1
|
Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. Biomedicines 2021; 9:biomedicines9010086. [PMID: 33477364 PMCID: PMC7830943 DOI: 10.3390/biomedicines9010086] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a highly conserved and ubiquitously expressed metalloprotease that degrades insulin and several other intermediate-size peptides. For many decades, IDE had been assumed to be involved primarily in hepatic insulin clearance, a key process that regulates availability of circulating insulin levels for peripheral tissues. Emerging evidence, however, suggests that IDE has several other important physiological functions relevant to glucose and insulin homeostasis, including the regulation of insulin secretion from pancreatic β-cells. Investigation of mice with tissue-specific genetic deletion of Ide in the liver and pancreatic β-cells (L-IDE-KO and B-IDE-KO mice, respectively) has revealed additional roles for IDE in the regulation of hepatic insulin action and sensitivity. In this review, we discuss current knowledge about IDE’s function as a regulator of insulin secretion and hepatic insulin sensitivity, both evaluating the classical view of IDE as an insulin protease and also exploring evidence for several non-proteolytic functions. Insulin proteostasis and insulin sensitivity have both been highlighted as targets controlling blood sugar levels in type 2 diabetes, so a clearer understanding the physiological functions of IDE in pancreas and liver could led to the development of novel therapeutics for the treatment of this disease.
Collapse
|
2
|
Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34:198-215. [PMID: 30968756 DOI: 10.1152/physiol.00048.2018] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Upon its secretion from pancreatic β-cells, insulin reaches the liver through the portal circulation to exert its action and eventually undergo clearance in the hepatocytes. In addition to insulin secretion, hepatic insulin clearance regulates the homeostatic level of insulin that is required to reach peripheral insulin target tissues to elicit proper insulin action. Receptor-mediated insulin uptake followed by its degradation constitutes the basic mechanism of insulin clearance. Upon its phosphorylation by the insulin receptor tyrosine kinase, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) takes part in the insulin-insulin receptor complex to increase the rate of its endocytosis and targeting to the degradation pathways. This review summarizes how this process is regulated and how it is associated with insulin-degrading enzyme in the liver. It also discusses the physiological implications of impaired hepatic insulin clearance: Whereas reduced insulin clearance cooperates with increased insulin secretion to compensate for insulin resistance, it can also cause hepatic insulin resistance. Because chronic hyperinsulinemia stimulates hepatic de novo lipogenesis, impaired insulin clearance also causes hepatic steatosis. Thus impaired insulin clearance can underlie the link between hepatic insulin resistance and hepatic steatosis. Delineating these regulatory pathways should lead to building more effective therapeutic strategies against metabolic syndrome.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences, Ohio University , Athens, Ohio.,Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos , Burgos , Spain
| |
Collapse
|
3
|
Schonhoft JD, Das A, Achamyeleh F, Samdani S, Sewell A, Mao H, Basu S. ILPR repeats adopt diverse G-quadruplex conformations that determine insulin binding. Biopolymers 2010; 93:21-31. [PMID: 19688813 DOI: 10.1002/bip.21289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The insulin-linked polymorphic region (ILPR) is a VNTR region located upstream of the insulin (INS) gene consisting of the repeat 5'-ACAGGGGTGTGGGG (repeat a) and several less abundant sequence repeats (b-n). Here, we have investigated the structural polymorphism of G-quadruplexes formed from the most common repeat sequences (a-c) and their effect on insulin protein binding. We first established that the ILPR repeats "b" and "c" can form quadruplex structures. Insulin has previously been shown to bind a G-quadruplex formed by a dimer of the repeat "a". Our findings show that insulin binds preferentially to the repeat "a" G-quadruplex (K(d) = 0.17 + or - 0.03 microM) over G-quadruplexes formed from other ILPR repeats that were tested (K(d)s from 0.71 + or - 0.15 to 1.07 + or - 0.09 microM). Additionally, the Watson-Crick complementary relationship between the loop regions of repeat "a" (ACA and TGT) seemingly play an important role in favoring a specific G-quadruplex conformation, which based on our data is critical for insulin binding. Affinity for insulin is reduced in sequences lacking the putative WC complementarity, however upon engineered restoration of complementarity, insulin binding is recovered. A DMS footprinting assay on the repeat "a" G-quadruplex in the presence of insulin, combined with binding affinities for ILPR mutants led to identification of a loop nucleotide critical for binding. Uniquely, insulin shows clear preference for binding to the G-quadruplexes with the more antiparallel feature. Collectively, our results illustrate the specific nature of insulin binding to the ILPR G-quadruplexes and begin to provide molecular details on such interactions.
