1
|
Jayachandran M, Viena TD, Garcia A, Veliz AV, Leyva S, Roldan V, Vertes RP, Allen TA. Nucleus reuniens transiently synchronizes memory networks at beta frequencies. Nat Commun 2023; 14:4326. [PMID: 37468487 PMCID: PMC10356781 DOI: 10.1038/s41467-023-40044-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Episodic memory-based decision-making requires top-down medial prefrontal cortex and hippocampal interactions. This integrated prefrontal-hippocampal memory state is thought to be organized by synchronized network oscillations and mediated by connectivity with the thalamic nucleus reuniens (RE). Whether and how the RE synchronizes prefrontal-hippocampal networks in memory, however, remains unknown. Here, we recorded local field potentials from the prefrontal-RE-hippocampal network while rats engaged in a nonspatial sequence memory task, thereby isolating memory-related activity from running-related oscillations. We found that synchronous prefrontal-hippocampal beta bursts (15-30 Hz) dominated during memory trials, whereas synchronous theta activity (6-12 Hz) dominated during non-memory-related running. Moreover, RE beta activity appeared first, followed by prefrontal and hippocampal synchronized beta, suggesting that prefrontal-hippocampal beta could be driven by the RE. To test whether the RE is capable of driving prefrontal-hippocampal beta synchrony, we used an optogenetic approach (retroAAV-ChR2). RE activation induced prefrontal-hippocampal beta coherence and reduced theta coherence, matching the observed memory-driven network state in the sequence task. These findings are the first to demonstrate that the RE contributes to memory by driving transient synchronized beta in the prefrontal-hippocampal system, thereby facilitating interactions that underlie memory-based decision-making.
Collapse
Affiliation(s)
- Maanasa Jayachandran
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Tatiana D Viena
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Andy Garcia
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Abdiel Vasallo Veliz
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Sofia Leyva
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Valentina Roldan
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA.
- Department of Environmental & Occupational Health, Robert Stempel College of Public Health, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
2
|
Hippocampal Disinhibition Reduces Contextual and Elemental Fear Conditioning While Sparing the Acquisition of Latent Inhibition. eNeuro 2022; 9:ENEURO.0270-21.2021. [PMID: 34980662 PMCID: PMC8805190 DOI: 10.1523/eneuro.0270-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampal neural disinhibition, i.e., reduced GABAergic inhibition, is a key feature of schizophrenia pathophysiology. The hippocampus is an important part of the neural circuitry that controls fear conditioning and can also modulate prefrontal and striatal mechanisms, including dopamine signaling, which play a role in salience modulation. Consequently, hippocampal neural disinhibition may contribute to impairments in fear conditioning and salience modulation reported in schizophrenia. Therefore, we examined the effect of ventral hippocampus (VH) disinhibition in male rats on fear conditioning and salience modulation, as reflected by latent inhibition (LI), in a conditioned emotional response (CER) procedure. A flashing light was used as the conditioned stimulus (CS), and conditioned suppression was used to index conditioned fear. In experiment 1, VH disinhibition via infusion of the GABA-A receptor antagonist picrotoxin before CS pre-exposure and conditioning markedly reduced fear conditioning to both the CS and context; LI was evident in saline-infused controls but could not be detected in picrotoxin-infused rats because of the low level of fear conditioning to the CS. In experiment 2, VH picrotoxin infusions only before CS pre-exposure did not affect the acquisition of fear conditioning or LI. Together, these findings indicate that VH neural disinhibition disrupts contextual and elemental fear conditioning, without affecting the acquisition of LI. The disruption of fear conditioning resembles aversive conditioning deficits reported in schizophrenia and may reflect a disruption of neural processing both within the hippocampus and in projection sites of the hippocampus.
Collapse
|
3
|
A Simulation on Relation between Power Distribution of Low-Frequency Field Potentials and Conducting Direction of Rhythm Generator Flowing through 3D Asymmetrical Brain Tissue. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the power of low-frequency oscillatory field potentials (FP) has been extensively applied previously, few studies have investigated the influence of conducting direction of deep-brain rhythm generator on the power distribution of low-frequency oscillatory FPs on the head surface. To address this issue, a simulation was designed based on the principle of electroencephalogram (EEG) generation of equivalent dipole current in deep brain, where a single oscillatory dipole current represented the rhythm generator, the dipole moment for the rhythm generator’s conducting direction (which was orthogonal and rotating every 30 degrees and at pointing to or parallel to the frontal lobe surface) and the (an)isotropic conduction medium for the 3D (a)symmetrical brain tissue. Both the power above average (significant power value, SP value) and its space (SP area) of low-frequency oscillatory FPs were employed to respectively evaluate the strength and the space of the influence. The computation was conducted using the finite element method (FEM) and Hilbert transform. The finding was that either the SP value or the SP area could be reduced or extended, depending on the conducting direction of deep-brain rhythm generator flowing in the (an)isotropic medium, suggesting that the 3D (a)symmetrical brain tissue could decay or strengthen the spatial spread of a rhythm generator conducting in a different direction.
Collapse
|