1
|
Liu Y, Xu Y, Tong S. Serum glial cell line-derived neurotrophic factor: a potential biomarker for white matter alteration in Parkinson's disease with mild cognitive impairment. Front Neurosci 2024; 18:1370787. [PMID: 39513043 PMCID: PMC11541347 DOI: 10.3389/fnins.2024.1370787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Objective Mild cognitive impairment (MCI) is a common non-motor manifestation of Parkinson's disease, commonly referred to as PD-MCI. However, there is a lack of comprehensive data regarding the role of glial cell line-derived neurotrophic factor (GDNF) and cerebral white matter damage in the pathogenesis of PD-MCI. The objective of this study is to investigate the association between alterations in GDNF levels and cerebral white matter damage in individuals diagnosed with PD-MCI, as well as to explore their potential involvement in cognitive progression. Methods Neuropsychological assessments were conducted on 105 patients with Parkinson's disease and 45 healthy volunteers to examine various cognitive domains. An enzyme-linked immunosorbent assay (ELISA) was employed to measure serum levels of GDNF. Additionally, all participants underwent 3.0T magnetic resonance imaging (MRI) to acquire diffusion tensor images (DTI), and a voxel-based analysis (VBA) approach was utilized to compare the fractional anisotropy (FA) values of white matter in the brain. Results There was a significant correlation between the right corpus callosum, right cingulate gyrus, and the Digit Span Backward Test (DSB-T) as well as the Trail Making Test A (TMT-A), both of which assess attention and working memory functions. The left internal capsule exhibited a significant correlation with the Trail Making Test B (TMT-B) and the Clock Drawing Test (CDT), which evaluate executive function. Additionally, the right cingulate gyrus showed a significant association with scores on the Auditory Verbal Learning Test-HuaShan (AVLT-H), assessing memory function. Abnormal fiber structures that demonstrated significant correlations with serum GDNF levels included the left internal capsule, left corticospinal tract, right corpus callosum, and right cingulate gyrus. Conclusion The decrease in serum GDNF levels among PD-MCI patients exhibiting impairments in attention and working memory function was significantly correlated with alterations in the corpus callosum (knee) and posterior cingulate gyrus. Furthermore, the reduction of serum GDNF levels in PD-MCI patients with impaired executive function is associated with changes in the internal capsule (forelimb) projection fibers. Additionally, the decline of serum GDNF levels in PD-MCI patients experiencing memory function impairment is related to alterations in the right cingulate gyrus.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Yan Xu
- Xuzhou Children’s Hospital, Xuzhou, China
| | - SuYan Tong
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Sokolowski I, Kucharska-Lusina A, Miller E, Poplawski T, Majsterek I. Exploring the Gene Expression and Plasma Protein Levels of HSP90, HSP60, and GDNF in Multiple Sclerosis Patients and Healthy Controls. Curr Issues Mol Biol 2024; 46:11668-11680. [PMID: 39451573 PMCID: PMC11505768 DOI: 10.3390/cimb46100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by immune-mediated inflammation and neurodegeneration in the central nervous system (CNS). In this study; we aimed to investigate the gene expression and plasma protein levels of three neuroprotective genes-heat shock proteins (HSP90 and HSP60) and glial cell line-derived neurotrophic factor (GDNF)-in MS patients compared to healthy controls. Forty patients with relapsing-remitting MS and 40 healthy volunteers participated in this study. Gene expression was measured using reverse transcription quantitative real-time PCR, and protein levels were assessed via ELISA. The results showed a significant increase in HSP90 (1.7-fold) and HSP60 (2-fold) gene expression in MS patients compared to controls, along with corresponding increases in protein levels (1.5-fold for both HSP90 and HSP60). In contrast, GDNF gene expression and protein levels were significantly reduced in MS patients, with a 7-fold decrease in gene expression and a 1.6-fold reduction in protein levels. Notably, a non-linear relationship between GDNF gene expression and protein concentration was observed in MS patients, suggesting complex regulatory mechanisms influencing GDNF in the disease. The upregulation of HSP90 and HSP60 in MS highlights their roles in immune regulation and stress responses, while the reduction in GDNF indicates impaired neuroprotection. These findings suggest that HSP90, HSP60, and GDNF could serve as biomarkers for disease progression and as potential therapeutic targets in MS, offering promising avenues for future research and treatment development.