Collapse
Affiliation(s)
- Joseph D Schonhoft
- Department of Chemistry, School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Koschorreck M, Gilles ED. Mathematical modeling and analysis of insulin clearance in vivo. BMC SYSTEMS BIOLOGY 2008; 2:43. [PMID: 18477391 PMCID: PMC2430945 DOI: 10.1186/1752-0509-2-43] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 05/13/2008] [Indexed: 01/13/2023]
Abstract
BACKGROUND Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. RESULTS We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepatocytes. The model describes renal and hepatic insulin degradation, pancreatic insulin secretion and nonspecific insulin binding in the liver. Hepatic insulin receptor activation by insulin binding, receptor internalization and autophosphorylation is explicitly included in the model. We present a detailed mathematical analysis of insulin degradation and insulin clearance. Stationary model analysis shows that degradation rates, relative contributions of the different tissues to total insulin degradation and insulin clearance highly depend on the insulin concentration. CONCLUSION This study provides a detailed dynamic model of insulin concentration in the blood and of insulin receptor activation in hepatocytes. Experimental data sets from literature are used for the model validation. We show that essential dynamic and stationary characteristics of insulin degradation are nonlinear and depend on the actual insulin concentration.
Collapse
Affiliation(s)
- Markus Koschorreck
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr, 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
5
|
Connor AC, Frederick KA, Morgan EJ, McGown LB. Insulin capture by an insulin-linked polymorphic region G-quadruplex DNA oligonucleotide. J Am Chem Soc 2007; 128:4986-91. [PMID: 16608332 PMCID: PMC2556509 DOI: 10.1021/ja056097c] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insulin capture by a G-quadruplex DNA oligonucleotide containing a two-repeat sequence of the insulin-linked polymorphic region (ILPR) of the human insulin gene promoter region is reported. The immobilized oligonucleotide was demonstrated to capture human insulin from standard solutions and from nuclear extracts of pancreatic cells with high selectivity, using affinity MALDI mass spectrometry and affinity capillary chromatography. Insulin was preferentially captured by the two-repeat ILPR oligonucleotide over another G-quadruplex-forming oligonucleotide, the thrombin-binding aptamer, as well as over a single repeat of the ILPR sequence that is not capable of forming the G-quadruplex architecture. Binding was shown to involve the beta chain of insulin. The discovery raises the possibility that insulin may bind to G-quadruplex DNA formed in the ILPR in vivo and thereby play a role in modulation of insulin gene expression, and it provides a basis for design of insulin analogues to probe this hypothesis. The availability of a DNA ligand to human insulin has analytical importance as well, offering an alternative to antibodies for in vitro or in vivo detection and sensing of insulin as well as its isolation and purification from biological samples.
Collapse
Affiliation(s)
- Adam C. Connor
- Department of Chemistry, P. M. Gross Chemical Laboratory, Duke University, Durham, NC 27708
| | - Kimberley A. Frederick
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA 01610
| | - Elizabeth J. Morgan
- Department of Chemistry and Chemical Biology, 118 Cogswell, Rensselaer Polytechnic Institute, Troy, NY 12180, Tel: (518) 276-3861, Fax: (518) 276-4887
| | - Linda B. McGown
- Department of Chemistry and Chemical Biology, 118 Cogswell, Rensselaer Polytechnic Institute, Troy, NY 12180, Tel: (518) 276-3861, Fax: (518) 276-4887,
| |
Collapse
|
6
|
Ou XH, Kuang AR, Peng X, Zhong YG. Study on the possibility of insulin as a carrier of IUdR for hepatocellular carcinoma-targeted therapy. World J Gastroenterol 2003; 9:1675-8. [PMID: 12918099 PMCID: PMC4611522 DOI: 10.3748/wjg.v9.i8.1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the possibility of using insulin as a carrier for carcinoma-targeted therapy mediated by receptor, and to investigate the expression of insulin receptor in human hepatocellular carcinoma and the receptor binding characteristics of insulin-IUdR (iododeoxyuridine).
METHODS: IUdR was covalently conjugated to insulin. Receptor binding assays of 125I-insulin to human hepatocellular carcinoma and its adjacent tissue were performed. Competitive displacements of 125I-insulin by insulin and insulin-IUdR to bind to insulin receptor were respectively carried out. Statistical comparisons between the means were made with paired t-test at a confidence level of 95%.
