1
|
Wang C, Wang J, Wan R, Kurihara H, Wang M. The causal association between circulating cytokines with the risk of frailty and sarcopenia under the perspective of geroscience. Front Endocrinol (Lausanne) 2024; 15:1293146. [PMID: 38505750 PMCID: PMC10948489 DOI: 10.3389/fendo.2024.1293146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Circulating cytokines were considered to play a critical role in the initiation and propagation of sarcopenia and frailty from observational studies. This study aimed to find the casual association between circulating cytokines and sarcopenia and frailty from a genetic perspective by two-sample Mendelian randomization (MR) analysis. Methods Data for 41 circulating cytokines were extracted from the genome-wide association study dataset of 8,293 European participants. Inverse-variance weighted (IVW) method, MR-Egger, and weighted median method were applied to assess the relationship of circulating cytokines with the risk of aging-related syndromes and frailty. Furthermore, MR-Egger regression was used to indicate the directional pleiotropy, and Cochran's Q test was used to verify the potential heterogeneity. The "leave-one-out" method was applied to visualize whether there was a causal relationship affected by only one anomalous single-nucleotide polymorphisms. Results Genetic predisposition to increasing levels of interleukin-10 (IL-10), IL-12, and vascular endothelial growth factor (VEGF) was associated with the higher risk of low hand grip strength according to the IVW method [R = 1.05, 95% CI = 1.01-1.10, P = 0.028, false discovery rate (FDR)-adjusted P = 1.000; OR = 1.03, 95% CI = 1.00-1.07, P = 0.042, FDR-adjusted P = 0.784; OR = 1.02, 95% CI = 1.00-1.05, P = 0.038, FDR-adjusted P = 0.567]. Furthermore, genetically determined higher macrophage colony-stimulating factors (M-CSFs) were associated with a lower presence of appendicular lean mass (OR = 1.01, 95% CI = 1.00-1.02, P = 0.003, FDR-adjusted P = 0.103). Monokine induced by interferon-γ (MIG) and tumor necrosis factor-beta (TNF-β) were associated with a higher risk of frailty (OR = 1.03, 95% CI = 1.01-1.05, P < 0.0001, FDR-adjusted P = 0.012; OR = 1.01, 95% CI = 1.00-1.03, P = 0.013, FDR-adjusted P = 0.259). In this study, we did not find heterogeneity and horizontal pleiotropy between the circulating cytokines and the risk of frailty and sarcopenia. Conclusion Genetic predisposition to assess IL-10, IL-12, and VEGF levels was associated with a higher risk of low hand grip strength and M-CSF with the presence of appendicular lean mass. The high levels of TNF-β and MIG were associated with a higher risk of frailty. More studies will be required to explore the molecular biological mechanisms underlying the action of inflammatory factors.
Collapse
Affiliation(s)
- Congzhi Wang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Jiazhi Wang
- Sports Institute, Chi Zhou College, Chizhou, Anhui, China
| | - Rui Wan
- Business School, Yunnan University of Finance and Economics, Kunming, Yunnan, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine (TCM), Modernization, and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine (TCM) and New Drugs Research, Jinan University, Guangzhou, China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| |
Collapse
|
2
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
3
|
Mierzejewski B, Ciemerych MA, Streminska W, Janczyk-Ilach K, Brzoska E. miRNA-126a plays important role in myoblast and endothelial cell interaction. Sci Rep 2023; 13:15046. [PMID: 37699959 PMCID: PMC10497517 DOI: 10.1038/s41598-023-41626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Muscle satellite cells (SCs) are stem cells and the main players in skeletal muscle reconstruction. Since satellite cells are located near or in direct contact with blood vessels their niche is formed, inter alia, by endothelial cells. The cross-talk between satellite cells and endothelial cells determines quiescence or proliferation of these cells. However, little is known about the role of miRNA in these interactions. In the present study we identified miRNA that were up-regulated in SC-derived myoblasts treated with stromal derived factor-1 (SDF-1) and/or down-regulated in cells in which the expression of CXCR4 or CXCR7, that is, SDF-1 receptors, was silenced. SDF-1 is one of the important regulators of cell migration, mobilization, skeletal muscle regeneration, and angiogenesis. We hypothesized that selected miRNAs affect SC-derived myoblast fate and interactions with endothelial cells. We showed that miR-126a-3p inhibited both, myoblast migration and fusion. Moreover, the levels of Cxcl12, encoding SDF-1 and Ackr3, encoding CXCR7, were reduced by miR-126a-3p mimic. Interestingly, the miR-126a-3p mimic significantly decreased the level of numerous factors involved in myogenesis and the miR-126a-5p mimic increased the level of Vefga. Importantly, the treatment of endothelial cells with medium conditioned by miR-126-5p mimic transfected SC-derived myoblasts promoted tubulogenesis.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland.