Collapse
Affiliation(s)
- Igor Sokolowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Tomasz Poplawski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| |
Collapse
|
3
|
Zhao T, Luo J, Liu T, Xie K, Tang M. Secondary analysis of neurotransmitter metabolism and cognitive function in first-diagnosed, drug-naïve adult patients with major depressive disorder. Behav Brain Res 2024; 473:115193. [PMID: 39122091 DOI: 10.1016/j.bbr.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND & AIMS Growing evidence suggests that neurotransmitters may be associated with cognitive decline in MDD. This study primarily investigated the differences in cognitive functions between MDD patients and healthy controls, and explored the potential association between neurotransmitters and cognitive function of MDD patients. METHODS This cross-sectional study enrolled 87 first-diagnosed and drug-naïve patients with MDD and 50 healthy controls. Neurotransmitters (glutamine, glutamic acid, γ-2Aminobutiric acid, kainate, vanillylmandelic acid (VMA), 3-methoxy 4-hydroxyphenyl ethylene glycol (MHPG), noradrenaline (NE), homovanillic acid, dihydroxy-phenyl acetic acid (DOPAC), dopamine (DA), tryptophane, kynurenine, 5-HT, 5-hydroxyindoleacetic acid) were measured using LC-MS/MS and cognitive functions were assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Then associative analyses with adjustment (female, age, BMI, education) by multiple linear regression between neurotransmitters and cognitive functions especially in MDD patients were performed. RESULTS MDD patients had lower RBANS scores in immediate memory, delayed memory and RBANS scores after adjustment. Neurotransmitters were associated with the cognitive levels of MDD patients after adjustment: DOPAC and DOPAC/DA had positive association with immediate memory score; DOPAC, DOPAC/DA and (VMA+MHPG)/NE were positively associated with attention score; NE was negatively associated with language score; DOPAC/DA was positively associated with both delayed memory and RBANS scores. CONCLUSION Patients had greater cognitive impairment especially in memory. Furthermore, plasma neurotransmitter may be related to MDD and play an important role in cognitive impairment in MDD, especially in memory and attention.
Collapse
Affiliation(s)
- Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Junhao Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ting Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
4
|
Lu S, Ji N, Wang W, Lin X, Gao D, Geng D. Salidroside improves cognitive function in Parkinson's disease via Braf-mediated mitogen‑activated protein kinase signaling pathway. Biomed Pharmacother 2024; 177:116968. [PMID: 38901199 DOI: 10.1016/j.biopha.2024.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE To delve into the underlying mechanism of Salidroside (Sal) on the improvement of cognitive function in Parkinson's Disease (PD). METHODS The experimental mice were divided into Control group, Model group [injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)], and Model+Sal (low concentration, high concentration) group. Mouse hippocampal tissues were extracted for RNA sequencing to obtain the core pathway and core gene. Mouse plasma was prepared and analyzed by LC-MS to obtain differential metabolites. In vitro experiments were verified by immunofluorescence and lentiviral transduction. RESULTS ELISA signaled that Sal facilitated the reduction of neuronal damage and inflammatory reaction in mice. MPTP_Sal_Low and MPTP_Sal_High groups had high levels of glial cell derived neurotrophie factor (GDNF) expression. Differentially expressed genes (DEGs) in control group, MPTP group and MPTP_Sal_High group were identified by transcriptomic, which were classified to the mitogen-activated protein kinase (MAPK) signaling pathway, and the core gene Braf was obtained. Metabolomics manifested that the differential metabolites involved DL-tyrosine, adenosine, phosphoenolpyruvate, and L-tryptophan. In vitro experiments verified that Sal treatment inhibited the up-regulation of p-p38, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal-regulated kinase (ERK) expression, and growth of neuronal protrusions. The OE-Braf group showed a significant up-regulation of the GDNF expression, a decrease in the expression of p-p38, p-JNK, and p-ERK, and a significant growth of neuronal protrusions. CONCLUSION Sal may exert its effects in PD through the Braf-mediated MAPK signaling pathway, which can increase GDNF expression and promote neuronal protrusion growth for the protection of neurological function and the improvement of cognitive function.
Collapse
Affiliation(s)
- Shujin Lu
- Nanjing Medical University, Nanjing, Jiangsu Province 211166, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Niu Ji
- Nanjing Medical University, Nanjing, Jiangsu Province 211166, China; Department of Neurology, Lianyungang First People's Hospital, Lianyungang, Jiangsu Province 222000, China
| | - Wei Wang
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Xiaoqian Lin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Dianshuai Gao
- Nanjing Medical University, Nanjing, Jiangsu Province 211166, China; School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Deqin Geng
- Nanjing Medical University, Nanjing, Jiangsu Province 211166, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China.
