1
|
Li Y, Sun K, Shao Y, Wang C, Xue F, Chu C, Gu Z, Chen Z, Bai J. Next-Generation Approaches for Biomedical Materials Evaluation: Microfluidics and Organ-on-a-Chip Technologies. Adv Healthc Mater 2024:e2402611. [PMID: 39440635 DOI: 10.1002/adhm.202402611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Biological evaluation of biomedical materials faces constraints imposed by the limitations of traditional in vitro and animal experiments. Currently, miniaturized and biomimetic microfluidic technologies and organ-on-chip systems have garnered widespread attention in the field of drug development. However, their exploration in the context of biomedical material evaluation and medical device development remains relatively limited. In this review, a summary of existing biological evaluation methods, highlighting their respective advantages and drawbacks is provided. The application of microfluidic technologies in the evaluation of biomedical materials, emphasizing the potential of organ-on-chip systems as highly biomimetic in vitro models in material evaluation is then focused. Finally, the challenges and opportunities associated with utilizing organ-on-chip systems to evaluate biomedical materials in the field of material evaluation are discussed. In conclusion, the integration of advanced microfluidic technologies and organ-on-chip systems presents a potential paradigm shift in the biological assessment of biomedical materials, offering the prospective of more accurate and predictive in vitro models in the development of medical devices.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Ke Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Yi Shao
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
| | - Zhongze Gu
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zaozao Chen
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| |
Collapse
|
2
|
Li D, Dong J, Li H. Electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid through a rough circular microchannel with surface charge-dependent slip. Electrophoresis 2024; 45:1727-1747. [PMID: 38809093 DOI: 10.1002/elps.202300297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
This research examines the electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid in a rough circular microchannel while considering the effect of surface charge on slip. The channel wall corrugations are described as periodic sinusoidal waves with small amplitudes. The perturbation method is employed to derive solutions for velocity and volumetric flow rate, and a combination of three-dimensional (3D) and two-dimensional (2D) graphical representations is utilized to effectively illustrate the impacts of relevant parameters on them. The significance of the Reynolds numberR e $Re$ in investigations of EMHD flow is particularly emphasized. Furthermore, the effect of wall roughness ε $\varepsilon $ and wave number k $k$ on velocity and the influence of wall roughness ε $\varepsilon $ and surface charge densityσ s ${\sigma }_s$ on volumetric flow rate are primarily focused on, respectively, at various Reynolds numbers. The results suggest that increasing the wall roughness leads to a reduction in velocity at low Reynolds numbers (R e = 1 $Re = 1$ ) and an increment at high Reynolds numbers (R e = 10 $Re = 10$ ). For any Reynolds number, a roughness with an odd multiple of wave number (k = 6 , 10 $k = 6,10$ ) will result in a more stable velocity profile compared to one with an even multiple of wave number (k = 4 , 8 $k = 4,8$ ). Decreasing the relaxation timeλ ¯ 1 ${\bar{\lambda }}_1$ while increasing the retardation timeλ ¯ 2 ${\bar{\lambda }}_2$ and Hartmann numberH a $Ha$ can diminish the impact of wall roughness ε $\varepsilon $ and surface charge densityσ s ${\sigma }_s$ on volumetric flow rate, independent of the Reynolds number. Interestingly, in the existence of wall roughness, further consideration of the effect of surface charge on slip leads to a 15% drop in volumetric flow rate atR e = 1 $Re = 1$ and a 32% slippage atR e = 10 $Re = 10$ . However, in the condition where the effect of surface charge on slip is considered, further examination of the presence of wall roughness only results in a 1.4% decline in volumetric flow rate atR e = 1 $Re = 1$ and a 1.6% rise atR e = 10 $Re = 10$ . These findings are crucial for optimizing the EMHD flow models in microchannels.
Collapse
Affiliation(s)
- Dongsheng Li
- College of Science, Inner Mongolia University of Technology, Hohhot, P. R. China
| | - Jiayin Dong
- College of Science, Inner Mongolia University of Technology, Hohhot, P. R. China
| | - Haibin Li
- College of Science, Inner Mongolia University of Technology, Hohhot, P. R. China
| |
Collapse
|
3
|
Fukuyama M. Recent technical development for on-site analysis. ANAL SCI 2024; 40:1569-1570. [PMID: 39198375 DOI: 10.1007/s44211-024-00628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Affiliation(s)
- Mao Fukuyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
4
|
Supakar T, Space D, Meija S, Tan RY, Alston JR, Josephs EA. Programmed Internal Reconfigurations in a 3D-Printed Mechanical Metamaterial Enable Fluidic Control for a Vertically Stacked Valve Array. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315419. [PMID: 39431220 PMCID: PMC11486493 DOI: 10.1002/adfm.202315419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 10/22/2024]
Abstract
Microfluidic valves play a key role within microfluidic systems by regulating fluid flow through distinct microchannels, enabling many advanced applications in medical diagnostics, lab-on-chips, and laboratory automation. While microfluidic systems are often limited to planar structures, 3D printing enables new capabilities to generate complex designs for fluidic circuits with higher densities and integrated components. However, the control of fluids within 3D structures presents several difficulties, making it challenging to scale effectively and many fluidic devices are still often restricted to quasi-planar structures. Incorporating mechanical metamaterials that exhibit spatially adjustable mechanical properties into microfluidic systems provides an opportunity to address these challenges. Here, we have performed systematic computational and experimental characterization of a modified re-entrant honeycomb structure to generate a modular metamaterial for an active device that allows us to directly regulate flow through integrated, multiplexed fluidic channels "one-at-a-time," in a manner that is highly scalable. We present a design algorithm so that this architecture can be extended to arbitrary geometries, and we expect that by incorporation of mechanical metamaterial designs into 3D printed fluidic systems, which themselves are readily expandable to any complex geometries, will enable new biotechnological and biomedical applications of 3D printed devices.
Collapse
Affiliation(s)
- Tinku Supakar
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA 27401
| | - David Space
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA 27401
| | - Sophy Meija
- Department of Biology, College of Arts and Sciences, University of North Carolina at Greensboro, Greensboro, NC, USA 27412
| | - Rou Yu Tan
- The Early College at Guilford, Greensboro, NC, USA 27410
| | - Jeffrey R Alston
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA 27401
| | - Eric A Josephs
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA 27401; Department of Biology, College of Arts and Sciences, University of North Carolina at Greensboro, Greensboro, NC, USA 27412
| |
Collapse
|
5
|
Yigci D, Atçeken N, Yetisen AK, Tasoglu S. Loop-Mediated Isothermal Amplification-Integrated CRISPR Methods for Infectious Disease Diagnosis at Point of Care. ACS OMEGA 2023; 8:43357-43373. [PMID: 38027359 PMCID: PMC10666231 DOI: 10.1021/acsomega.3c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Infectious diseases continue to pose an imminent threat to global public health, leading to high numbers of deaths every year and disproportionately impacting developing countries where access to healthcare is limited. Biological, environmental, and social phenomena, including climate change, globalization, increased population density, and social inequity, contribute to the emergence of novel communicable diseases. Rapid and accurate diagnoses of infectious diseases are essential to preventing the transmission of infectious diseases. Although some commonly used diagnostic technologies provide highly sensitive and specific measurements, limitations including the requirement for complex equipment/infrastructure and refrigeration, the need for trained personnel, long sample processing times, and high cost remain unresolved. To ensure global access to affordable diagnostic methods, loop-mediated isothermal amplification (LAMP) integrated clustered regularly interspaced short palindromic repeat (CRISPR) based pathogen detection has emerged as a promising technology. Here, LAMP-integrated CRISPR-based nucleic acid detection methods are discussed in point-of-care (PoC) pathogen detection platforms, and current limitations and future directions are also identified.