RESULTS: The data indicated that there were high- and low- affinity binding sites for 125I-insulin on both hepatocellular carcinoma and its adjacent tissue. Hepatocellular carcinoma had a significantly higher Bmax for high affinity binding site than its adjacent liver tissue (P < 0.05, t = 2.275). Insulin-IUdR competed as effectively as insulin with 125I-insulin for binding to insulin receptor. Values of IC501, C502, KI1 and KI2 for insulin-IUdR were 11.50 ± 2.83 nmol·L-1, 19.35 ± 5.11 nmol·L-1, 11.26 ± 2.65 nmol·L-1 and 19.30 ± 5.02 nmol·L-1 respectively, and for insulin were 5.01 ± 1.24 nmol·L-1,17.75 ± 4.86 nmol·L-1, 4.85 ± 1.12 nmol·L-1 and 17.69 ± 4.81 nmol·L-1, respectively. Values of IC501 and KI1 for insulin-IUdR were significantly higher than that for insulin (P < 0.01, t = 4.537 and 4.813).
CONCLUSION: It is possible to use insulin as a carrier for carcinoma-targeted therapy mediated by receptor.
Collapse
Affiliation(s)
- Xiao-Hong Ou
- Department of Nuclear Medicine, West China Hospital of Sichuan University, China
| | | | | | | |
Collapse
|
7
|
Abstract
Insulin (Ins) and various other hormones and growth factors have been shown to be rapidly internalized and translocated to the cell nucleus. This review summarizes the mechanisms that are involved in the translocation of Ins to the nucleus, and discusses its possible role in Ins action, based on observations by the authors and others. Ins is internalized to endosomes by both receptor-mediated and fluid-phase endocytosis, the latter occurring only at high Ins concentrations. The authors recently demonstrated the caveolae are the primary cell membrane locations responsible for initiating the signal transduction cascade induced by Ins. Once Ins is internalized, Ins dissociates from the Ins receptor in the endosome, and is translocated to the cytoplasm, where most Ins is degraded by Ins-degrading enzyme (IDE), although how the polypeptides cross the lipid bilayer is unknown. Some Ins escapes the degradation and binds to cytosolic Ins-binding proteins (CIBPs), in addition to IDE. IDE and some CIBPs are known to be binding proteins for other hormones or their receptors, and are involved in gene regulation, suggesting physiological relevance of CIBPs in the signaling of Ins and other hormones. Ins is eventually translocated through the nuclear pore to the nucleus, where Ins tightly associates with nuclear matrix. The role of Ins internalization and translocation to the nucleus is still controversial, although there is substantial evidence to support its role in cellular responses caused by Ins. Many studies indicate that nuclear translocation of various growth factors and hormones plays an important role in cell proliferation or DNA synthesis. It would be reasonable to suggest that Ins internalization, its association with CIBPs, and its translocation to the nucleus may be essential for the regulation of nuclear events by Ins.
Collapse
Affiliation(s)
- S Harada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | | | |
Collapse
|
8
|
Pitterle DM, Sperling RT, Myers MG, White MF, Blackshear PJ. Early biochemical events in insulin-stimulated fluid phase endocytosis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E94-E105. [PMID: 9886955 DOI: 10.1152/ajpendo.1999.276.1.e94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the initial molecular mechanisms by which cells nonselectively internalize extracellular solutes in response to insulin. Insulin-stimulated fluid phase endocytosis (FPE) was examined in responsive cells, and the roles of the insulin receptor, insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3'-kinase (PI 3'-kinase), Ras, and mitogen-activated protein kinase kinase (MEK) were assessed. Active insulin receptors were essential, as demonstrated by the stimulation of FPE by insulin in HIRc-B cells (Rat-1 cells expressing 1.2 x 10(6) normal insulin receptors/cell) but not in untransfected Rat-1 cells or in Rat-1 cells expressing the inactive A/K1018 receptor. IRS-1 expression augmented insulin-stimulated FPE, as assessed in 32D cells, a hematopoietic precursor cell line lacking endogenous IRS-1. Insulin-stimulated FPE was inhibited in mouse brown adipose tissue (BAT) cells expressing the 17N dominant negative mutant Ras and was augmented in cells expressing wild-type Ras. The MEK inhibitor PD-98059 had little effect on insulin-stimulated FPE in BAT cells. In 32D cells, but not in HIRc-B and BAT cells, insulin-stimulated FPE was inhibited by 10 nM wortmannin, an inhibitor of PI 3'-kinase. The results indicate that the insulin receptor, IRS-1, Ras, and, perhaps in certain cell types, PI 3'-kinase are involved in mediating insulin-stimulated FPE.