| |
Collapse
|
5
|
Gao XY, Zhou CX, Li HM, Cheng M, Chen D, Li ZY, Feng B, Song J. Correlation between cerebral neurotransmitters levels by proton magnetic resonance spectroscopy and HbA1c in patients with type 2 diabetes. World J Diabetes 2024; 15:1263-1271. [PMID: 38983812 PMCID: PMC11229970 DOI: 10.4239/wjd.v15.i6.1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Cognitive dysfunction is the main manifestation of central neuropathy. Although cognitive impairments tend to be overlooked in patients with diabetes mellitus (DM), there is a growing body of evidence linking DM to cognitive dysfunction. Hyperglycemia is closely related to neurological abnormalities, while often disregarded in clinical practice. Changes in cerebral neurotransmitter levels are associated with a variety of neurological abnormalities and may be closely related to blood glucose control in patients with type 2 DM (T2DM). AIM To evaluate the concentrations of cerebral neurotransmitters in T2DM patients exhibiting different hemoglobin A1c (HbA1c) levels. METHODS A total of 130 T2DM patients were enrolled at the Department of Endocrinology of Shanghai East Hospital. The participants were divided into four groups according to their HbA1c levels using the interquartile method, namely Q1 (< 7.875%), Q2 (7.875%-9.050%), Q3 (9.050%-11.200%) and Q4 (≥ 11.200%). Clinical data were collected and measured, including age, height, weight, neck/waist/hip circumferences, blood pressure, comorbidities, duration of DM, and biochemical indicators. Meanwhile, neurotransmitters in the left hippocampus and left brainstem area were detected by proton magnetic resonance spectroscopy. RESULTS The HbA1c level was significantly associated with urinary microalbumin (mALB), triglyceride, low-density lipoprotein cholesterol (LDL-C), homeostasis model assessment of insulin resistance (HOMA-IR), and beta cell function (HOMA-β), N-acetylaspartate/creatine (NAA/Cr), and NAA/choline (NAA/Cho). Spearman correlation analysis showed that mALB, LDL-C, HOMA-IR and NAA/Cr in the left brainstem area were positively correlated with the level of HbA1c (P < 0.05), whereas HOMA-β was negatively correlated with the HbA1c level (P < 0.05). Ordered multiple logistic regression analysis showed that NAA/Cho [Odds ratio (OR): 1.608, 95% confidence interval (95%CI): 1.004-2.578, P < 0.05], LDL-C (OR: 1.627, 95%CI: 1.119-2.370, P < 0.05), and HOMA-IR (OR: 1.107, 95%CI: 1.031-1.188, P < 0.01) were independent predictors of poor glycemic control. CONCLUSION The cerebral neurotransmitter concentrations in the left brainstem area in patients with T2DM are closely related to glycemic control, which may be the basis for the changes in cognitive function in diabetic patients.
Collapse
Affiliation(s)
- Xiang-Yu Gao
- Department of Endocrinology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266000, Shandong Province, China
| | - Chen-Xia Zhou
- Department of Endocrinology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hong-Mei Li
- Department of Endocrinology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Cheng
- Department of Immunization Program, Huangdao District Center for Disease Prevention and Control, Qingdao 266400, Shandong Province, China
| | - Da Chen
- Department of Endocrinology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zi-Yi Li
- Department of Endocrinology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bo Feng
- Department of Endocrinology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jun Song
- Department of Endocrinology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
6
|
Tang C, Sun R, Xue K, Wang M, Liang S, Kambey P, Shi M, Wu C, Chen G, Gao D. Distinct serum GDNF coupling with brain structural and functional changes underlies cognitive status in Parkinson's disease. CNS Neurosci Ther 2024; 30:e14461. [PMID: 37718594 PMCID: PMC10916445 DOI: 10.1111/cns.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
AIM Aberrations in brain connections are implicated in the pathogenesis of Parkinson's disease (PD). We previously demonstrated that Glial cell-derived neurotrophic factor (GDNF) reduction is associated with cognition decline. Nonetheless, it is elusive if the pattern of brain topological connectivity differed across PD with divergent serum GDNF levels, and the accompanying profile of cognitive deficits has yet to be determined. METHODS We collected data on the participants' cognition, demographics, and serum GDNF levels. Participants underwent 3.0T magnetic resonance imaging, and we assessed the degree centrality, brain network topology, and cortical thickness of the healthy control (HC) (n = 25), PD-high-GDNF (n = 19), and PD-low-GDNF (n = 19) groups using graph-theoretic measures of resting-state functional MRI to reveal how much brain connectivity varies and its clinical correlates, as well as to determine factors predicting the cognitive status in PD. RESULTS The results show different network properties between groups. Degree centrality abnormalities were found in the right inferior frontal gyrus and right parietal lobe postcentral gyrus, linked with cognition scores. The two aberrant clusters serve as a potentially powerful signal for determining whether a patient has PD and the patient's cognition level after integrating with GDNF, duration, and dopamine dosage. Moreover, we found a significant positive relationship between the thickness of the left caudal middle frontal lobe and a plethora of cognitive domains. Further discriminant analysis revealed that the cortical thickness of this region could distinguish PD patients from healthy controls. The mental state evaluation will also be more precise when paired with GDNF and duration. CONCLUSION Our findings reveal that the topological features of brain networks and cortical thickness are altered in PD patients with cognitive deficits. The above change, accompanied by the serum GDNF, may have merit as a diagnosis marker for PD and, arguably, cognition status.