Collapse
Affiliation(s)
- Defne Yigci
- School
of Medicine, Koç University, Istanbul 34450, Turkey
| | - Nazente Atçeken
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Savas Tasoglu
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi
Institute of Biomedical Engineering, Boğaziçi
University, Istanbul 34684, Turkey
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Istanbul 34450, Turkey
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, Stuttgart 70569, Germany
| |
Collapse
|
6
|
Jia N, Torres de Oliveira L, Bégin-Drolet A, Greener J. A spectIR-fluidic reactor for monitoring fast chemical reaction kinetics with on-chip attenuated total reflection Fourier transform infrared spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5129-5138. [PMID: 37609867 DOI: 10.1039/d3ay00842h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Microfluidics has emerged as a powerful technology with diverse applications in microbiology, medicine, chemistry, and physics. While its potential for controlling and studying chemical reactions is well recognized, the extraction and analysis of useful chemical information generated within microfluidic devices remain challenging. This is mainly due to the limited tools available for in situ measurements of chemical reactions. In this study, we present a proof-of-concept spectIR-fluidic reactor design that combines microfluidics with Fourier transform infrared (FTIR) spectroscopy for in situ kinetic studies of fast reactions. By integrating a multi-ridge silicon attenuated total reflection (ATR) wafer into the microfluidic device, we enable multi-point measurements for precise reaction time monitoring. As such, this work establishes a validated foundation for studying fast chemical reactions using on-chip ATR-FTIR spectroscopy in a microfluidic reactor environment, which enables simultaneous monitoring of reagents, intermediates, and products using a phosphate proton transfer reaction. The spectIR-fluidic reactor platform offers customizable designs, allowing for the investigation of reactions with various time scales, and has the potential to significantly advance studies exploring reaction mechanisms and optimization.
Collapse
Affiliation(s)
- Nan Jia
- Département de Chimie, Faculté des Sciences et de Génie, Université Laval, Québec, G1V 0A6, Canada.
| | - Leon Torres de Oliveira
- Département de Chimie, Faculté des Sciences et de Génie, Université Laval, Québec, G1V 0A6, Canada.
| | - André Bégin-Drolet
- Département de Génie Mécanique, Faculté des Sciences et de Génie, Université Laval, Québec, G1V 0A6, Canada
| | - Jesse Greener
- Département de Chimie, Faculté des Sciences et de Génie, Université Laval, Québec, G1V 0A6, Canada.
- CHU de Québec, Centre de Recherche du CHU de Québec, Université Laval, Québec, G1L 3L5, Canada
| |
Collapse
|
7
|
Guan Y, Zhang H, Yan Z, Wei X, Zhang Z, Chen X. Surface Modification of Cyclic-Olefin-Copolymer (COC)-Based Microchannels for the Large-Scale Industrial Production of Droplet Microfluidic Devices. Bioengineering (Basel) 2023; 10:763. [PMID: 37508790 PMCID: PMC10376149 DOI: 10.3390/bioengineering10070763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The copolymers of cycloolefin (COC), a type of thermoplastic material, have been widely used for the large-scale industrial fabrication of droplet microfluidic devices, which is often performed using hot-embossing or injection-molding techniques. The generation of droplets and the uniformity of droplet sizes are significantly affected by the surface wettability of COC during fabrication and the pressure stability of the employed fluid pump during operation. In order to alleviate the effects of undesirable surface wettability and pressure variation on the generation of droplets in COC-based devices, a simple surface modification procedure was applied to hydrophobically modify the surfaces of COC-based microchannels for large-scale industrial production. The surface modification procedure consisted of an oxygen plasma treatment of the polymer surface followed by a solution-phase reaction in fluorocarbon solvent. The experimental results demonstrate that following the proposed surface modification, the COC droplet microfluidic devices could stably generate microvolume water droplets with a small coefficient of variation, even if the pressure of the dispersed phase (water) fluctuated. The durability test results regarding the modified surfaces show that the hydrophobicity of the modified COC surfaces could be sustained for up to four months, deteriorating with time thereafter. Our study can provide a potential solution useful in and guidance for the large-scale industrial production of droplet microfluidic devices for various applications, including polymerase chain reaction and single-cell analysis.
Collapse
Affiliation(s)
- Yefeng Guan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Shunde Innovative Design Institute, Foshan 528300, China
| | - Huiru Zhang
- Guangdong Shunde Innovative Design Institute, Foshan 528300, China
- Guangdong Foshan Lianchuang Graduate of Engineering, Foshan 528300, China
| | - Zhibin Yan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xue Wei
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zhuo Zhang
- Guangdong Shunde Innovative Design Institute, Foshan 528300, China
| | - Xuelian Chen
- Guangdong Shunde Innovative Design Institute, Foshan 528300, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
8
|
Monserrat Lopez D, Rottmann P, Fussenegger M, Lörtscher E. Silicon-Based 3D Microfluidics for Parallelization of Droplet Generation. MICROMACHINES 2023; 14:1289. [PMID: 37512600 PMCID: PMC10386391 DOI: 10.3390/mi14071289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Both the diversity and complexity of microfluidic systems have experienced a tremendous progress over the last decades, enabled by new materials, novel device concepts and innovative fabrication routes. In particular the subfield of high-throughput screening, used for biochemical, genetic and pharmacological samples, has extensively emerged from developments in droplet microfluidics. More recently, new 3D device architectures enabled either by stacking layers of PDMS or by direct 3D-printing have gained enormous attention for applications in chemical synthesis or biomedical assays. While the first microfluidic devices were based on silicon and glass structures, those materials have not yet been significantly expanded towards 3D despite their high chemical compatibility, mechanical strength or mass-production potential. In our work, we present a generic fabrication route based on the implementation of vertical vias and a redistribution layer to create glass-silicon-glass 3D microfluidic structures. It is used to build different droplet-generating devices with several flow-focusing junctions in parallel, all fed from a single source. We study the effect of having several of these junctions in parallel by varying the flow conditions of both the continuous and the dispersed phases. We demonstrate that the generic concept enables an upscaling in the production rate by increasing the number of droplet generators per device without sacrificing the monodispersity of the droplets.
Collapse
Affiliation(s)
- Diego Monserrat Lopez
- IBM Research Europe-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Philipp Rottmann
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
9
|
Lomeli-Martin A, Ahamed N, Abhyankar VV, Lapizco-Encinas BH. Electropatterning-Contemporary developments for selective particle arrangements employing electrokinetics. Electrophoresis 2023; 44:884-909. [PMID: 37002779 PMCID: PMC10330388 DOI: 10.1002/elps.202200286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/25/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The selective positioning and arrangement of distinct types of multiscale particles can be used in numerous applications in microfluidics, including integrated circuits, sensors and biochips. Electrokinetic (EK) techniques offer an extensive range of options for label-free manipulation and patterning of colloidal particles by exploiting the intrinsic electrical properties of the target of interest. EK-based techniques have been widely implemented in many recent studies, and various methodologies and microfluidic device designs have been developed to achieve patterning two- and three-dimensional (3D) patterned structures. This review provides an overview of the progress in electropatterning research during the last 5 years in the microfluidics arena. This article discusses the advances in the electropatterning of colloids, droplets, synthetic particles, cells, and gels. Each subsection analyzes the manipulation of the particles of interest via EK techniques such as electrophoresis and dielectrophoresis. The conclusions summarize recent advances and provide an outlook on the future of electropatterning in various fields of application, especially those with 3D arrangements as their end goal.
Collapse
Affiliation(s)
- Adrian Lomeli-Martin
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Nuzhet Ahamed
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Vinay V. Abhyankar
- Biological Microsystems Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
10
|
Abdelsalam SI, Alsharif AM, Abd Elmaboud Y, Abdellateef A. Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis. Heliyon 2023; 9:e15916. [PMID: 37215931 PMCID: PMC10199193 DOI: 10.1016/j.heliyon.2023.e15916] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The goal of this numerical simulation is to visualize the electroosmotic flow of immiscible fluids through a porous medium in vertical annular microtubes. The inner region (Region I) is filled with an electrically conducting hybrid nanofluid while an electrically conducting Jeffrey fluid is flowing in the second region (Region II). The chosen nanofluid is kerosene-based and the nanoparticles (Fe3O4-TiO2) are of a spherical shape. A strong zeta potential is taken into account and the electroosmotic velocity in the two layers is considered too. The annular microtubes are subjected to an external magnetic field and an electric field. The linked nonlinear governing equations with initial, interface and boundary conditions are solved using the finite difference method. The wall zeta potential and EDL thickness on the electric potential distribution, the velocity profile, the volumetric flow rate and the heat transfer are investigated versus the parameters under consideration. Graphs have been used to describe the numerical results of numerous emerging factors. It has been noticed that the temperature is the least for the clear fluid than the that of the non-clear one. Due to the fact that oil-based nanofluids are utilized to improve the stability and thermophysical characteristics of nanofluids when they are subjected to high temperatures, the proposed study presents a mathematical assessment that is sought to be useful in oil-based nanoflows' applications.
