1
|
Andreasen M, Nedergaard S. Effect of acute mitochondrial dysfunction on hyperexcitable network activity in rat hippocampus in vitro. Brain Res 2020; 1751:147193. [PMID: 33157100 DOI: 10.1016/j.brainres.2020.147193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022]
Abstract
Metabolic stress imposed by epileptic seizures can result in mitochondrial dysfunction, believed to act as positive feedback on epileptogenesis and seizure susceptibility. As the mechanism behind this positive feedback is unclear, the aim of the present study was to investigate the causal link between acute mitochondrial dysfunction and increased seizure susceptibility in hyperexcitable hippocampal networks. Following the induction of spontaneous interictal-like discharges, acute selective pharmacological blockade of either of the mitochondrial respiratory complexes (MRC) I-IV induced seizure-like events (SLE) in 78-100% of experiments. A similar result was obtained by uncoupling the oxidative phosphorylation (OXPHOS) but not by selective blockade of MRCV (ATP synthase) which did not induce SLE. The reactive oxygen species (ROS) scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol, 2 mM) significantly reduced the proconvulsant effect of blocking MRCI but did not reduce the proconvulsant effect of OXPHOS uncoupling. These findings indicate that acute mitochondrial dysfunction can lead to a convulsive state within a short timeframe, and that increased ROS production makes substantial contribution to such induction in addition to other mitochondrial related factors, which appears to be independent of changes in ROS and ATP production.
Collapse
Affiliation(s)
- Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Svejgaard B, Andreasen M, Nedergaard S. Role of GABA B receptors in proepileptic and antiepileptic effects of an applied electric field in rat hippocampus in vitro. Brain Res 2018; 1710:157-162. [PMID: 30599137 DOI: 10.1016/j.brainres.2018.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023]
Abstract
The mechanisms underlying antiepileptic effects of deep brain stimulation (DBS) are complex and poorly understood. Studies on the effects of applied electric fields on epileptic nervous tissue could enable future advances in DBS treatments. Applied electric fields are known to inhibit or enhance epileptic activity in vitro through direct effects on local neurons, but it is unclear whether trans-synaptic effects participate in such actions. The present study investigates, in an epileptic brain slice model, the influence of GABAB receptor activation on excitatory and suppressive effects of a short-duration (10 ms) electric field in rat hippocampus. The results show that perfusion of the GABAB receptor antagonist, CGP 55845 (2 μM), could abolish applied-field induced suppression of orthodromic-stimulus evoked epileptiform afterdischarge activity in the CA1 region. GABAB receptor blockade was associated with an enhanced excitatory (proepileptic) effect of the applied field. However, the suppressive effect, observed in isolation using weak field stimuli, was left unchanged. The G-protein-activated inwardly rectifying K+ channel (GIRK) antagonist, tertiapin (30-50 nM), mimicked the effects of CGP 55845. The results suggest that the applied field activate (elements of) local interneurons to release GABA onto GABAB receptors. The resulting activation of postsynaptic GIRK channels inhibits neuronal activity thereby dampening the direct stimulatory effect of the applied field. The study indicates that local-stimulus induced GABAB receptor activation can serve a protective role under antiepileptic paradigms by preventing electrical stimulation from causing hyperexcitation.
Collapse
Affiliation(s)
| | - Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
Nedergaard S, Andreasen M. Opposing effects of 2-deoxy-d-glucose on interictal- and ictal-like activity when K+ currents and GABAA receptors are blocked in rat hippocampus in vitro. J Neurophysiol 2018; 119:1912-1923. [DOI: 10.1152/jn.00732.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ketogenic diet (KD), a high-fat, carbohydrate-restricted diet, is used as an alternative treatment for drug-resistant epileptic patients. Evidence suggests that compromised glucose metabolism has a significant role in the anticonvulsant action of the KD; however, it is unclear what part of the glucose metabolism that is important. The present study investigates how selective alterations in glycolysis and oxidative phosphorylation influence epileptiform activity induced by blocking K+ currents and GABAA and NMDA receptors in the hippocampal slice preparation. Blocking glycolysis with the glucose derivative 2-deoxy-d-glucose (2-DG; 10 mM) gave a fast reduction of the frequency of interictal discharge (IED) consistent with findings in other in vitro models. However, this was followed by the induction of seizure-like discharges in area CA1 and CA3. Substituting glucose with sucrose (glucopenia) had effects similar to those of 2-DG, whereas substitution with l-lactate or pyruvate reduced the IED but had a less proconvulsant effect. Blockade of ATP-sensitive K+ channels, glycine or adenosine 1 receptors, or depletion of the endogenous anticonvulsant compound glutathione did not prevent the actions of 2-DG. Baclofen (2 μM) reproduced the effect of 2-DG on IED activity. The proconvulsant effect of 2-DG could be reproduced by blocking the oxidative phosphorylation with the complex I toxin rotenone (4 μM). The data suggest that inhibition of IED, induced by 2-DG and glucopenia, is a direct consequence of impairment of glycolysis, likely exerted via a decreased recurrent excitatory synaptic transmission in area CA3. The accompanying proconvulsant effect is caused by an excitatory mechanism, depending on impairment of oxidative phosphorylation. NEW & NOTEWORTHY This study reveals two opposing effects of 2-deoxy-d-glucose (2-DG) and glucopenia on in vitro epileptiform discharge observed during combined blockade of K+ currents and GABAA receptors. Interictal-like activity is inhibited by a mechanism that selectively depends on impairment of glycolysis and that results from a decrease in the strength of excitatory recurrent synaptic transmission in area CA3. In contrast, 2-DG and glucopenia facilitate ictal-like activity by an excitatory mechanism, depending on impairment of mitochondrial oxidative phosphorylation.