Collapse
Affiliation(s)
- Chuanxi Tang
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Ruiao Sun
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Ke Xue
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public HealthPeking University Health Science CenterBeijingChina
| | - Sijie Liang
- Department of RehabilitationThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Piniel Alphayo Kambey
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Mingyu Shi
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Changyu Wu
- School of Medical ImagingXuzhou Medical UniversityXuzhouJiangsuChina
| | - Gang Chen
- Department of NeurologyShuyang Hospital of Traditional Chinese MedicineSuqianJiangsuChina
| | - Dianshuai Gao
- Department of Neurobiology, Xuzhou Key Laboratory of NeurobiologyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
7
|
Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Elewa YHA, AL‐Farga A, Aqlan F, Zahran MH, Batiha GE. Sleep disorders cause Parkinson's disease or the reverse is true: Good GABA good night. CNS Neurosci Ther 2024; 30:e14521. [PMID: 38491789 PMCID: PMC10943276 DOI: 10.1111/cns.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative brain disease due to degeneration of dopaminergic neurons (DNs) presented with motor and non-motor symptoms. PD symptoms are developed in response to the disturbance of diverse neurotransmitters including γ-aminobutyric acid (GABA). GABA has a neuroprotective effect against PD neuropathology by protecting DNs in the substantia nigra pars compacta (SNpc). It has been shown that the degeneration of GABAergic neurons is linked with the degeneration of DNs and the progression of motor and non-motor PD symptoms. GABA neurotransmission is a necessary pathway for normal sleep patterns, thus deregulation of GABAergic neurotransmission in PD could be the potential cause of sleep disorders in PD. AIM Sleep disorders affect GABA neurotransmission leading to memory and cognitive dysfunction in PD. For example, insomnia and short sleep duration are associated with a reduction of brain GABA levels. Moreover, PD-related disorders including rigidity and nocturia influence sleep patterns leading to fragmented sleep which may also affect PD neuropathology. However, the mechanistic role of GABA in PD neuropathology regarding motor and non-motor symptoms is not fully elucidated. Therefore, this narrative review aims to clarify the mechanistic role of GABA in PD neuropathology mainly in sleep disorders, and how good GABA improves PD. In addition, this review of published articles tries to elucidate how sleep disorders such as insomnia and REM sleep behavior disorder (RBD) affect PD neuropathology and severity. The present review has many limitations including the paucity of prospective studies and most findings are taken from observational and preclinical studies. GABA involvement in the pathogenesis of PD has been recently discussed by recent studies. Therefore, future prospective studies regarding the use of GABA agonists in the management of PD are suggested to observe their distinct effects on motor and non-motor symptoms. CONCLUSION There is a bidirectional relationship between the pathogenesis of PD and sleep disorders which might be due to GABA deregulation.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ammar AL‐Farga
- Biochemistry Department, College of SciencesUniversity of JeddahJeddahSaudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbb GovernorateYemen
| | | | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurEgypt
| |
Collapse
|
8
|
Ao C, Tang S, Yang Y, Liu Y, Zhao H, Ban J, Li J. Identification of histone acetylation modification sites in the striatum of subchronically manganese-exposed rats. Epigenomics 2024; 16:5-21. [PMID: 38174439 DOI: 10.2217/epi-2023-0364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Aim: To explore the specific histone acetylation sites and oxidative stress-related genes that are associated with the pathogenesis of manganese toxicity. Methods: We employed liquid chromatography-tandem mass spectrometry and bioinformatics analysis to identify acetylated proteins in the striatum of subchronic manganese-intoxicated rats. Results: We identified a total of 12 differentially modified histone acetylation sites: H3K9ac, H3K14ac, H3K18ac, H3K56ac and H3K79ac were upregulated and H3K27ac, H3K36ac, H4K91ac, H4K79ac, H4K31ac, H2BK16ac and H2BK20ac were downregulated. Additionally, we found that CAT, SOD1 and SOD2 might be epigenetically regulated and involved in the pathogenesis of manganism. Conclusion: This study identified histone acetylation sites and oxidative stress-related genes associated with the pathogenesis of manganese toxicity, and these findings are useful in the search for potential epigenetic targets for manganese toxicity.