Collapse
Affiliation(s)
- Sara I. Abdelsalam
- Instituto de Ciencias Matemáticas ICMAT, CSIC, UAM, UCM, UC3M, Madrid 28049, Spain
- Basic Science, Faculty of Engineering, The British University in Egypt, Al-Shorouk City, Cairo 11837, Egypt
| | - Abdullah Madhi Alsharif
- Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Y. Abd Elmaboud
- University Of Jeddah, College of Science and Arts at Khulis, Department of mathematics, Jeddah, Saudi Arabia
- Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut 71254, Egypt
| | - A.I. Abdellateef
- Department of Applied Mathematics and Science, Faculty of Engineering, National University of Science and Technology, Seeb 111, Sultanate of Oman
| |
Collapse
|
11
|
Shi Y, Zeng M, Bai H, Meng S, Zhang C, Feng X, Zhang C, Wang K, Zhao W. Transition Routes of Electrokinetic Flow in a Divergent Microchannel with Bending Walls. MICROMACHINES 2023; 14:474. [PMID: 36838174 PMCID: PMC9962358 DOI: 10.3390/mi14020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Electrokinetic flow can be generated as a highly coupled phenomenon among velocity fields, electric conductivity fields, and electric fields. It can exhibit different responses to AC electric fields in different frequency regimes, according to different instability/receptivity mechanisms. In this investigation, by both flow visualization and single-point laser-induced fluorescence (LIF) method, the response of AC electrokinetic flow and the transition routes towards chaos and turbulence have been experimentally investigated. It is found, when the AC frequency ff>30 Hz, the interface responds at both the neutral frequency of the basic flow and the AC frequency. However, when ff≥30 Hz, the interface responds only at the neutral frequency of the basic flow. Both periodic doubling and subcritical bifurcations have been observed in the transition of AC electrokinetic flow. We hope the current investigation can promote our current understanding of the ultrafast transition process of electrokinetic flow from laminar state to turbulence.
Collapse
|
12
|
Liao Y, Davies NA, Bogle IDL. A process systems Engineering approach to analysis of fructose consumption in the liver system and consequences for Non-Alcoholic fatty liver disease. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Rana A, Reza M, Shit G. Electromagnetohydrodynamic thermo-fluidic transport in a porous microchannel with wall roughness. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
A Numerical Approach for Analyzing The Electromagnetohydrodynamic Flow Through a Rotating Microchannel. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Allert RD, Briegel KD, Bucher DB. Advances in nano- and microscale NMR spectroscopy using diamond quantum sensors. Chem Commun (Camb) 2022; 58:8165-8181. [PMID: 35796253 PMCID: PMC9301930 DOI: 10.1039/d2cc01546c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
Abstract
Quantum technologies have seen a rapid developmental surge over the last couple of years. Though often overshadowed by quantum computation, quantum sensors show tremendous potential for widespread applications in chemistry and biology. One system stands out in particular: the nitrogen-vacancy (NV) center in diamond, an atomic-sized sensor allowing the detection of nuclear magnetic resonance (NMR) signals at unprecedented length scales down to a single proton. In this article, we review the fundamentals of NV center-based quantum sensing and its distinct impact on nano- and microscale NMR spectroscopy. Furthermore, we highlight possible future applications of this novel technology ranging from energy research, materials science, to single-cell biology, and discuss the associated challenges of these rapidly developing NMR sensors.
Collapse
Affiliation(s)
- Robin D Allert
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany.
| | - Karl D Briegel
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany.
| | - Dominik B Bucher
- Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| |
Collapse
|
16
|
Chen D, Yin J, Yang Z, Qin W, Huo J, Huang J, Sun J, Piao W. Construction and Application of Hepatocyte Model Based on Microfluidic Chip Technique in Evaluating Emodin. Nutrients 2022; 14:nu14132768. [PMID: 35807948 PMCID: PMC9268988 DOI: 10.3390/nu14132768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
The current cytological evaluation technique of health food raw materials does not entirely meet the needs of evaluating health food. Our study adopted the microfluidic chip technique for the first time to construct a hepatocyte model of evaluating emodin, which was composed of a human hepatocellular carcinoma cell (HepG2) and microfluidic chip. The mixed glue of a model with rat tail collagen type I (1.3 mg/mL) + gelatin (7.5%) was used to simulate the microenvironment of a cell. The validity of this model was evaluated by cell proliferation activity and cell staining, and the toxicity of emodin was evaluated by a series of metabolic indicators on this model. The results indicated that the repeatability of the constructed hepatocyte model was favorable, with a coefficient of variation (CV) of 2.8%. After emodin continuously was exposed for 48 h, the cell inhibition was obvious at 100 and 200 μM, and the number of dead cells gradually increased with the increasing of emodin concentration, and the difference of BUN was significant between the emodin group and blank group (p < 0.05). The constructed model has a favorable applicability in evaluating emodin. This study provides an important platform and a potential in vitro alternative model for assessing and predicting the health effects of health food.
Collapse
Affiliation(s)
| | - Jiyong Yin
- Correspondence: ; Tel.: +86-010-6623-7211; Fax: +86-010-8313-2317
| | | | | | | | | | | | | |
Collapse
|
17
|
Enel A, Vial J, Thiébaut D, Bourlon B. Gas Digital Microfluidic Platform: Application to Highly Volatile Compound Preconcentration. Anal Chem 2022; 94:4359-4365. [PMID: 35235299 DOI: 10.1021/acs.analchem.1c05128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Digital microfluidics platforms (DMFPs) have shown their efficiency in sample handling, using elementary operations that may be combined to perform complex applications. In this article, we present a new platform for gaseous samples handling involving a two-step digital preconcentration using the miniaturized preconcentrators of the DMFP. Choosing n-pentane at very low concentrations as a model for highly volatile compounds, poorly retained on the sorbent, the DMFP allowed bypassing the limit set by the breakthrough volume by repeating an elementary operation. It enabled a 5-fold increase of preconcentration factors in comparison to a single preconcentration step and an easier monitoring of the model compound. Promising applications are expected, as this system could be adapted to most volatile compound analysis devices, including micro gas chromatographs, to replace the current single-step preconcentration systems. By switching to two-step preconcentration with a DMFP, i.e., a digital preconcentration, it would be possible to get more concentrated samples through the column for easier trace analysis.
Collapse
Affiliation(s)
- Antoine Enel
- Université Grenoble Alpes, CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38000 Grenoble, France.,UMR8231 CBI, LSABM, ESPCI Paris-CNRS, PSL Institute, 10 rue Vauquelin, 75005 Paris, France
| | - Jérôme Vial
- UMR8231 CBI, LSABM, ESPCI Paris-CNRS, PSL Institute, 10 rue Vauquelin, 75005 Paris, France
| | - Didier Thiébaut
- UMR8231 CBI, LSABM, ESPCI Paris-CNRS, PSL Institute, 10 rue Vauquelin, 75005 Paris, France
| | - Bertrand Bourlon
- Université Grenoble Alpes, CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
18
|
Panneerselvam R, Sadat H, Höhn EM, Das A, Noothalapati H, Belder D. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? LAB ON A CHIP 2022; 22:665-682. [PMID: 35107464 DOI: 10.1039/d1lc01097b] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the continuous development in nanoscience and nanotechnology, analytical techniques like surface-enhanced Raman spectroscopy (SERS) render structural and chemical information of a variety of analyte molecules in ultra-low concentration. Although this technique is making significant progress in various fields, the reproducibility of SERS measurements and sensitivity towards small molecules are still daunting challenges. In this regard, microfluidic surface-enhanced Raman spectroscopy (MF-SERS) is well on its way to join the toolbox of analytical chemists. This review article explains how MF-SERS is becoming a powerful tool in analytical chemistry. We critically present the developments in SERS substrates for microfluidic devices and how these substrates in microfluidic channels can improve the SERS sensitivity, reproducibility, and detection limit. We then introduce the building materials for microfluidic platforms and their types such as droplet, centrifugal, and digital microfluidics. Finally, we enumerate some challenges and future directions in microfluidic SERS. Overall, this article showcases the potential and versatility of microfluidic SERS in overcoming the inherent issues in the SERS technique and also discusses the advantage of adding SERS to the arsenal of microfluidics.