| |
Collapse
|
4
|
Mierzejewski B, Grabowska I, Michalska Z, Zdunczyk K, Zareba F, Irhashava A, Chrzaszcz M, Patrycy M, Streminska W, Janczyk-Ilach K, Koblowska M, Iwanicka-Nowicka R, Gromadka A, Kowalski K, Ciemerych MA, Brzoska E. SDF-1 and NOTCH signaling in myogenic cell differentiation: the role of miRNA10a, 425, and 5100. Stem Cell Res Ther 2023; 14:204. [PMID: 37582765 PMCID: PMC10426160 DOI: 10.1186/s13287-023-03429-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Skeletal muscle regeneration is a complex process regulated by many cytokines and growth factors. Among the important signaling pathways regulating the myogenic cell identity are these involving SDF-1 and NOTCH. SDF-1 participates in cell mobilization and acts as an important chemoattractant. NOTCH, on the other hand, controls cell activation and myogenic determination of satellite cells. Knowledge about the interaction between SDF-1 and NOTCH signaling is limited. METHODS We analyzed two populations of myogenic cells isolated from mouse skeletal muscle, that is, myoblasts derived from satellite cells (SCs) and muscle interstitial progenitor cells (MIPCs). First, microRNA level changes in response to SDF-1 treatment were analyzed with next-generation sequencing (NGS). Second, myogenic cells, i.e., SC-derived myoblasts and MIPCs were transfected with miRNA mimics, selected on the basis of NGS results, or their inhibitors. Transcriptional changes, as well as proliferation, migration, and differentiation abilities of SC-derived myoblasts and MIPCs, were analyzed in vitro. Naive myogenic potential was assessed in vivo, using subcutaneous engrafts and analysis of cell contribution to regeneration of the skeletal muscles. RESULTS SDF-1 treatment led to down-regulation of miR10a, miR151, miR425, and miR5100 in myoblasts. Interestingly, miR10a, miR425, and miR5100 regulated the expression of factors involved in the NOTCH signaling pathway, including Dll1, Jag2, and NICD. Furthermore, miR10a, miR425, and miR5100 down-regulated the expression of factors involved in cell migration: Acta1, MMP12, and FAK, myogenic differentiation: Pax7, Myf5, Myod, Mef2c, Myog, Musk, and Myh3. However, these changes did not significantly affect myogenic cell migration or fusion either in vitro or in vivo, except when miR425 was overexpressed, or miR5100 inhibitor was used. These two molecules increased the fusion of MIPCs and myoblasts, respectively. Furthermore, miR425-transfected MIPC transplantation into injured skeletal muscle resulted in more efficient regeneration, compared to control cell transplantation. However, skeletal muscles that were injected with miR10a transfected myoblasts regenerated less efficiently. CONCLUSIONS SDF-1 down-regulates miR10a, miR425, and miR5100, what could affect NOTCH signaling, differentiation of myogenic cells, and their participation in skeletal muscle regeneration.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Zuzanna Michalska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Kamila Zdunczyk
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Franciszek Zareba
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Aliksandra Irhashava
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Chrzaszcz
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Magdalena Patrycy
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Agnieszka Gromadka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
5
|
Chen Z, Laurentius T, Fait Y, Müller A, Mückter E, Bollheimer LC, Nourbakhsh M. Associations of Serum CXCL12α and CK Levels with Skeletal Muscle Mass in Older Adults. J Clin Med 2023; 12:jcm12113800. [PMID: 37297995 DOI: 10.3390/jcm12113800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcopenia, a condition characterized by gradual loss of skeletal muscle mass and function, is a complex diagnosis; the decisive criterion in this diagnosis is the measurement of appendicular skeletal muscle index (ASMI). To identify potential serum markers predictive of sarcopenia in older adults, we evaluated correlations between ASMI, clinical data, and 34 serum inflammation markers in 80 older adults. Pearson's correlation analyses confirmed that ASMI was positively correlated with nutritional status (p = 0.001) and serum creatine kinase (CK) (p = 0.019) but negatively correlated with serum CXCL12α (p = 0.023), a chemoattractant for muscle stem cells. In the case group, ASMI was negatively correlated with serum interleukin (IL)-7 (p = 0.024), a myokine expressed and secreted from skeletal muscle cells in vitro. Multivariate binary logistic regression analyses identified four risk factors for sarcopenia in our study: advanced age (p = 0.012), malnutrition (p = 0.038), low serum CK levels (p = 0.044), and high serum CXCL12α levels (p = 0.029). Low CK and high CXCL12α levels serve as combinatorial serum markers of sarcopenia in older adults. The linear correlation between ASMI and CXCL12α levels may facilitate the development of new regression models for future studies on sarcopenia.