Collapse
|
4
|
Uwera J, Nedergaard S, Andreasen M. A novel mechanism for the anticonvulsant effect of furosemide in rat hippocampus in vitro. Brain Res 2015; 1625:1-8. [PMID: 26301821 DOI: 10.1016/j.brainres.2015.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/15/2015] [Accepted: 08/14/2015] [Indexed: 11/25/2022]
Abstract
Though both in vivo and in vitro studies have demonstrated an anticonvulsant effect of the loop diuretic furosemide, the precise mechanism behind this effect is still debated. The current study investigates the effect of furosemide on Cs-induced epileptiform activity (Cs-FP) evoked in area CA1 of rat hippocampal slices in the presence of Cs(+) (5mM) and ionotropic glutamatergic and GABAergic receptor antagonists. As this model diverges in several respects from other epilepsy models it can offer new insight into the mechanism behind the anticonvulsive effect of furosemide. The present study shows that furosemide suppresses the Cs-FP in a dose-dependent manner with a near complete block at concentrations ≥ 1.25 mM. Because furosemide targets several types of ion transporters we examined the effect of more selective antagonists. Bumetanide (20 μM), which selectively inhibits the Na-K-2Cl co-transporter (NKCC1), had no significant effect on the Cs-FP. VU0240551 (10 μM), a selective antagonist of the K-Cl co-transporter (KCC2), reduced the ictal-like phase by 51.73 ± 8.5% without affecting the interictal-like phase of the Cs-FP. DIDS (50 μM), a nonselective antagonist of Cl(-)/HCO3(-)-exchangers, Na(+)-HCO3(-)-cotransporters, chloride channels and KCC2, suppressed the ictal-like phase by 60.8 ± 8.1% without affecting the interictal-like phase. At 500 μM, DIDS completely suppressed the Cs-FP. Based on these results we propose that the anticonvulsant action of furosemide in the Cs(+)-model is exerted through blockade of the neuronal KCC2 and Na(+)-independent Cl(-)/HCO3(-)-exchanger (AE3) leading to stabilization of the activity-induced intracellular acidification in CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Josiane Uwera
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Pál I, Kardos J, Dobolyi Á, Héja L. Appearance of fast astrocytic component in voltage-sensitive dye imaging of neural activity. Mol Brain 2015; 8:35. [PMID: 26043770 PMCID: PMC4455916 DOI: 10.1186/s13041-015-0127-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/24/2015] [Indexed: 12/21/2022] Open
Abstract
Background Voltage-sensitive dye (VSD) imaging and intrinsic optical signals (IOS) are widely used methods for monitoring spatiotemporal neural activity in extensive networks. In spite of that, identification of their major cellular and molecular components has not been concluded so far. Results We addressed these issues by imaging spatiotemporal spreading of IOS and VSD transients initiated by Schaffer collateral stimulation in rat hippocampal slices with temporal resolution comparable to standard field potential recordings using a 464-element photodiode array. By exploring the potential neuronal and astroglial molecular players in VSD and IOS generation, we identified multiple astrocytic mechanisms that significantly contribute to the VSD signal, in addition to the expected neuronal targets. Glutamate clearance through the astroglial glutamate transporter EAAT2 has been shown to be a significant player in VSD generation within a very short (<5 ms) time-scale, indicating that astrocytes do contribute to the development of spatiotemporal VSD transients previously thought to be essentially neuronal. In addition, non-specific anion channels, astroglial K+ clearance through Kir4.1 channel and astroglial Na+/K+ ATPase also contribute to IOS and VSD transients. Conclusion VSD imaging cannot be considered as a spatially extended field potential measurement with predominantly neuronal origin, instead it also reflects a fast communication between neurons and astrocytes.
