 Mons Belgium
| | - Sébastien Boutry
- Center of Microscopy and Molecular Imaging; 8 rue Adrienne Bolland 6041 Charleroi Belgium
| | - Lionel Larbanoix
- Center of Microscopy and Molecular Imaging; 8 rue Adrienne Bolland 6041 Charleroi Belgium
| | - Clotilde Ferroud
- Laboratoire de Génomique; Bioinformatique et Chimie Moléculaire, EA 7528, Conservatoire National des Arts et Métiers; HESAM Université; 2 rue Conté 75003 Paris France
| | - Robert N. Muller
- NMR and Molecular Imaging; University of Mons; 19 Avenue Maistriau 7000 Mons Belgium
- Center of Microscopy and Molecular Imaging; 8 rue Adrienne Bolland 6041 Charleroi Belgium
| | - Sophie Laurent
- NMR and Molecular Imaging; University of Mons; 19 Avenue Maistriau 7000 Mons Belgium
- Center of Microscopy and Molecular Imaging; 8 rue Adrienne Bolland 6041 Charleroi Belgium
| |
Collapse
|
12
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
13
|
Oberheide A, Pflanze S, Stallforth P, Arndt HD. Solid-Phase-Based Total Synthesis and Stereochemical Assignment of the Cryptic Natural Product Aurantizolicin. Org Lett 2019; 21:729-732. [DOI: 10.1021/acs.orglett.8b03940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ansgar Oberheide
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstr. 10, D-07743 Jena, Germany
| | - Sebastian Pflanze
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Chemistry of Microbial Communication, Beutenbergstr. 11A, D-07745 Jena, Germany
| | - Pierre Stallforth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Chemistry of Microbial Communication, Beutenbergstr. 11A, D-07745 Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstr. 10, D-07743 Jena, Germany
| |
Collapse
|
14
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Orally Active Peptides: Is There a Magic Bullet? Angew Chem Int Ed Engl 2018; 57:14414-14438. [DOI: 10.1002/anie.201807298] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | | | - Shira Merzbach
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
15
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Oral aktive Peptide: Gibt es ein Patentrezept? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | | | - Shira Merzbach
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
16
|
Kaldas SJ, Yudin AK. Achieving Skeletal Diversity in Peptide Macrocycles through The Use of Heterocyclic Grafts. Chemistry 2018; 24:7074-7082. [DOI: 10.1002/chem.201705418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sherif J. Kaldas
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|