Collapse
Affiliation(s)
- Rajapandiyan Panneerselvam
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
- Department of Chemistry, SRM University AP, Amaravati, Andhra Pradesh 522502, India.
| | - Hasan Sadat
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Eva-Maria Höhn
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Anish Das
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue, Japan
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Maurya R, Gohil N, Bhattacharjee G, Alzahrani KJ, Ramakrishna S, Singh V. Microfluidics for single cell analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:203-215. [PMID: 35033285 DOI: 10.1016/bs.pmbts.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cells have several internal molecules that are present in low amounts and any fluctuation in its number drives a change in cell behavior. These molecules present inside the cells are continuously fluctuating, thus producing noises in the intrinsic environment and thereby directly affecting the cellular behavior. Single-cell analysis using microfluidics is an important tool for monitoring cell behavior by analyzing internal molecules. Several gene circuits have been designed for this purpose that are labeled with fluorescence encoding genes for monitoring cell dynamics and behavior. We discuss herewith designed and fabricated microfluidics devices that are used for trapping and tracking cells under controlled environmental conditions. This chapter highlights microfluidics chip for monitoring cells to promote their basic understanding.
Collapse
Affiliation(s)
- Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
20
|
Farah J, Gravel E, Doris E, Malloggi F. Direct integration of gold-carbon nanotube hybrids in continuous-flow microfluidic chips: A versatile approach for nanocatalysis. J Colloid Interface Sci 2022; 613:359-367. [PMID: 35042033 DOI: 10.1016/j.jcis.2021.12.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
A carbon nanotube-based packed-bed microreactor was developed for the on-chip oxidation of silanes. The process is catalyzed by a heterogeneous gold-carbon nanotube hybrid that was embedded in the device using a micrometric restriction zone. Integration of the nanohybrid permitted efficient flow aerobic oxidation of the substrates into the corresponding silanols with high selectivity and under sustainable conditions.
Collapse
Affiliation(s)
- Joseph Farah
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France; Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
21
|
The Streaming Potential of Fluid through a Microchannel with Modulated Charged Surfaces. MICROMACHINES 2021; 13:mi13010066. [PMID: 35056231 PMCID: PMC8778432 DOI: 10.3390/mi13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
In this paper, the effects of asymmetrically modulated charged surfaces on streaming potential, velocity field and flow rate are investigated under the axial pressure gradient and vertical magnetic field. In a parallel-plate microchannel, modulated charged potentials on the walls are depicted by the cosine function. The flow of incompressible Newtonian fluid is two-dimensional due to the modulated charged surfaces. Considering the Debye-Hückel approximation, the Poisson-Boltzmann (PB) equation and the modified Navier-Stokes (N-S) equation are established. The analytical solutions of the potential and velocities (u and v) are obtained by means of the superposition principle and stream function. The unknown streaming potential is determined by the condition that the net ionic current is zero. Finally, the influences of pertinent dimensionless parameters (modulated potential parameters, Hartmann number and slip length) on the flow field, streaming potential, velocity field and flow rate are discussed graphically. During the flow process and under the impact of the charge-modulated potentials, the velocity profiles present an oscillating characteristic, and vortexes are generated. The results show that the charge-modulated potentials are beneficial for the enhancement of the streaming potential, velocity and flow rate, which also facilitate the mixing of fluids. Meanwhile, the flow rate can be controlled through the use of a low-amplitude magnetic field.
Collapse
|
22
|
Abd Elmaboud Y. Two-layered electroosmotic flow through a vertical microchannel with fractional Cattaneo heat flux. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.2016162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Y. Abd Elmaboud
- College of Science and Arts at Khulis, Department of Mathematics, University of Jeddah, Jeddah, Saudi Arabia
- Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt
| |
Collapse
|
23
|
Zheng J, Cole T, Zhang Y, Kim J, Tang SY. Exploiting machine learning for bestowing intelligence to microfluidics. Biosens Bioelectron 2021; 194:113666. [PMID: 34600338 DOI: 10.1016/j.bios.2021.113666] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
Intelligent microfluidics is an emerging cross-discipline research area formed by combining microfluidics with machine learning. It uses the advantages of microfluidics, such as high throughput and controllability, and the powerful data processing capabilities of machine learning, resulting in improved systems in biotechnology and chemistry. Compared to traditional microfluidics using manual analysis methods, intelligent microfluidics needs less human intervention, and results in a more user-friendly experience with faster processing. There is a paucity of literature reviewing this burgeoning and highly promising cross-discipline. Therefore, we herein comprehensively and systematically summarize several aspects of microfluidic applications enabled by machine learning. We list the types of microfluidics used in intelligent microfluidic applications over the last five years, as well as the machine learning algorithms and the hardware used for training. We also present the most recent advances in key technologies, developments, challenges, and the emerging opportunities created by intelligent microfluidics.
Collapse
Affiliation(s)
- Jiahao Zheng
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jeeson Kim
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006, South Korea.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
24
|
Chaudhuri J. Magnetic-field- and thermal-radiation-induced entropy generation in a multiphase nonisothermal plane Poiseuille flow. Phys Rev E 2021; 104:065105. [PMID: 35030912 DOI: 10.1103/physreve.104.065105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022]
Abstract
The effect of radiative heat transfer on the entropy generation in a two-phase nonisothermal fluid flow between two infinite horizontal parallel plates under the influence of a constant pressure gradient and transverse noninvasive magnetic field have been explored. Both fluids are considered to be viscous, incompressible, immiscible, Newtonian, and electrically conducting. The governing equations in Cartesian coordinates are solved analytically with appropriate boundary conditions to obtain the velocity and temperature profile inside the channel. Application of a transverse magnetic field is found to reduce the throughput and the temperature distribution of the fluids in a pressure-driven flow. The temperature and fluid flow inside the channel can also be noninvasively altered by tuning the magnetic field intensity, temperature difference between the channel walls and the fluids, and several intrinsic fluid properties. The entropy generation due to the heat transfer, magnetic field, and fluid flow irreversibilities can be controlled by altering the Hartmann number, radiation parameter, Brinkmann number, filling ratio, and ratios of fluid viscosities and thermal and electrical conductivities. The surfaces of the channel wall are found to act as a strong source of entropy generation and heat transfer irreversibility. The rate of heat transfer at the channel walls can also be tweaked by the magnetic field intensity, temperature differences, and fluid properties. The proposed strategies in the present study can be of significance in the design and development of next-generation microscale reactors, micro-heat exchangers, and energy-harvesting devices.
Collapse
Affiliation(s)
- Joydip Chaudhuri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
25
|
Salva ML, Rocca M, Niemeyer CM, Delamarche E. Methods for immobilizing receptors in microfluidic devices: A review. MICRO AND NANO ENGINEERING 2021. [DOI: 10.1016/j.mne.2021.100085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Srikanth S, Dudala S, Jayapiriya US, Mohan JM, Raut S, Dubey SK, Ishii I, Javed A, Goel S. Droplet-based lab-on-chip platform integrated with laser ablated graphene heaters to synthesize gold nanoparticles for electrochemical sensing and fuel cell applications. Sci Rep 2021; 11:9750. [PMID: 33963200 PMCID: PMC8105317 DOI: 10.1038/s41598-021-88068-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 11/09/2022] Open
Abstract
Controlled, stable and uniform temperature environment with quick response are crucial needs for many lab-on-chip (LOC) applications requiring thermal management. Laser Induced Graphene (LIG) heater is one such mechanism capable of maintaining a wide range of steady state temperature. LIG heaters are thin, flexible, and inexpensive and can be fabricated easily in different geometric configurations. In this perspective, herein, the electro-thermal performance of the LIG heater has been examined for different laser power values and scanning speeds. The experimented laser ablated patterns exhibited varying electrical conductivity corresponding to different combinations of power and speed of the laser. The conductivity of the pattern can be tailored by tuning the parameters which exhibit, a wide range of temperatures making them suitable for diverse lab-on-chip applications. A maximum temperature of 589 °C was observed for a combination of 15% laser power and 5.5% scanning speed. A LOC platform was realized by integrating the developed LIG heaters with a droplet-based microfluidic device. The performance of this LOC platform was analyzed for effective use of LIG heaters to synthesize Gold nanoparticles (GNP). Finally, the functionality of the synthesized GNPs was validated by utilizing them as catalyst in enzymatic glucose biofuel cell and in electrochemical applications.