Collapse
Affiliation(s)
- Ildikó Pál
- Group of Functional Pharmacology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
| | - Julianna Kardos
- Group of Functional Pharmacology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
| | - Árpád Dobolyi
- MTA-ELTE-NAP B Laboratory of Molecular and Systems Neurobiology, H-1117, Budapest, Hungary. .,Department of Anatomy, Human Brain Tissue Bank, Semmelweis University, H-1450, Budapest, Hungary.
| | - László Héja
- Group of Functional Pharmacology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
| |
Collapse
|
6
|
Xu L, Hao Y, Wu X, Yu P, Zhu G, Hong Z. Tenidap, an agonist of the inwardly rectifying K+channel Kir2·3, delays the onset of cortical epileptiform activity in a model of chronic temporal lobe epilepsy. Neurol Res 2013; 35:561-7. [PMID: 23561319 DOI: 10.1179/1743132813y.0000000157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Lan Xu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Yong Hao
- Department of NeurologyChanghai Hospital, Second Military Medical University, Shanghai, China
| | - Xunyi Wu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Peimin Yu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Guoxing Zhu
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| | - Zhen Hong
- Department of NeurologyHuashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Mikkelsen R, Andreasen M, Nedergaard S. Suppression of epileptiform activity by a single short-duration electric field in rat hippocampus in vitro. J Neurophysiol 2013; 109:2720-31. [DOI: 10.1152/jn.00887.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms behind the therapeutic effects of electrical stimulation of the brain in epilepsy and other disorders are poorly understood. Previous studies in vitro have shown that uniform electric fields can suppress epileptiform activity through a direct polarizing effect on neuronal membranes. Such an effect depends on continuous DC stimulation with unbalanced charge. Here we describe a suppressive effect of a brief (10 ms) DC field on stimulus-evoked epileptiform activity in rat hippocampal brain slices exposed to Cs+ (3.5 mM). This effect was independent of field polarity, was uncorrelated to changes in synchronized population activity, and persisted during blockade of synaptic transmission with Cd2+ (500 μM). Antagonists of A1, P2X, or P2Y receptors were without effect. The suppressive effect depended on the alignment of the external field with the somato-dendritic axis of CA1 pyramidal cells; however, temporal coincidence with the epileptiform activity was not essential, as suppression was detectable for up to 1 s after the field. Pyramidal cells, recorded during epileptiform activity, showed decreased discharge duration and truncation of depolarizing plateau potentials in response to field application. In the absence of hyperactivity, the applied field was followed by slow membrane potential changes, accompanied by decreased input resistance and attenuation of the depolarizing afterpotential following action potentials. These effects recovered over a 1-s period. The study suggests that a brief electric field induces a prolonged suppression of epileptiform activity, which can be related to changes in neuronal membrane properties, including attenuation of signals depending on the persisting Na+ current.
Collapse
Affiliation(s)
- Ronni Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | |
Collapse
|
8
|
Andreasen M, Nedergaard S. Heterogeneous firing behavior during ictal-like epileptiform activity in vitro. J Neurophysiol 2011; 107:1379-92. [PMID: 22157126 DOI: 10.1152/jn.00309.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Seizure activity in vivo is caused by populations of neurons displaying a high degree of variability in activity pattern during the attack. The reason for this variability is not well understood. Here we show in an in vitro preparation that hippocampal CA1 pyramidal cells display four types of afterdischarge behavior during stimulus-induced ictal-like events in the presence of Cs(+) (5 mM): type I (43.7%) consisting of high-frequency firing riding on a plateau potential; type II (28.2%) consisting of low-frequency firing with no plateau potential; type III (18.3%) consisting of high-frequency firing with each action potential preceded by a transient hyperpolarization and time-locked to population activity, no plateau potential; "passive" (9.9%) typified by no afterdischarge. Type I behavior was blocked by TTX (0.2 μM) and intracellular injection of QX314 (12.5-25 mM). TTX (0.2 μM) or phenytoin (50 μM) terminated ictal-like events, suggesting that the persistent Na(+) current (I(NaP)) is pivotal for type I behavior. Type I behavior was not correlated to intrinsic bursting capability. Blockade of the M current (I(M)) with linopirdine (10 μM) increased the ratio of type I neurons to 100%, whereas enhancing I(M) with retigabine (50-100 μM) greatly reduced the epileptiform activity. These results suggest an important role of I(M) in determining afterdischarge behavior through control of I(NaP) expression. We propose that type I neurons act as pacemakers, which, through synchronization, leads to recruitment of type III neurons. Together, they provide the "critical mass" necessary for ictogenesis to become regenerative.