Collapse
Affiliation(s)
- Chunyan Ao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Shunfang Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yue Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Ying Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Hua Zhao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jiaqi Ban
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| |
Collapse
|
9
|
Wang F, Jia T, Wang Y, Hu H, Wang Y, Chang L, Shen X, Liu G. Polycyclic aromatic hydrocarbons exposure was associated with microRNA differential expression and neurotransmitter changes: a cross-sectional study in coal miners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14838-14848. [PMID: 36161575 DOI: 10.1007/s11356-022-23230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) may cause neurobehavioral changes. This study aimed to explore the underlying mechanism of PAH neurotoxicity in coal miners. Urinary PAH metabolites, neurotransmitters, and oxidative stress biomarkers of 652 coal miners were examined. Subjects were divided into high and low-exposure groups based on the median of total urinary PAH metabolites. Differentially expressed miRNAs were screened from 5 samples in the low-exposure group (≤ 4.88 μmol/mol Cr) and 5 samples in the high-exposure group (> 4.88 μmol/mol Cr) using microarray technology, followed by bioinformatics analysis of the potential molecular functions of miRNA target genes. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to validate differentially expressed miRNAs. Restricted cubic splines (RCS) were applied to assess the possible dose-response relationships. Compared to the low PAH exposure group, the high-exposure group had higher levels of 5-hydroxytryptamine (5-HT), epinephrine (E), and acetylcholine (ACh), and lower levels of acetylcholinesterase (AChE). 1-OHP had a dose-response relationship with malondialdehyde (MDA), dopamine (DA), 5-HT, and AChE (P for overall associations < 0.05). There were 19 differentially expressed microRNAs in microarray analysis, significantly enriched in the cell membrane, molecular binding to regulate transcription, and several signaling pathways such as PI3K-Akt. And in the validation stage, miR-885-5p, miR-20a-5p, and let-7i-3p showed differences in the low and high-exposure groups (P < 0.05). Changes in neurotransmitters and microRNA expression levels among the coal miners were associated with PAH exposure. Their biological functions are mainly related to the transcriptional regulation of nervous system diseases or signaling pathways of disorders. These findings provide new insights for future research of PAH neurotoxicity.
Collapse
Affiliation(s)
- Fang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China.
| | - Teng Jia
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Yu Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Haiyuan Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Yuying Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Li Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Xiaojun Shen
- Xishan Coal and Electricity (Group) Co., Ltd. Occupational Disease Prevention and Control Center, Taiyuan, China
| | - Gaisheng Liu
- Xishan Coal and Electricity (Group) Co., Ltd. Occupational Disease Prevention and Control Center, Taiyuan, China
| |
Collapse
|
10
|
Tong SY, Wang RW, Li Q, Liu Y, Yao XY, Geng DQ, Gao DS, Ren C. Serum glial cell line-derived neurotrophic factor (GDNF) a potential biomarker of executive function in Parkinson's disease. Front Neurosci 2023; 17:1136499. [PMID: 36908789 PMCID: PMC9995904 DOI: 10.3389/fnins.2023.1136499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Evidence shows that the impairment of executive function (EF) is mainly attributed to the degeneration of frontal-striatal dopamine pathway. Glial cell line-derived neurotrophic factor (GDNF), as the strongest protective neurotrophic factor for dopaminergic neurons (DANs), may play a role in EF to some extent. This study mainly explored the correlation between serum GDNF concentration and EF performance in Parkinson's disease (PD). Methods This study recruited 45 healthy volunteers (health control, HC) and 105 PD patients, including 44 with mild cognitive impairment (PD-MCI), 20 with dementia (PD-D), and 20 with normal cognitive function (PD-N). Neuropsychological tests were performed to evaluate EF (working memory, inhibitory control, and cognitive flexibility), attention, language, memory, and visuospatial function. All subjects were tested for serum GDNF and homovanillic acid (HVA) levels by ELISA and LC-ESI-MS/MS, respectively. Results PD-MCI patients showed impairments in the trail making test (TMT) A (TMT-A), TMT-B, clock drawing test (CDT) and semantic fluency test (SFT), whereas PD-D patients performed worse in most EF tests. With the deterioration of cognitive function, the concentration of serum GDNF and HVA in PD patients decreased. In the PD group, the serum GDNF and HVA levels were negatively correlated with TMT-A (r GDNF = -0.304, P < 0.01; r HVA = -0.334, P < 0.01) and TMT-B (r GDNF = -0.329, P < 0.01; r HVA = -0.323, P < 0.01) scores. Serum GDNF levels were positively correlated with auditory verbal learning test (AVLT-H) (r = 0.252, P < 0.05) and SFT (r = 0.275, P < 0.05) scores. Serum HVA levels showed a positively correlation with digit span test (DST) (r = 0.277, P < 0.01) scores. Stepwise linear regression analysis suggested that serum GDNF and HVA concentrations and UPDRS-III were the influence factors of TMT-A and TMT-B performances in PD patients. Conclusion The decrease of serum GDNF concentration in PD patients was associated with impaired inhibitory control, cognitive flexibility, and attention performances. The changes of GDNF and HVA might synergistically participate in the occurrence and development of executive dysfunction in PD patients.