Collapse
Affiliation(s)
- D M Pitterle
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Insulin degradation is a regulated process that plays a role in controlling insulin action by removing and inactivating the hormone. Abnormalities in insulin clearance and degradation are present in various pathological conditions including type 2 diabetes and obesity and may be important in producing clinical problems. The uptake, processing, and degradation of insulin by cells is a complex process with multiple intracellular pathways. Most evidence supports IDE as the primary degradative mechanism, but other systems (PDI, lysosomes, and other enzymes) undoubtedly contribute to insulin metabolism. Recent studies support a multifunctional role for IDE, as an intracellular binding, regulatory, and degradative protein. IDE increases proteasome and steroid hormone receptor activity, and this activation is reversed by insulin. This raises the possibility of a direct intracellular interaction of insulin with IDE that could modulate protein and fat metabolism. The recent findings would place intracellular insulin-IDE interaction into the insulin signal transduction pathway for mediating the intermediate effects of insulin on fat and protein turnover.
Collapse
Affiliation(s)
- W C Duckworth
- Veterans Affairs Medical Center, Omaha, Nebraska 68105, USA
| | | | | |
Collapse
|
10
|
Smith RM, Harada S, Jarett L. Insulin internalization and other signaling pathways in the pleiotropic effects of insulin. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 173:243-80. [PMID: 9127955 DOI: 10.1016/s0074-7696(08)62479-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insulin is the major anabolic hormone in humans and affects multiple cellular processes. Insulin rapidly regulates short-term effects on carbohydrate, lipid, and protein metabolism and is also a potent growth factor controlling cell proliferation and differentiation. The metabolic and growth-related effects require insulin binding to its receptor and receptor phosphorylation. Evidence suggests these events result in subsequent substrate phosphorylation and activation of multiple signaling pathways involving Src homology domain-containing proteins and the internalization of the insulin:receptor complex. The role of insulin internalization in insulin action is largely speculative. For more than two decades, extensive investigation has been carried out by numerous laboratories of the mechanisms by which insulin causes its pleiotropic responses and the cellular processing of insulin receptors. This chapter reviews our current knowledge of the phosphorylation signaling pathways activated by insulin and presents evidence that substrates other than insulin receptor substrate-1 are involved in insulin's regulation of immediate-early gene expression. We also review the mechanisms involved in insulin internalization and present evidence that internalization may play a key role in insulin action through both signal transduction processes and translocation of insulin to the cell cytoplasm and nucleus.
Collapse
Affiliation(s)
- R M Smith
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | |
Collapse
|
11
|
Chang LL, Stout LE, Wong WD, Buls JG, Rothenberger DA, Shier WT, Sorenson RL, Bai JP. Immunohistochemical localization of insulin-degrading enzyme along the rat intestine, in the human colon adenocarcinoma cell line (Caco-2), and in human ileum. J Pharm Sci 1997; 86:116-9. [PMID: 9002470 DOI: 10.1021/js960035q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin-degrading enzyme (IDE) has been implicated in the intracellular degradation of insulin in insulin target cells. Knowledge of the existence of this enzyme in the intestine will be beneficial to the achievement of clinical oral efficacy of insulin. A comparative study was conducted with rat intestine, human colon adenocarcinoma (Caco-2) cells, and human ileum. Confocal microscopy analysis using the anti-IDE antibody showed that IDE was localized in the mucosal cells of rat and human intestines, as well as in Caco-2 cells. Immunostaining of this enzyme was homogeneous throughout the cell excluding nucleus, indicating a typical cytosolic distribution in rat and human enterocytes and in Caco-2 cells.