Collapse
|
9
|
Cataldi M, Panuccio G, Cavaccini A, D'Antuono M, Taglialatela M, Avoli M. Involvement of inward rectifier and M-type currents in carbachol-induced epileptiform synchronization. Neuropharmacology 2010; 60:653-61. [PMID: 21144855 DOI: 10.1016/j.neuropharm.2010.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 11/16/2022]
Abstract
Exposure to cholinergic agonists is a widely used paradigm to induce epileptogenesis in vivo and synchronous activity in brain slices maintained in vitro. However, the mechanisms underlying these effects remain unclear. Here, we used field potential recordings from the lateral entorhinal cortex in horizontal rat brain slices to explore whether two different K(+) currents regulated by muscarinic receptor activation, the inward rectifier (K(IR)) and the M-type (K(M)) currents, have a role in carbachol (CCh)-induced field activity, a prototypical model of cholinergic-dependent epileptiform synchronization. To establish whether K(IR) or K(M) blockade could replicate CCh effects, we exposed slices to blockers of these currents in the absence of CCh. K(IR) channel blockade with micromolar Ba(2+) concentrations induced interictal-like events with duration and frequency that were lower than those observed with CCh; by contrast, the K(M) blocker linopirdine was ineffective. Pre-treatment with Ba(2+) or linopirdine increased the duration of epileptiform discharges induced by subsequent application of CCh. Baclofen, a GABA(B) receptor agonist that activates K(IR), abolished CCh-induced field oscillations, an effect that was abrogated by the GABA(B) receptor antagonist CGP 55845, and prevented by Ba(2+). Finally, when applied after CCh, the K(M) activators flupirtine and retigabine shifted leftward the cumulative distribution of CCh-induced event duration; this effect was opposite to what seen during linopirdine application under similar experimental conditions. Overall, our findings suggest that K(IR) rather than K(M) plays a major regulatory role in controlling CCh-induced epileptiform synchronization.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Prajerova I, Honsa P, Chvatal A, Anderova M. Neural stem/progenitor cells derived from the embryonic dorsal telencephalon of D6/GFP mice differentiate primarily into neurons after transplantation into a cortical lesion. Cell Mol Neurobiol 2010; 30:199-218. [PMID: 19707869 DOI: 10.1007/s10571-009-9443-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 08/08/2009] [Indexed: 10/20/2022]
Abstract
D6 is a promoter/enhancer of the mDach1 gene that is involved in the development of the neocortex and hippocampus. It is expressed by proliferating neural stem/progenitor cells (NSPCs) of the cortex at early stages of neurogenesis. The differentiation potential of NSPCs isolated from embryonic day 12 mouse embryos, in which the expression of green fluorescent protein (GFP) is driven by the D6 promoter/enhancer, has been studied in vitro and after transplantation into the intact adult rat brain as well as into the site of a photochemical lesion. The electrophysiological properties of D6/GFP-derived cells were studied using the whole-cell patch-clamp technique, and immunohistochemical analyses were carried out. D6/GFP-derived neurospheres expressed markers of radial glia and gave rise predominantly to immature neurons and GFAP-positive cells during in vitro differentiation. One week after transplantation into the intact brain or into the site of a photochemical lesion, transplanted cells expressed only neuronal markers. D6/GFP-derived neurons were characterised by the expression of tetrodotoxin-sensitive Na(+)-currents and K (A)- and K (DR) currents sensitive to 4-aminopyridine. They were able to fire repetitive action potentials and responded to the application of GABA. Our results indicate that after transplantation into the site of a photochemical lesion, D6/GFP-derived NSPCs survive and differentiate into neurons, and their membrane properties are comparable to those transplanted into the non-injured cortex. Therefore, region-specific D6/GFP-derived NSPCs represent a promising tool for studying neurogenesis and cell replacement in a damaged cellular environment.