Collapse
Affiliation(s)
- Sangam Srikanth
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Hyderabad, 500078, India
| | - Sohan Dudala
- MEMS, Microfluidics and Nanoelectronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - U S Jayapiriya
- MEMS, Microfluidics and Nanoelectronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - J Murali Mohan
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Hyderabad, 500078, India
| | - Sushil Raut
- Digital Monozukuri (Manufacturing) Education Research Centre, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Satish Kumar Dubey
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Hyderabad, 500078, India
| | - Idaku Ishii
- Smart Robotics Lab, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Arshad Javed
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Hyderabad, 500078, India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
27
|
Mondal PK, Roy M. Spreadsheet analysis of the field-driven start-up flow in a microfluidic channel. Electrophoresis 2021; 42:2465-2473. [PMID: 33856072 DOI: 10.1002/elps.202100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/06/2022]
Abstract
We discuss, in this article, the solution method of the unsteady electroosmotic flow of Newtonian fluid in a square microfluidic channel cross-section in the framework of spreadsheet analysis. We demonstrate the implementation of the finite difference scheme, which is used for the discretization of the transport equations governing the flow dynamics of the present problem, in the spreadsheet tool. Also, we have shown the implementation details of different boundary conditions, which are typically used for the underlying electrohydrodynamics in a microfluidic channel, in the spreadsheet analysis tool. We show that the results obtained from the spreadsheet analysis match accurately with the numerical solutions for both the electrostatic potential distribution and the flow velocity. Our results of this analysis justify the credibility of the spreadsheet tool for capturing the intricate details of the electrically actuated microflows during the initial transiences, that is, for the start-up flows and the phenomenon due to the electrical double layer effect, quite effectively. The inferences of this analysis will open up a new research paradigm of microfluidics and microscale transport processes by providing the potential applicability of the spreadsheet tools to obtain the flow physics of our interest in a very intuitive and less expensive manner.
Collapse
Affiliation(s)
- Pranab Kumar Mondal
- Department of Mechanical Engineering, Microfluidics and Microscale Transport Processes Laboratory, Indian Institute of Technology Guwahati, Guwahati, India
| | - Manideep Roy
- Department of Mechanical Engineering, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|
28
|
Zhang Y, Zhou Y, Yang Y, Pappas D. Microfluidics for sepsis early diagnosis and prognosis: a review of recent methods. Analyst 2021; 146:2110-2125. [PMID: 33751011 DOI: 10.1039/d0an02374d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sepsis is a complex disorder of immune system response to infections that can be caused by a wide range of clinical contexts. Traditional methods for sepsis detection include molecular diagnosis, biomarkers either based on protein concentration or cell surface expression, and microbiological cultures. Development of point-of-care (POC) instruments, which can provide high accuracy and consume less time, is in unprecedented demand. Within the past few years, applications of microfluidic systems for sepsis detection have achieved excellent performance. In this review, we discuss the most recent microfluidic applications specifically in sepsis detection, and propose their advantages and disadvantages. We also present a comprehensive review of other traditional and current sepsis diagnosis methods to obtain a general understanding of the present conditions, which can hopefully direct the development of a new sepsis roadmap.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | | | | | | |
Collapse
|
29
|
Zhiyue M, Xichen Y, Li R, Yang Y, Huicheng F, Peng S. Recent advances in paper-based preconcentrators by utilizing ion concentration polarization. Electrophoresis 2021; 42:1340-1351. [PMID: 33768593 DOI: 10.1002/elps.202000291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/09/2022]
Abstract
One of the most cited limitations of biochemical detection is its poor sensitivity, owing to the relatively high complexity of micro-samples. Moreover, some samples cannot be easily self-replicated and their abundance cannot be increased through traditional technologies. Therefore, the preconcentration of low-abundance samples is a key requirement for microfluidic biological analysis. In recent years, the ion-concentration polarization phenomenon has aroused widespread interest in the application of microfluidic technology. In addition, paper-based materials are readily available, easy to modify, and exhibit good hydrophilicity. The study of the ion-concentration polarization preconcentration of micro-samples in paper-based microfluidic chips is of considerable significance. In this review, we discuss the development and applications of ion-concentration polarization paper-based preconcentrator in the past 5 years, with emphasis on key progresses in chip fabrication and performance optimization under different conditions. The current needs and development prospects in this field have also been discussed.
Collapse
Affiliation(s)
- Meng Zhiyue
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Yuan Xichen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, P. R. China
| | - Ren Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing, P. R. China
| | - Feng Huicheng
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, P. R. China.,MOE Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Shang Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China
| |
Collapse
|
30
|
Experimental Analysis of Laser Micromachining of Microchannels in Common Microfluidic Substrates. MICROMACHINES 2021; 12:mi12020138. [PMID: 33525394 PMCID: PMC7911801 DOI: 10.3390/mi12020138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/17/2023]
Abstract
Laser micromachining technique offers a promising alternative method for rapid production of microfluidic devices. However, the effect of process parameters on the channel geometry and quality of channels on common microfluidic substrates has not been fully understood yet. In this research, we studied the effect of laser system parameters on the microchannel characteristics of Polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), and microscope glass substrate—three most widely used materials for microchannels. We also conducted a cell adhesion experiment using normal human dermal fibroblasts on laser-machined microchannels on these substrates. A commercial CO2 laser system consisting of a 45W laser tube, circulating water loop within the laser tube and air cooling of the substrate was used for machining microchannels in PDMS, PMMA and glass. Four laser system parameters—speed, power, focal distance, and number of passes were varied to fabricate straight microchannels. The channel characteristics such as depth, width, and shape were measured using a scanning electron microscope (SEM) and a 3D profilometer. The results show that higher speed produces lower depth while higher laser power produces deeper channels regardless of the substrate materials. Unfocused laser machining produces wider but shallower channels. For the same speed and power, PDMS channels were the widest while PMMA channels were the deepest. Results also showed that the profiles of microchannels can be controlled by increasing the number of passes. With an increased number of passes, both glass and PDMS produced uniform, wider, and more circular channels; in contrast, PMMA channels were sharper at the bottom and skewed. In rapid cell adhesion experiments, PDMS and glass microchannels performed better than PMMA microchannels. This study can serve as a quick reference in material-specific laser-based microchannel fabrications.
Collapse
|
31
|
Lashkaripour A, Rodriguez C, Mehdipour N, Mardian R, McIntyre D, Ortiz L, Campbell J, Densmore D. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat Commun 2021; 12:25. [PMID: 33397940 PMCID: PMC7782806 DOI: 10.1038/s41467-020-20284-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
Droplet-based microfluidic devices hold immense potential in becoming inexpensive alternatives to existing screening platforms across life science applications, such as enzyme discovery and early cancer detection. However, the lack of a predictive understanding of droplet generation makes engineering a droplet-based platform an iterative and resource-intensive process. We present a web-based tool, DAFD, that predicts the performance and enables design automation of flow-focusing droplet generators. We capitalize on machine learning algorithms to predict the droplet diameter and rate with a mean absolute error of less than 10 μm and 20 Hz. This tool delivers a user-specified performance within 4.2% and 11.5% of the desired diameter and rate. We demonstrate that DAFD can be extended by the community to support additional fluid combinations, without requiring extensive machine learning knowledge or large-scale data-sets. This tool will reduce the need for microfluidic expertise and design iterations and facilitate adoption of microfluidics in life sciences.
Collapse
Affiliation(s)
- Ali Lashkaripour
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA
| | - Christopher Rodriguez
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noushin Mehdipour
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA
- Division of Systems Engineering, Boston University, Boston, MA, USA
| | - Rizki Mardian
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - David McIntyre
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA
| | - Luis Ortiz
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA
- Department of Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA, USA
| | | | - Douglas Densmore
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA.
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
32
|
Nguyen NK, Singha P, An H, Phan HP, Nguyen NT, Ooi CH. Electrostatically excited liquid marble as a micromixer. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00121c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liquid marble as a micromixer. Particles suspended in a transparent liquid marble is dispersed in a time lapse photo. The colour change from red to purple shows the particle position from the first frame to the last frame.