Collapse
Affiliation(s)
- Shu-Yan Tong
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| | - Rui-Wen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Qian Li
- Department of Scientific Research, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Ren
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.,Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, Shandong, China.,Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| |
Collapse
|
11
|
Tang CX, Chen J, Shao KQ, Liu YH, Zhou XY, Ma CC, Liu MT, Shi MY, Kambey PA, Wang W, Ayanlaja AA, Liu YF, Xu W, Chen G, Wu J, Li X, Gao DS. Blunt dopamine transmission due to decreased GDNF in the PFC evokes cognitive impairment in Parkinson's disease. Neural Regen Res 2022; 18:1107-1117. [PMID: 36255000 PMCID: PMC9827775 DOI: 10.4103/1673-5374.355816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson's disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson's disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson's disease. We then established a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analyzed the potential relationships among glial cell line-derived neurotrophic factor in the prefrontal cortex, dopamine transmission, and cognitive function. Our results showed that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex weakened dopamine release and transmission by upregulating the presynaptic membrane expression of the dopamine transporter, which led to the loss and primitivization of dendritic spines of pyramidal neurons and cognitive impairment. In addition, magnetic resonance imaging data showed that the long-term lack of glial cell line-derived neurotrophic factor reduced the connectivity between the prefrontal cortex and other brain regions, and exogenous glial cell line-derived neurotrophic factor significantly improved this connectivity. These findings suggested that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex leads to neuroplastic degeneration at the level of synaptic connections and circuits, which results in cognitive impairment in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Chuan-Xi Tang
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing Chen
- Experinental Teaching Center of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kai-Quan Shao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ye-Hao Liu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiao-Yu Zhou
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Department of Neurology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu Province, China
| | - Cheng-Cheng Ma
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Meng-Ting Liu
- Department of Rehabilitation, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ming-Yu Shi
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Wang
- Department of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Abiola Abdulrahman Ayanlaja
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yi-Fang Liu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Xu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jiao Wu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue Li
- Department of Nursing Care, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dian-Shuai Gao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Dian-Shuai Gao, .
| |
Collapse
|
12
|
Wang Y, Luan M, Xue L, Jin J, Xie A. Evaluation of the relationship between SORL1 gene polymorphism and Parkinson's disease in the Chinese population. Neurosci Lett 2022; 778:136602. [DOI: 10.1016/j.neulet.2022.136602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
|
13
|
Fan Y, Han J, Zhao L, Wu C, Wu P, Huang Z, Hao X, Ji Y, Chen D, Zhu M. Experimental Models of Cognitive Impairment for Use in Parkinson's Disease Research: The Distance Between Reality and Ideal. Front Aging Neurosci 2021; 13:745438. [PMID: 34912207 PMCID: PMC8667076 DOI: 10.3389/fnagi.2021.745438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Cognitive impairment is one of the key non-motor symptoms of PD, affecting both mortality and quality of life. However, there are few experimental studies on the pathology and treatments of PD with mild cognitive impairment (PD-MCI) and PD dementia (PDD) due to the lack of representative models. To identify new strategies for developing representative models, we systematically summarized previous studies on PD-MCI and PDD and compared differences between existing models and diseases. Our initial search identified 5432 articles, of which 738 were duplicates. A total of 227 articles met our inclusion criteria and were included in the analysis. Models fell into three categories based on model design: neurotoxin-induced, transgenic, and combined. Although the neurotoxin-induced experimental model was the most common type that was used during every time period, transgenic and combined experimental models have gained significant recent attention. Unfortunately, there remains a big gap between ideal and actual experimental models. While each model has its own disadvantages, there have been tremendous advances in the development of PD models of cognitive impairment, and almost every model can verify a hypothesis about PD-MCI or PDD. Finally, our proposed strategies for developing novel models are as follows: a set of plans that integrate symptoms, biochemistry, neuroimaging, and other objective indicators to judge and identify that the novel model plays a key role in new strategies for developing representative models; novel models should simulate different clinical features of PD-MCI or PDD; inducible α-Syn overexpression and SH-SY5Y-A53T cellular models are good candidate models of PD-MCI or PDD.
Collapse
Affiliation(s)
- Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiajun Han
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunxiao Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - YiChun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongfeng Chen
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Nasamran CA, Sachan ANS, Mott J, Kuras YI, Scherzer CR, Study HB, Ricciardelli E, Jepsen K, Edland SD, Fisch KM, Desplats P. Differential blood DNA methylation across Lewy body dementias. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12156. [PMID: 33665346 PMCID: PMC7896631 DOI: 10.1002/dad2.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) are characterized by cognitive alterations, visual hallucinations, and motor impairment. Diagnosis is based on type and timing of clinical manifestations; however, determination of clinical subtypes is challenging. The utility of blood DNA methylation as a biomarker for Lewy body disorders (LBD) is mostly unexplored. METHODS We performed a cross-sectional analysis of blood methylation in 42 DLB and 50 PDD cases applying linear models to compare groups and logistic least absolute shrinkage and selection operator regression to explore the discriminant power of methylation signals. RESULTS DLB blood shows differential methylation compared to PDD. Some methylation changes associate with core features of LBD. Sets of probes show high predictive value to discriminate between variants. DISCUSSION Our study is the first to explore LBD blood methylation. Despite overlapping clinical presentation, we detected differential epigenetic signatures that, if confirmed in independent cohorts, could be developed into useful biomarkers.