Collapse
Affiliation(s)
- L L Chang
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- L C Pagliaro
- University of Texas M.D. Anderson Cancer Center, Department of Clinical Investigation, Houston 77030, USA
| |
Collapse
|
13
|
Harada S, Smith RM, Smith JA, Shah N, Hu DQ, Jarett L. Insulin-induced egr-1 expression in Chinese hamster ovary cells is insulin receptor and insulin receptor substrate-1 phosphorylation-independent. Evidence of an alternative signal transduction pathway. J Biol Chem 1995; 270:26632-8. [PMID: 7592888 DOI: 10.1074/jbc.270.44.26632] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insulin's effects primarily are initiated by insulin binding to its plasma membrane receptor and the sequential tyrosine phosphorylation of the insulin receptor and intracellular substrates, such as insulin receptor substrate-1 (IRS-1). However, studies suggest some insulin effects, including those at the nucleus, may not be regulated by this pathway. The present study compared the levels of insulin binding, insulin receptor and IRS-1 tyrosine phosphorylation, and phosphatidylinositol 3'-kinase activity to immediate early gene c-fos and egr-1 mRNA expression in Chinese hamster ovary (CHO) cells expressing only neomycin-resistant plasmid (CHONEO), overexpressing wild type human insulin receptor (CHOHIRc) or ATP binding site-mutated insulin receptors (CHOA1018K). Insulin binding in CHONEO cells was markedly lower than that in other cell types. 10 nM insulin significantly increased tyrosine phosphorylation of insulin receptor and IRS-1 in CHOHIRc cells. Phosphorylation of insulin receptor and IRS-1 in CHONEO and CHOA1018K cells was not detected in the presence or absence of insulin. Similarly, insulin increased phosphatidylinositol 3-kinase activity only in CHOHIRc cells. As determined by Northern blot, nuclear run-on analysis, and in situ hybridization, insulin induced c-fos mRNA expression, through transcription, in CHOHIRc cells but not in CHONEO and CHOA1018K cells, consistent with previous reports. In contrast, all three cell types showed a similar insulin dose-dependent increase of egr-1 mRNA expression through transcription. These data indicated that insulin-induced egr-1 mRNA expression did not correlate with the levels of insulin binding to insulin receptor or phosphorylation of insulin receptor and IRS-1. These results suggest that different mechanisms are involved in induction of c-fos and egr-1 mRNA expression by insulin, the former by the more classic insulin receptor tyrosine kinase pathway and the latter by a yet to be determined alternative signal transduction pathway.
Collapse
Affiliation(s)
- S Harada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
14
|
Harada S, Smith RM, Smith JA, Shah N, Jarett L. Demonstration of specific insulin binding to cytosolic proteins in H35 hepatoma cells, rat liver and skeletal muscle. Biochem J 1995; 306 ( Pt 1):21-8. [PMID: 7864812 PMCID: PMC1136476 DOI: 10.1042/bj3060021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We previously demonstrated that internalized insulin enters the cytoplasm before accumulating in nuclei of H35 rat hepatoma cells. This finding raises the possibility that insulin may interact with cytosolic proteins in addition to insulin-degrading enzyme (IDE). In the present study, cytosol from H35 hepatoma cells, rat liver or muscle was incubated with A14- or B26-125I-insulin at 4 degrees C for 5-120 min in the absence or presence of 25 micrograms/ml unlabelled insulin. 125I-insulin was cross-linked to cytosolic proteins by disuccinimidyl suberate and analysed by reducing or non-reducing SDS/PAGE and autoradiography. Our results demonstrate the presence of both tissue-specific and common cytosolic proteins which specifically bind insulin. In muscle cytosol, only two proteins of 27 and 110 kDa were specifically labelled with B26-125I-insulin. Seven major bands, of 27, 45, 55, 60, 76, 82 and 110 kDa, were labelled in rat liver cytosol. Detection of cytosolic insulin-binding proteins in H35-cell cytosol was dependent on cell-culture conditions. Labelling in cytosol from serum-deprived cells was decreased or absent compared with cytosol prepared from serum-fed or serum-deprived cells treated with 100 ng/ml insulin for 1 h before preparation of the cytosol, in which six bands, of 32, 41, 45, 55, 82 and 110 kDa, were specifically labelled with B26-125I-insulin. This result suggests that the concentration or binding activity of some cytosolic insulin-binding proteins is rapidly regulated. Labelling of both rat liver and H35 cytosolic insulin-binding proteins was time-dependent, and decreased or disappeared at 120 min in parallel with the degradation of labelled insulin. Fewer bands were specifically labelled with A14-125I-insulin than with B26-125I-insulin. The number of labelled bands observed under reducing and non-reducing conditions was not different in any of the cytosols. The 110 kDa band in all cytosols was identified as IDE by Western-blot analysis; the other proteins did not react with anti-IDE antibody and remain unidentified. 1,10-Phenanthroline (2 mM) increased IDE labelling, but decreased the labelling of 82 and 27 kDa bands. The marked difference in the number of cytosolic insulin-binding proteins in muscle and either H35 cells or liver suggests both that the labelling is specific and that these proteins serve a function and may be involved in some heretofore unknown mechanism of the signalling pathway by which insulin regulates cell growth or differentiation.