Collapse
Affiliation(s)
- Ze Chen
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Thea Laurentius
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yvonne Fait
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Aline Müller
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Eva Mückter
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | | | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
6
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
7
|
Plair A, Bennington J, Williams JK, Parker-Autry C, Matthews CA, Badlani G. Regenerative medicine for anal incontinence: a review of regenerative therapies beyond cells. Int Urogynecol J 2020; 32:2337-2347. [PMID: 33247762 DOI: 10.1007/s00192-020-04620-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Current treatment modalities for anal sphincter injuries are ineffective for many patients, prompting research into restorative and regenerative therapies. Although cellular therapy with stem cells and progenitor cells show promise in animal models with short-term improvement, there are additional regenerative approaches that can augment or replace cellular therapies for anal sphincter injuries. The purpose of this article is to review the current knowledge of cellular therapies for anal sphincter injuries and discusses the use of other regenerative therapies including cytokine therapy with CXCL12. METHODS A literature search was performed to search for articles on cellular therapy and cytokine therapy for anal sphincter injuries and anal incontinence. RESULTS The article search identified 337 articles from which 33 articles were included. An additional 12 referenced articles were included as well as 23 articles providing background information. Cellular therapy has shown positive results for treating anal sphincter injuries and anal incontinence in vitro and in one clinical trial. However, cellular therapy has disadvantages such as the source and processing of stem cells and progenitor cells. CXCL12 does not have such issues while showing promising in vitro results for treating anal sphincter injuries. Additionally, electrical stimulation and extracorporeal shock wave therapy are potential regenerative medicine adjuncts for anal sphincter injuries. A vision for future research and clinical applications of regenerative medicine for anal sphincter deficiencies is provided. CONCLUSION There are viable regenerative medicine therapies for anal sphincter injuries beyond cellular therapy. CXCL12 shows promise as a focus of therapeutic research in this field.
Collapse
Affiliation(s)
- Andre Plair
- Department of Urology, Wake Forest Baptist Health, Winston Salem, NC, USA.
| | - Julie Bennington
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | | | | | | | - Gopal Badlani
- Department of Urology, Wake Forest Baptist Health, Winston Salem, NC, USA
| |
Collapse
|
8
|
Archacka K, Bem J, Brzoska E, Czerwinska AM, Grabowska I, Kasprzycka P, Hoinkis D, Siennicka K, Pojda Z, Bernas P, Binkowski R, Jastrzebska K, Kupiec A, Malesza M, Michalczewska E, Soszynska M, Ilach K, Streminska W, Ciemerych MA. Beneficial Effect of IL-4 and SDF-1 on Myogenic Potential of Mouse and Human Adipose Tissue-Derived Stromal Cells. Cells 2020; 9:cells9061479. [PMID: 32560483 PMCID: PMC7349575 DOI: 10.3390/cells9061479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions skeletal muscle regeneration depends on the satellite cells. After injury these cells become activated, proliferate, and differentiate into myofibers reconstructing damaged tissue. Under pathological conditions satellite cells are not sufficient to support regeneration. For this reason, other cells are sought to be used in cell therapies, and different factors are tested as a tool to improve the regenerative potential of such cells. Many studies are conducted using animal cells, omitting the necessity to learn about human cells and compare them to animal ones. Here, we analyze and compare the impact of IL-4 and SDF-1, factors chosen by us on the basis of their ability to support myogenic differentiation and cell migration, at mouse and human adipose tissue-derived stromal cells (ADSCs). Importantly, we documented that mouse and human ADSCs differ in certain reactions to IL-4 and SDF-1. In general, the selected factors impacted transcriptome of ADSCs and improved migration and fusion ability of cells in vitro. In vivo, after transplantation into injured muscles, mouse ADSCs more eagerly participated in new myofiber formation than the human ones. However, regardless of the origin, ADSCs alleviated immune response and supported muscle reconstruction, and cytokine treatment enhanced these effects. Thus, we documented that the presence of ADSCs improves skeletal muscle regeneration and this influence could be increased by cell pretreatment with IL-4 and SDF-1.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Joanna Bem
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Areta M. Czerwinska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Paulina Kasprzycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Dzesika Hoinkis
- Intelliseq Ltd., Stanisława Konarskiego 42/13, 30-046 Krakow, Poland;
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5, 02-781 Warsaw, Poland; (K.S.); (Z.P.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5, 02-781 Warsaw, Poland; (K.S.); (Z.P.)