Collapse
Affiliation(s)
- Chanond A. Nasamran
- Center for Computational Biology & BioinformaticsDepartment of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Anubhav Nikunj Singh Sachan
- Division of Biostatistics, Department of Family Medicine and Public HealthUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jennifer Mott
- Department of Neurosciences, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Yuliya I. Kuras
- Center for Advanced Parkinson Research and Precision Neurology Program, Harvard Medical SchoolBrigham & Women's HospitalBostonMassachusettsUSA
| | - Clemens R. Scherzer
- Center for Advanced Parkinson Research and Precision Neurology Program, Harvard Medical SchoolBrigham & Women's HospitalBostonMassachusettsUSA
| | | | - Eugenia Ricciardelli
- Genomics CenterInstitute for Genomics MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Kristen Jepsen
- Genomics CenterInstitute for Genomics MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Steven D. Edland
- Department of Neurosciences, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Family Medicine and Public HealthUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Kathleen M. Fisch
- Center for Computational Biology & BioinformaticsDepartment of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Paula Desplats
- Department of Neurosciences, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Pathology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
15
|
Association of Peripheral Plasma Neurotransmitters with Cognitive Performance in Chronic High-altitude Exposure. Neuroscience 2021; 463:97-107. [PMID: 33540052 DOI: 10.1016/j.neuroscience.2021.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Long-term living at high altitude causes significant impairment of cognitive function. Central neurotransmitters are potential mediators of cognitive performance. We aimed to determine whether there were significant associations between select peripheral plasma neurotransmitters and cognitive performance in humans with chronic high-altitude (HA) exposure and to determine the association between peripheral plasma neurotransmitters and brain neurotransmitters in rats after chronic hypobaric hypoxia (HH) exposure. We demonstrated that 3,4-dihydroxy-L-phenylalanine (DOPA), dopamine, serotonin, 5-hydroxyindole-3-acetic acid (5-HIAA) and GABA in the peripheral plasma were associated with cognitive performance in humans with HA exposure. Consistent with this result, peripheral plasma DOPA, dopamine, serotonin, 5-HIAA and glutamate were associated with brain neurotransmitter levels after chronic HH exposure in rats. These results provide experimental data indicating that neurotransmitter levels and cognitive performance are modified in chronic high-altitude exposure, with a possible causal effect.
Collapse
|
16
|
Shi MY, Ma CC, Chen FF, Zhou XY, Li X, Tang CX, Zhang L, Gao DS. Possible role of glial cell line-derived neurotrophic factor for predicting cognitive impairment in Parkinson's disease: a case-control study. Neural Regen Res 2021; 16:885-892. [PMID: 33229724 PMCID: PMC8178776 DOI: 10.4103/1673-5374.297091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the protection of dopaminergic neurons, but there are few reports of the relationship between GDNF and its precursors (α-pro-GDNF and β-pro-GDNF) and cognitive impairment in Parkinson’s disease. This study aimed to investigate the relationship between the serum levels of GDNF and its precursors and cognitive impairment in Parkinson’s disease, and to assess their potential as a diagnostic marker. Fifty-three primary outpatients and hospitalized patients with Parkinson’s disease (23 men and 30 women) with an average age of 66.58 years were enrolled from the Affiliated Hospital of Xuzhou Medical University of China in this case-control study. The patients were divided into the Parkinson’s disease with cognitive impairment group (n = 27) and the Parkinson’s disease with normal cognitive function group (n = 26) based on their Mini-Mental State Examination, Montreal Cognitive Assessment, and Clinical Dementia Rating scores. In addition, 26 age- and sex-matched healthy subjects were included as the healthy control group. Results demonstrated that serum GDNF levels were significantly higher in the Parkinson’s disease with normal cognitive function group than in the other two groups. There were no significant differences in GDNF precursor levels among the three groups. Correlation analysis revealed that serum GDNF levels, GDNF/α-pro-GDNF ratios, and GDNF/β-pro-GDNF ratios were moderately or highly correlated with the Mini-Mental State Examination, Montreal Cognitive Assessment, and Clinical Dementia Rating scores. To explore the risk factors for cognitive impairment in patients with Parkinson’s disease, logistic regression analysis and stepwise linear regression analysis were performed. Both GDNF levels and Hoehn-Yahr stage were risk factors for cognitive impairment in Parkinson’s disease, and were the common influencing factors for cognitive scale scores. Neither α-pro-GDNF nor β-pro-GDNF was risk factors for cognitive impairment in Parkinson’s disease. A receiver operating characteristic curve of GDNF was generated to predict cognitive function in Parkinson’s disease (area under the curve = 0.859). This result indicates that the possibility that serum GDNF can correctly distinguish whether patients with Parkinson’s disease have cognitive impairment is 0.859. Together, these results suggest that serum GDNF may be an effective diagnostic marker for cognitive impairment in Parkinson’s disease. However, α-pro-GDNF and β-pro-GDNF are not useful for predicting cognitive impairment in this disease. This study was approved by Ethics Committee of the Affiliated Hospital of Xuzhou Medical University, China (approval No. XYFY2017-KL047-01) on November 30, 2017.