Collapse
Affiliation(s)
- Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan 4111
- Australia
| |
Collapse
|
33
|
Kulkarni MB, Goel S. Microfluidic devices for synthesizing nanomaterials—a review. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abcca6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Glier TE, Vakili M, Trebbin M. Microfluidic synthesis of thermo-responsive block copolymer nano-objects via RAFT polymerization. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02290-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Habibi S, Joshi PU, Mi X, Heldt CL, Minerick AR. Changes in Membrane Dielectric Properties of Porcine Kidney Cells Provide Insight into the Antiviral Activity of Glycine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8344-8356. [PMID: 32614601 DOI: 10.1021/acs.langmuir.0c00175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to monitor the status and progression of viral infections is important for development and screening of new antiviral drugs. Previous research illustrated that the osmolyte glycine (Gly) reduced porcine parvovirus (PPV) infection in porcine kidney (PK-13) cells by stabilizing the capsid protein and preventing virus capsid assembly into viable virus particles. Dielectrophoresis (DEP) was examined herein as a noninvasive, electric field- and frequency-dependent tool for real-time monitoring of PK-13 cell responses to obtain information about membrane barrier functionality and polarization. DEP responses of PK-13 cells were compared to those of PPV-infected cells in the absence and presence of the osmolyte glycine. With infection progression, PK-13 DEP spectra shifted toward lower frequencies, reducing crossover frequencies (fCO). The spherical single-shell model was used to extract PK-13 cell dielectric properties. Upon PPV infection, specific membrane capacitance increased over the time progression of virus attachment, penetration, and capsid protein production and assembly. Following glycine treatment, the DEP spectra displayed attenuated fCO and specific membrane capacitance values shifted back toward uninfected PK-13 cell values. These results suggest that DEP can be used to noninvasively monitor the viral infection cycle and screen antiviral compounds. DEP can augment traditional tools by elucidating membrane polarization changes related to drug mechanisms that interrupt the virus infection cycle.
Collapse
Affiliation(s)
- Sanaz Habibi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Pratik U Joshi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xue Mi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adrienne R Minerick
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
36
|
Zhong R, Liu S, Wang X, Zhang G, Gong N, Wang M, Sun Y. A real-time isothermal amplification based portable microfluidic system for simple and reliable detection of Vibrio splendidus. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2985-2994. [PMID: 32930158 DOI: 10.1039/d0ay00566e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The spread of infectious diseases among aquaculture species has a serious impact on the aquaculture industry. Simple, specific and low-cost detection methods are urgently needed for early diagnosis and timely treatment, particularly for on-site identifying and tracking of pathogens. Vibrio splendidus (V. splendidus) is regarded as one of the main pathogenic bacteria causing skin ulcerative syndrome in cultured sea cucumbers, leading to massive mortality and severe economic losses. We herein present a microfluidic-based real-time fluorogenic loop-mediated isothermal amplification (LAMP) system for simple and reliable detection of V. splendidus. A LAMP primer set with six primers (arsB1) specifically targeting the arsB gene of V. splendidus was successfully designed and tested on the portable microfluidic system for the first time. Only a single step of sample loading using a pipette is required to fill an array of reaction wells (with 10 or 18 wells) in a disposable chip for multiplex detection. A dedicated plastic shell is then utilized to tightly seal the openings of the chip by buckling to prevent contamination and evaporation. Up to four chips (one sample per chip) can be held in the stand-alone and inexpensive microdevice simultaneously, enabling on-demand detection of multiple samples in a single run. Reproducible (relatively low intra- and inter-chip variability) and sensitive (as few as ∼20 CFU, Colony-Forming Units, per reaction well) on-chip arsB1-LAMP assay was demonstrated by using diluted lysate of V. splendidus. A linear standard curve (R2 > 0.98) was attained over the template concentration range of 5 × 103 to 5 × 106 CFU mL-1. V. splendidus can be detected in samples containing different bacteria, indicating the feasibility of the portable microfluidic LAMP system for parallel detection of multiple bacterial pathogens. The proposed on-chip LAMP assay is simple to operate, reliable for amplification, flexible in detection and cost-effective in instrumentation and testing, holding great potential for on-site rapid detection and routine monitoring of aquaculture pathogens.
Collapse
Affiliation(s)
- Runtao Zhong
- Institute of Environmental Systems Biology, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Shilin Liu
- Institute of Environmental Systems Biology, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Xiaohui Wang
- Dalian University, Dalian Economic & Technical Development Zone, Dalian 116622, China
| | - Guohao Zhang
- Beijing Baicare Biotechnology Co., Ltd., Zhongguancun Life Science Park, Beijing 102206, China
| | - Ning Gong
- Institute of Environmental Systems Biology, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Mengyu Wang
- Institute of Environmental Systems Biology, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
37
|
Bachman H, Gu Y, Rufo J, Yang S, Tian Z, Huang PH, Yu L, Huang TJ. Low-frequency flexural wave based microparticle manipulation. LAB ON A CHIP 2020; 20:1281-1289. [PMID: 32154525 PMCID: PMC7392613 DOI: 10.1039/d0lc00072h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Manipulation of microparticles and bio-samples is a critical task in many research and clinical settings. Recently, acoustic based methods have garnered significant attention due to their relatively simple designs, and biocompatible and precise manipulation of small objects. Herein, we introduce a flexural wave based acoustofluidic manipulation platform that utilizes low-frequency (4-6 kHz) commercial buzzers to achieve dynamic particle concentration and translation in an open fluid well. The device has two primary modes of functionality, wherein particles can be concentrated in pressure nodes that are present on the bottom surface of the device, or particles can be trapped and manipulated in streaming vortices within the fluid domain; both of these functions result from flexural mode vibrations that travel from the transducers throughout the device. Throughout our research, we numerically and experimentally explored the wave patterns generated within the device, investigated the particle concentration phenomenon, and utilized a phase difference between the two transducers to achieve precision movement of fluid vortices and the entrapped particle clusters. With its simple, low-cost nature and open fluidic chamber design, this platform can be useful in many biological, biochemical, and biomedical applications, such as tumor spheroid generation and culture, as well as the manipulation of embryos.
Collapse
Affiliation(s)
- Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ghassemi P, Ren X, Foster BM, Kerr BA, Agah M. Post-enrichment circulating tumor cell detection and enumeration via deformability impedance cytometry. Biosens Bioelectron 2020; 150:111868. [PMID: 31767345 PMCID: PMC6957725 DOI: 10.1016/j.bios.2019.111868] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
Circulating tumor cells (CTCs) in blood can provide valuable information when detecting, diagnosing, and monitoring cancer. This paper describes a system that consists of a constriction-based microfluidic sensor with embedded electrodes that can detect and enumerate cancer cells in blood. The biosensor measures impedance in terms of magnitude and phase at multiple frequencies as cells transit through the constriction channel. Cancer cells deform as they move through while blood cells remain intact, thus generating differential impedance profiles that can be used for detecting and counting CTCs. Two versions of this device are reported, one where the electrodes are embedded into the disposable microfluidic channel, and the other in which the disposable chip is externally fixed to a reusable substrate housing the electrodes. Both configurations were tested by spiking breast or prostate cancer cells into murine blood, and both detected all tumor cells passing through the narrow channels while being able to differentiate between the two cell lines. The chip in its current format has a throughput of 1 μL/min. While the throughput is scalable by integrating more constriction channels in parallel, the presented assay is intended for post-enrichment label-free enumeration and characterization of CTCs.
Collapse
Affiliation(s)
- Parham Ghassemi
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| | - Xiang Ren
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| | - Brittni M Foster
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States.
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States.
| | - Masoud Agah
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
39
|
Zhong R, Liu S, Zhang G, Wang M, Sun Y. iso-μmGene: an isothermal amplification-based portable microfluidic system for simple, reliable and flexibly multiplexed genetic identification and quantification. Analyst 2020; 145:4627-4636. [DOI: 10.1039/d0an00560f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a portable microfluidic LAMP system (iso-μmGene) with features of multi-well chips for convenient filling and reliable sealing, flexible detection throughput, and stand-alone and well-performing point of care device for genetic testing.