Collapse
Affiliation(s)
- Iva Prajerova
- Laboratory of Neurobiology, Department of Cellular Neurophysiology, Institute of Experimental Medicine ASCR v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | | | | | | |
Collapse
|
11
|
Kraglund N, Andreasen M, Nedergaard S. Differential influence of non-synaptic mechanisms in two in vitro models of epileptic field bursts. Brain Res 2010; 1324:85-95. [PMID: 20153738 DOI: 10.1016/j.brainres.2010.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/01/2010] [Accepted: 02/04/2010] [Indexed: 12/26/2022]
Abstract
Non-synaptic interactions are known to promote epileptiform activity through mechanisms that have primarily been studied in one particular in vitro model (low Ca(2+) model). Here we characterize another non-synaptic model, where ictal-like field bursts are induced in the CA1 area of rat hippocampal slices by exposure to Cs(+) (4-5mM) together with blockers of fast chemical synaptic transmission, and compare it with the low Ca(2+) model. The Cs-induced field bursts were blocked by 1 microM tetrodotoxin, but persisted in the presence of 200 microM Cd(2+) or 300 microM Ni(2+). Hyperosmotic condition (addition of 30 mM sucrose), reduced burst amplitude, but, unlike field bursts induced by 0mM Ca(2+)/5.25 mM K(+), sucrose had no effect on frequency or duration. Intracellular alkalinization-acidification sequence induced by NH(4)Cl potentiated and blocked, respectively, the field bursts. Octanol (100-250 microM) blocked all activity in most experiments. A quantitative comparison of three gap junction antagonists (carbenoxolone (100 microM), quinidine (100-250 microM), and endothelin-3 (1-2 microM)) indicated that gap junction communication is implicated in both models. However, endothelin-3 had selective effect on the low Ca(2+)-induced field burst. The data suggest that extracellular space-dependent processes, including field effects, significantly contribute to ongoing field burst activity, whereas initiation of a field burst can occur with or without the aid of such interactions, depending on the level of neuronal excitability. Gap junctions seem to have a general role in initiating field bursts. However, the contribution to this effect from neuronal versus glial connexin types differs in the two epileptic models studied.
Collapse
Affiliation(s)
- Nikolaj Kraglund
- Department of Physiology and Biophysics, Aarhus University, Arhus C, Denmark
| | | | | |
Collapse
|
12
|
Søe R, Andreasen M, Klaerke DA. Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by extracellular cations. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1706-13. [PMID: 19616510 DOI: 10.1016/j.bbamem.2009.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 06/29/2009] [Accepted: 07/06/2009] [Indexed: 11/20/2022]
Abstract
This work demonstrates that extracellular Na(+) modulates the cloned inwardly rectifying K(+) channels Kir4.1 and Kir4.1-Kir5.1. Whole-cell patch clamp studies on astrocytes have previously indicated that inward potassium currents are regulated by external Na(+). We expressed Kir4.1 and Kir4.1-Kir5.1 in Xenopus oocytes to disclose if Kir4.1 and/or Kir4.1-Kir5.1 at the molecular level are responsible for the observed effect of [Na(+)](o) and to investigate the regulatory mechanism of external cations further. Our results showed that Na(+) has a biphasic modulatory effect on both Kir4.1 and Kir4.1-Kir5.1 currents. Depending on the Na(+)-concentration and applied voltage, the inward Kir4.1/Kir4.1-Kir5.1 currents are either enhanced or reduced by extracellular Na(+). The Na(+) activation was voltage-independent, whereas the Na(+)-induced reduction of the Kir4.1 and Kir4.1-Kir5.1 currents was both concentration-, time- and voltage-dependent. Our data indicate that the biphasic effect of extracellular Na(+)on the Kir4.1 and Kir4.1-Kir5.1 channels is caused by two separate mechanisms.
Collapse
Affiliation(s)
- Rikke Søe
- Department of Physiology and Biochemistry, IBHV, Faculty of Life Sciences, University of Copenhagen. Grønnegaardsvej 7, 1870 Frederiksberg C, Denmark.
| | | | | |
Collapse
|
13
|
Skov J, Nedergaard S, Andreasen M. The slow Ca2+-dependent K+-current facilitates synchronization of hyperexcitable pyramidal neurons. Brain Res 2009; 1252:76-86. [DOI: 10.1016/j.brainres.2008.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/13/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
|
14
|
PKA-mediated phosphorylation is a novel mechanism for levetiracetam, an antiepileptic drug, activating ROMK1 channels. Biochem Pharmacol 2008; 76:225-35. [DOI: 10.1016/j.bcp.2008.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 11/22/2022]
|