Collapse
Affiliation(s)
- Ming-Yu Shi
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou; Department of Neurology, the First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Cheng-Cheng Ma
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Fang-Fang Chen
- Department of Neurology, Suqian First People's Hospital, Suqian, Jiangsu Province, China
| | - Xiao-Yu Zhou
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue Li
- Department of Operating Room, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chuan-Xi Tang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lin Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dian-Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
17
|
Zhang J, Li Y, Gao Y, Hu J, Huang B, Rong S, Chen J, Zhang Y, Wang L, Feng S, Wang L, Nie K. An SBM-based machine learning model for identifying mild cognitive impairment in patients with Parkinson's disease. J Neurol Sci 2020; 418:117077. [PMID: 32798842 DOI: 10.1016/j.jns.2020.117077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To identify Parkinson's disease with mild cognitive impairment (PD-MCI) through surface-based morphometry (SBM) based machine learning model. METHODS 93 patients with parkinson's disease (35 PD with normal cognition, 58 PD-MCI) were examined, obtaining 276 SBM variables per subject. 20 healthy control subjects were used as the reference. After extracting features with statistically significance, support vector machine (SVM) model with grid search method was applied to identify patients with PD-MCI. Accuracy, matthews correlation coefficient (MCC), receiver operating characteristic curve (ROC), precision-recall curve (PR), AUC-ROC, AUC-PR and leave-one-out cross validation (LOOCV) strategy were employed for model evaluation. RESULTS PD-MCI is characterized by widespread structural abnormality. SVM model with SBM features achieved an accuracy of 80.00% and area under the ROC of 0.86 for identifying PD-MCI. MCC, AUC-PR, and LOOCV classification accuracy were 0.56, 0.89, and 78.08%, respectively. CONCLUSION Automatic identification of PD-MCI could be realized by SBM-based machine learning model.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - You Li
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Jinlong Hu
- School of Computer Science & Engineering, Guangzhou Higher Education Mega Centre South China University of Technology, No.381 Wushan Road, Guangzhou, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Siming Rong
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Jianing Chen
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Limin Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Shujun Feng
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China.
| | - Kun Nie
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, No. 106 Zhongshan Er Road, Guangzhou 510080, China.
| |
Collapse
|
18
|
Ahles S, Stevens YR, Joris PJ, Vauzour D, Adam J, de Groot E, Plat J. The Effect of Long-Term Aronia melanocarpa Extract Supplementation on Cognitive Performance, Mood, and Vascular Function: A Randomized Controlled Trial in Healthy, Middle-Aged Individuals. Nutrients 2020; 12:nu12082475. [PMID: 32824483 PMCID: PMC7468716 DOI: 10.3390/nu12082475] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cognitive decline is associated with lifestyle-related factors such as overweight, blood pressure, and dietary composition. Studies have reported beneficial effects of dietary anthocyanins on cognition in older adults and children. However, the effect of anthocyanin-rich Aronia melanocarpa extract (AME) on cognition is unknown. Therefore, this study aimed to determine the effect of long-term supplementation with AME on cognitive performance, mood, and vascular function in healthy, middle-aged, overweight adults. In a randomized double-blind placebo-controlled parallel study, 101 participants either consumed 90 mg AME, 150 mg AME, or placebo for 24 weeks. The grooved pegboard test, number cross-out test, and Stroop test were performed as measures for psychomotor speed, attention, and cognitive flexibility. Mood was evaluated with a visual analogue scale, serum brain-derived neurotrophic factor (BDNF) was determined, and vascular function was assessed by carotid ultrasounds and blood pressure measurements. AME improved psychomotor speed compared to placebo (90 mg AME: change = -3.37; p = 0.009). Furthermore, 150 mg AME decreased brachial diastolic blood pressure compared to 90 mg AME (change = 2.44; p = 0.011), but not compared to placebo. Attention, cognitive flexibility, BDNF, and other vascular parameters were not affected. In conclusion, AME supplementation showed an indication of beneficial effects on cognitive performance and blood pressure in individuals at risk of cognitive decline.
Collapse
Affiliation(s)
- Sanne Ahles
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.); (J.A.)
- BioActor BV, Gaetano Martinolaan 85, 6229 GS Maastricht, The Netherlands;
| | - Yala R. Stevens
- BioActor BV, Gaetano Martinolaan 85, 6229 GS Maastricht, The Netherlands;
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Peter J. Joris
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.); (J.A.)
| | - David Vauzour
- Biomedical Research Centre, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK;
| | - Jos Adam
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.); (J.A.)
| | - Eric de Groot
- Imagelabonline & Cardiovascular, 4117 GV Erichem, The Netherlands;
- Department of Gastroenterology, Amsterdam UMC—Location Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.); (J.A.)
- Correspondence:
| |
Collapse
|