Collapse
Affiliation(s)
- Runtao Zhong
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Shilin Liu
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Guohao Zhang
- Beijing Baicare Biotechnology Co
- Ltd
- Beijing 102206
- China
| | - Mengyu Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Yeqing Sun
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| |
Collapse
|
40
|
Zhong R, Hou L, Zhao Y, Wang T, Wang S, Wang M, Xu D, Sun Y. A 3D mixing-based portable magnetic device for fully automatic immunofluorescence staining of γ-H2AX in UVC-irradiated CD4 + cells. RSC Adv 2020; 10:29311-29319. [PMID: 35521108 PMCID: PMC9055984 DOI: 10.1039/d0ra03925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022] Open
Abstract
Immunofluorescence (IF) is a common method used in cell biology. The conventional protocol for IF staining is time and labor-intensive, operator dependent and reagent-consuming. Magnetic Bead (MB)-based microdevices are frequently utilized in cellular assays, but integration of simple and efficient mixing with downstream multi-step manipulation of MBs for automatic IF staining is still challenging. We herein present a portable, inexpensive and integratable device for MB-based automatic IF staining. First, a front-end cell capture step is performed using a 3D-mixing module, which is built upon a novel mechanism named ec-2MagRotors and generates periodically changing 3D magnetic fields. A 5-fold enhancement of cell capture efficiency was attained even with a low bead-to-cell concentration ratio (5 : 1), when conducting magnetic 3D mixing. Second, a 1D-moving module is employed downstream to automatically manipulate MB–cell complexes for IF staining. Further, a simplified protocol for staining of γ-H2AX, a biomarker widely used in evaluation of cell radiation damage, is presented for proof-of-principle study of the magnetic device. Using UVC-irradiated CD4+ cells as samples, our device achieved fully automatic γ-H2AX staining within 40 minutes at room temperature and showed a linear dose–response relationship. The developed portable magnetic device is automatic, efficient, cost-effective and simple-to-use, holding great potential for applications in different IF assays. A 3D mixing-based portable magnetic device to perform on-chip efficient cell capture and automatic intracellular immunofluorescence (IF) staining is presented.![]()
Collapse
Affiliation(s)
- Runtao Zhong
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Liangsheng Hou
- College of Marine Engineering
- Dalian Maritime University, Dalian
- Dalian 116026
- China
| | - Yingbo Zhao
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Tianle Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Shaohua Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Mengyu Wang
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Dan Xu
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| | - Yeqing Sun
- Institute of Environmental Systems Biology
- Dalian Maritime University
- Dalian 116026
- China
| |
Collapse
|
41
|
Dervisevic E, Tuck KL, Voelcker NH, Cadarso VJ. Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5027. [PMID: 31752167 PMCID: PMC6891382 DOI: 10.3390/s19225027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Lab-on-a-chip sensing technologies have changed how cell biology research is conducted. This review summarises the progress in the lab-on-a-chip devices implemented for the detection of cellular metabolites. The review is divided into two subsections according to the methods used for the metabolite detection. Each section includes a table which summarises the relevant literature and also elaborates the advantages of, and the challenges faced with that particular method. The review continues with a section discussing the achievements attained due to using lab-on-a-chip devices within the specific context. Finally, a concluding section summarises what is to be resolved and discusses the future perspectives.
Collapse
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia;
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
| |
Collapse
|
42
|
Li P, Liang M, Lu X, Chow JJM, Ramachandra CJA, Ai Y. Sheathless Acoustic Fluorescence Activated Cell Sorting (aFACS) with High Cell Viability. Anal Chem 2019; 91:15425-15435. [DOI: 10.1021/acs.analchem.9b03021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Peixian Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Xiaoguang Lu
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joycelyn Jia Ming Chow
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Chrishan J. A. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
43
|
Borberg E, Zverzhinetsky M, Krivitsky A, Kosloff A, Heifler O, Degabli G, Soroka HP, Fainaro RS, Burstein L, Reuveni S, Diamant H, Krivitsky V, Patolsky F. Light-Controlled Selective Collection-and-Release of Biomolecules by an On-Chip Nanostructured Device. NANO LETTERS 2019; 19:5868-5878. [PMID: 31381354 DOI: 10.1021/acs.nanolett.9b01323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The analysis of biosamples, e.g., blood, is a ubiquitous task of proteomics, genomics, and biosensing fields; yet, it still faces multiple challenges, one of the greatest being the selective separation and detection of target proteins from these complex biosamples. Here, we demonstrate the development of an on-chip light-triggered reusable nanostructured selective and quantitative protein separation and preconcentration platform for the direct analysis of complex biosamples. The on-chip selective separation of required protein analytes from raw biosamples is performed using antibody-photoacid-modified Si nanopillars vertical arrays (SiNPs) of ultralarge binding surface area and enormously high binding affinity, followed by the light-controlled rapid release of the tightly bound target proteins in a controlled liquid media. Two important experimental observations are presented: (1) the first demonstration on the control of biological reaction binding affinity by the nanostructuring of the capturing surface, leading to highly efficient protein collection capabilities, and (2) the light-triggered switching of the highly sticky binding surfaces into highly reflective nonbinding surfaces, leading to the rapid and quantitative release of the originally tightly bound protein species. Both of these two novel behaviors were theoretically and experimentally investigated. Importantly, this is the first demonstration of a three-dimensional (3D) SiNPs on-chip filter with ultralarge binding surface area and reversible light-controlled quantitative release of adsorbed biomolecules for direct purification of blood samples, able to selectively collect and separate specific low abundant proteins, while easily removing unwanted blood components (proteins, cells) and achieving desalting results, without the requirement of time-consuming centrifugation steps, the use of desalting membranes, or affinity columns.
Collapse
Affiliation(s)
- Ella Borberg
- School of Chemistry, Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel
| | - Marina Zverzhinetsky
- School of Chemistry, Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Alon Kosloff
- School of Chemistry, Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel
| | - Omri Heifler
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Gal Degabli
- School of Chemistry, Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel
| | - Hagit Peretz Soroka
- School of Chemistry, Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel
| | - Ronit Satchi Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Larisa Burstein
- The Wolfson Applied Materials Research Centre , Tel-Aviv University , Tel-Aviv 69978 , Israel
| | - Shlomi Reuveni
- School of Chemistry, Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel
| | - Haim Diamant
- School of Chemistry, Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel
| | - Vadim Krivitsky
- School of Chemistry, Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel
| | - Fernando Patolsky
- School of Chemistry, Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv 69978 , Israel
| |
Collapse
|
44
|
Rackus DG, Riedel-Kruse IH, Pamme N. "Learning on a chip:" Microfluidics for formal and informal science education. BIOMICROFLUIDICS 2019; 13:041501. [PMID: 31431815 PMCID: PMC6697029 DOI: 10.1063/1.5096030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/13/2019] [Indexed: 05/06/2023]
Abstract
Microfluidics is a technique for the handling of small volumes of liquids on the order of picoliters to nanoliters and has impact for miniaturized biomedical science and fundamental research. Because of its multi- and interdisciplinary nature (i.e., combining the fields of biology, chemistry, physics, and engineering), microfluidics offers much potential for educational applications, both at the university level as well as primary and secondary education. Microfluidics is also an ideal "tool" to enthuse and educate members of the general public about the interdisciplinary aspects of modern sciences, including concepts of science, technology, engineering, and mathematics subjects such as (bio)engineering, chemistry, and biomedical sciences. Here, we provide an overview of approaches that have been taken to make microfluidics accessible for formal and informal learning. We also point out future avenues and desired developments. At the extreme ends, we can distinguish between projects that teach how to build microfluidic devices vs projects that make various microscopic phenomena (e.g., low Reynolds number hydrodynamics, microbiology) accessible to learners and the general public. Microfluidics also enables educators to make experiments low-cost and scalable, and thereby widely accessible. Our goal for this review is to assist academic researchers working in the field of microfluidics and lab-on-a-chip technologies as well as educators with translating research from the laboratory into the lecture hall, teaching laboratory, or public sphere.