Collapse
Affiliation(s)
- S Harada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | | | |
Collapse
|
15
|
Hawker JR, Granger HJ. Nuclear accumulation of exogenous basic fibroblast growth factor in endothelial, fibroblast, and myoblast cell lines results in diverse biological responses. In Vitro Cell Dev Biol Anim 1994; 30A:653-63. [PMID: 7531096 DOI: 10.1007/bf02631268] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During studies comparing 125I-bFGF internalization between endothelial cells and other cell types, we found, unexpectedly, internalization and nuclear translocation of exogenously added 125I-bFGF in two cell lines: Chinese hamster ovary cells (CHO) and rat L6 myoblasts. These cell lines were previously reported to be devoid of FGF receptors. Furthermore, CHO cells showed a weak mitogenic response to added bFGF, while L6 cells were mitogenically unresponsive. By comparison, coronary venular endothelial cells (CVEC), BALB/c 3T3 fibroblasts, and BHK-21 cells, demonstrated internalization and nuclear translocation of added 125I-bFGF, and mitogenic responsiveness to the growth factor. Insulin alone stimulated DNA synthesis in all cell types, yet augmented bFGF-dependent DNA synthesis only in CVEC, 3T3, and BHK. All five cell types expressed FGF receptors as assessed by covalent crosslinking with 125I-bFGF and immunoblotting with anti-FGF receptor antibodies. Differing rates of cytoplasmic and nuclear accumulation of 125I-bFGF and partial inhibition of internalization by pretreatment of CVEC with chlorate support a recent model that bFGF can internalize by two mechanisms. Insulin did not significantly affect 125I-bFGF internalization or metabolism in any cell type. bFGF treatment resulted in weak inhibition of RNA synthesis in L6 cells. bFGF appears firmly bound to the nuclear matrix as little nuclear-bound 125I-bFGF in CVEC is released by DNAse I or RNAse A digestion, while washes with 0.5 M NaCl result in partial release. Nuclear bFGF may thus be involved in regulation of nuclear events (e.g., gene transcription and/or DNA replication).
Collapse
Affiliation(s)
- J R Hawker
- Microcirculation Research Institute, College of Medicine, Texas A&M University Health Science Center, College Station 77843
| | | |
Collapse
|
16
|
Harada S, Smith RM, Jarett L. 1,10-Phenanthroline increases nuclear accumulation of insulin in response to inhibiting insulin degradation but has a biphasic effect on insulin's ability to increase mRNA levels. DNA Cell Biol 1994; 13:487-93. [PMID: 8024692 DOI: 10.1089/dna.1994.13.487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous reports demonstrated that insulin is translocated through the cytoplasm to the nucleus of H35 hepatoma cells and suggested that nuclear insulin may be involved in stimulating transcription of immediate-early genes. In a recent study, inhibition of insulin-degrading enzyme with 1,10-phenanthroline, a Zn2+ chelator, caused a significant increase in the nuclear accumulation of insulin. The present study characterized the effects of 1,10-phenanthroline and its nonchelating isomer, 1,7-phenanthroline, on insulin degradation, nuclear accumulation, and stimulation of immediate-early gene expression. 1,10- but not 1,7-phenanthroline inhibited insulin degradation and increased nuclear accumulation of insulin in a dose-dependent manner. 1,7-phenanthroline caused a dose-dependent decrease in the expression of insulin-stimulated immediate-early genes, but had no significant effect on alpha-tubulin mRNA levels. In the presence of insulin, Northern analysis revealed that 1,10-phenanthroline at all concentrations tested increased alpha-tubulin mRNA levels, but had a biphasic effect on insulin-stimulated immediate-early gene expression. At low concentrations (5-200 microM), 1,10-phenanthroline increased the expression of insulin-stimulated g33, c-fos, and Egr-1 mRNA. At concentrations greater than 1 mM, insulin-stimulated immediate-early gene expression was decreased similar to the effect seen with 1,7-phenanthroline. Nuclear run-on analysis demonstrated that high concentrations of 1,10-phenanthroline decreased insulin-stimulated immediate-early gene transcription but had no effect on transcription of alpha-tubulin. However, low concentrations of 1,10-phenanthroline did not increase transcription of any genes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Harada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | |
Collapse
|