Collapse
Affiliation(s)
- Darius G. Rackus
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | - Nicole Pamme
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
45
|
Eills J, Hale W, Sharma M, Rossetto M, Levitt MH, Utz M. High-Resolution Nuclear Magnetic Resonance Spectroscopy with Picomole Sensitivity by Hyperpolarization on a Chip. J Am Chem Soc 2019; 141:9955-9963. [DOI: 10.1021/jacs.9b03507] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- James Eills
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - William Hale
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Manvendra Sharma
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Matheus Rossetto
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Malcolm H. Levitt
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| |
Collapse
|
46
|
Risch P, Helmer D, Kotz F, Rapp BE. Analytical Solution of the Time-Dependent Microfluidic Poiseuille Flow in Rectangular Channel Cross-Sections and its Numerical Implementation in Microsoft Excel. BIOSENSORS 2019; 9:bios9020067. [PMID: 31137723 PMCID: PMC6628308 DOI: 10.3390/bios9020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
We recently demonstrated that the Navier-Stokes equation for pressure-driven laminar (Poiseuille) flow can be solved in any channel cross-section using a finite difference scheme implemented in a spreadsheet analysis tool such as Microsoft Excel. We also showed that implementing different boundary conditions (slip, no-slip) is straight-forward. The results obtained in such calculations only deviated by a few percent from the (exact) analytical solution. In this paper we demonstrate that these approaches extend to cases where time-dependency is of importance, e.g., during initiation or after removal of the driving pressure. As will be shown, the developed spread-sheet can be used conveniently for almost any cross-section for which analytical solutions are close-to-impossible to obtain. We believe that providing researchers with convenient tools to derive solutions to complex flow problems in a fast and intuitive way will significantly enhance the understanding of the flow conditions as well as mass and heat transfer kinetics in microfluidic systems.
Collapse
Affiliation(s)
- Patrick Risch
- Department of Microsystems Engineering (IMTEK), Laboratory of Process Technology | NeptunLab, Albert-Ludwigs University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| | - Dorothea Helmer
- Department of Microsystems Engineering (IMTEK), Laboratory of Process Technology | NeptunLab, Albert-Ludwigs University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| | - Frederik Kotz
- Department of Microsystems Engineering (IMTEK), Laboratory of Process Technology | NeptunLab, Albert-Ludwigs University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| | - Bastian E Rapp
- Department of Microsystems Engineering (IMTEK), Laboratory of Process Technology | NeptunLab, Albert-Ludwigs University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
47
|
Feng H, Zheng T, Li M, Wu J, Ji H, Zhang J, Zhao W, Guo J. Droplet-based microfluidics systems in biomedical applications. Electrophoresis 2019; 40:1580-1590. [PMID: 30892714 DOI: 10.1002/elps.201900047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022]
Abstract
Microfluidics has made a very impressive progress in the past decades due to its unique and instinctive advantages. Droplet-based microfluidic systems show excellent compatibility with many chemical and biological reagents and are capable of performing variety of operations that can implement microreactor, complex multiple core-shell structure, and many applications in biomedical research such as drug encapsulation, targeted drug delivery systems, and multifunctionalization on carriers. Droplet-based systems have been directly used to synthesize particles and encapsulate many biological entities for biomedicine applications due to their powerful encapsulation capability and facile versatility. In this paper, we review its origin, deviation, and evolution to draw a clear future, especially for droplet-based biomedical applications. This paper will focus on droplet generation, variations and complication as starter, and logistically lead to the numerous typical applications in biomedical research. Finally, we will summarize both its challenge and future prospects relevant to its droplet-based biomedical applications.
Collapse
Affiliation(s)
- Huanhuan Feng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Tingting Zheng
- Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, P. R. China
| | - Mingyu Li
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China.,State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Junwei Wu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Hongjun Ji
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Jiaheng Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Weiwei Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China.,State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
48
|
Pitingolo G, Taly V, Nastruzzi C. Coins in microfluidics: From mere scale objects to font of inspiration for microchannel circuits. BIOMICROFLUIDICS 2019; 13:024106. [PMID: 31040886 PMCID: PMC6456355 DOI: 10.1063/1.5086535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
The fabrication of microfluidic chips remains a complex and expensive process requiring specific equipment and protocols, often if not always limited to the most privileged laboratories. As an alternative to the most sophisticated methods, the present paper describes the fabrication of microfluidic chips by an approach that uses coins as positive master for the rapid production of multigeometry chips. All steps of chip production were carried out using inexpensive approaches by low-cost chemicals and equipment. The chips were validated by different "classic" microfluidic tasks, such as hydrodynamic focusing, droplets generation, micromixing, and on-chip cell culture. The use of coins is not only an efficient method for rapid prototyping but also represents an inspiring possibility for the design of new microfluidic chips. Finally, coin-inspired chips could represent a laboratory experiment doable at a high school level.
Collapse
Affiliation(s)
- Gabriele Pitingolo
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, F-75005 Paris, France
| | - Valerie Taly
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, F-75005 Paris, France
| | - Claudio Nastruzzi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
49
|
Saraf N, Villegas M, Willenberg BJ, Seal S. Multiplex Viral Detection Platform Based on a Aptamers-Integrated Microfluidic Channel. ACS OMEGA 2019; 4:2234-2240. [PMID: 30729227 PMCID: PMC6358057 DOI: 10.1021/acsomega.8b03277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 05/02/2023]
Abstract
A polydimethylsiloxane-based microfluidic device has been developed for the multiplex detection of viral envelope proteins such as Zika and chikungunya on a single platform using aptamer-analyte interactions. The channel is integrated with microsized pillars that increase the surface area allowing more aptamers to attach to the incoming envelope protein molecules, thus increasing the overall sensitivity of the system. The working of the device depends on the formation of protein-mediated sandwich morphology that is obtained using an aptamer and aptamer-functionalized gold nanoparticle (AuNP) pair. The colorimetric signal is obtained upon introduction of silver reagents into the channel, which are selectively deposited on the AuNP surface, providing a gray contrast in the testing zone. The microfluidic channel approach successfully detected clinically relevant concentrations of Zika and chikungunya envelope proteins in phosphine-buffered saline (1 pM) and calf blood (100 pM) with high specificity using gold-decorated aptamers integrated in a microfluidic channel.
Collapse
Affiliation(s)
- Nileshi Saraf
- Advanced
Materials Processing and Analysis Centre, Department of
Materials Science and Engineering, Department of Internal Medicine, College of
Medicine, and Nanoscience Technology Centre, University
of Central Florida, Orlando, Florida 32827, United States
| | - Michael Villegas
- University
of Florida, Gainesville, Florida 32611, United
States
| | - Bradley Jay Willenberg
- Advanced
Materials Processing and Analysis Centre, Department of
Materials Science and Engineering, Department of Internal Medicine, College of
Medicine, and Nanoscience Technology Centre, University
of Central Florida, Orlando, Florida 32827, United States
| | - Sudipta Seal
- Advanced
Materials Processing and Analysis Centre, Department of
Materials Science and Engineering, Department of Internal Medicine, College of
Medicine, and Nanoscience Technology Centre, University
of Central Florida, Orlando, Florida 32827, United States
| |
Collapse
|
50
|
Mukherjee S, Dhar J, DasGupta S, Chakraborty S. Patterned surface charges coupled with thermal gradients may create giant augmentations of solute dispersion in electro-osmosis of viscoelastic fluids. Proc Math Phys Eng Sci 2019; 475:20180522. [PMID: 30760958 DOI: 10.1098/rspa.2018.0522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Augmenting the dispersion of a solute species and fluidic mixing remains a challenging proposition in electrically actuated microfluidic devices, primarily due to an inherent plug-like nature of the velocity profile under uniform surface charge conditions. While a judicious patterning of surface charges may obviate some of the concerning challenges, the consequent improvement in solute dispersion may turn out to be marginal. Here, we show that by exploiting a unique coupling of patterned surface charges with intrinsically induced thermal gradients, it may be possible to realize giant augmentations in solute dispersion in electro-osmotic flows. This is effectively mediated by the phenomena of Joule heating and surface heat dissipation, so as to induce local variations in electrical properties. Combined with the rheological premises of a viscoelastic fluid that are typically reminiscent of common biofluids handled in lab-on-a-chip-based micro-devices, our results demonstrate that the consequent electro-hydrodynamic forcing may open up favourable windows for augmented hydrodynamic dispersion, which has not yet been unveiled.
Collapse
Affiliation(s)
- Siddhartha Mukherjee
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Jayabrata Dhar
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunando DasGupta
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.,Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.,Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|