| | - Patrycja Bernas
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Robert Binkowski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Kinga Jastrzebska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Aleksandra Kupiec
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Malgorzata Malesza
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Emilia Michalczewska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Marta Soszynska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Katarzyna Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
- Correspondence: ; Tel.: +48-22-55-42-216
| |
Collapse
|
9
|
IL-4 and SDF-1 Increase Adipose Tissue-Derived Stromal Cell Ability to Improve Rat Skeletal Muscle Regeneration. Int J Mol Sci 2020; 21:ijms21093302. [PMID: 32392778 PMCID: PMC7246596 DOI: 10.3390/ijms21093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle regeneration depends on the satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, these cells might not sufficiently support repair. Thus, other cell populations, among them adipose tissue-derived stromal cells (ADSCs), are tested as a tool to improve regeneration. Importantly, the pro-regenerative action of such cells could be improved by various factors. In the current study, we tested whether IL-4 and SDF-1 could improve the ability of ADSCs to support the regeneration of rat skeletal muscles. We compared their effect at properly regenerating fast-twitch EDL and poorly regenerating slow-twitch soleus. To this end, ADSCs subjected to IL-4 and SDF-1 were analyzed in vitro and also in vivo after their transplantation into injured muscles. We tested their proliferation rate, migration, expression of stem cell markers and myogenic factors, their ability to fuse with myoblasts, as well as their impact on the mass, structure and function of regenerating muscles. As a result, we showed that cytokine-pretreated ADSCs had a beneficial effect in the regeneration process. Their presence resulted in improved muscle structure and function, as well as decreased fibrosis development and a modulated immune response.
Collapse
|
10
|
Gao Y, Zhang T, Zhu J, Xiao D, Zhang M, Sun Y, Li Y, Lin Y, Cai X. Effects of the tetrahedral framework nucleic acids on the skeletal muscle regeneration in vitro and in vivo. MATERIALS CHEMISTRY FRONTIERS 2020. [DOI: 10.1039/d0qm00329h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The challenges associated with muscle degenerative diseases and volumetric muscle loss (VML) emphasizes the prospects of muscle tissue regeneration.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Mei Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yue Sun
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yanjing Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - XiaoXiao Cai
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| |
Collapse
|
11
|
Kasprzycka P, Archacka K, Kowalski K, Mierzejewski B, Zimowska M, Grabowska I, Piotrowski M, Rafałko M, Ryżko A, Irhashava A, Senderowski K, Gołąbek M, Stremińska W, Jańczyk-Ilach K, Koblowska M, Iwanicka-Nowicka R, Fogtman A, Janowski M, Walczak P, Ciemerych MA, Brzoska E. The factors present in regenerating muscles impact bone marrow-derived mesenchymal stromal/stem cell fusion with myoblasts. Stem Cell Res Ther 2019; 10:343. [PMID: 31753006 PMCID: PMC6873517 DOI: 10.1186/s13287-019-1444-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Satellite cells, a population of unipotent stem cells attached to muscle fibers, determine the excellent regenerative capability of injured skeletal muscles. Myogenic potential is also exhibited by other cell populations, which exist in the skeletal muscles or come from other niches. Mesenchymal stromal/stem cells inhabiting the bone marrow do not spontaneously differentiate into muscle cells, but there is some evidence that they are capable to follow the myogenic program and/or fuse with myoblasts. METHODS In the present study we analyzed whether IGF-1, IL-4, IL-6, and SDF-1 could impact human and porcine bone marrow-derived mesenchymal stromal/stem cells (hBM-MSCs and pBM-MSCs) and induce expression of myogenic regulatory factors, skeletal muscle-specific structural, and adhesion proteins. Moreover, we investigated whether these factors could induce both types of BM-MSCs to fuse with myoblasts. IGF-1, IL-4, IL-6, and SDF-1 were selected on the basis of their role in embryonic myogenesis as well as skeletal muscle regeneration. RESULTS We found that hBM-MSCs and pBM-MSCs cultured in vitro in the presence of IGF-1, IL-4, IL-6, or SDF-1 did not upregulate myogenic regulatory factors. Consequently, we confirmed the lack of their naïve myogenic potential. However, we noticed that IL-4 and IL-6 impacted proliferation and IL-4, IL-6, and SDF-1 improved migration of hBM-MSCs. IL-4 treatment resulted in the significant increase in the level of mRNA encoding CD9, NCAM, VCAM, and m-cadherin, i.e., proteins engaged in cell fusion during myotube formation. Additionally, the CD9 expression level was also driven by IGF-1 treatment. Furthermore, the pre-treatment of hBM-MSCs either with IGF-1, IL-4, or SDF-1 and treatment of pBM-MSCs either with IGF-1 or IL-4 increased the efficacy of hybrid myotube formation between these cells and C2C12 myoblasts. CONCLUSIONS To conclude, our study revealed that treatment with IGF-1, IL-4, IL-6, or SDF-1 affects BM-MSC interaction with myoblasts; however, it does not directly promote myogenic differentiation of these cells.
Collapse
Affiliation(s)
- Paulina Kasprzycka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Małgorzata Zimowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Mariusz Piotrowski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Milena Rafałko
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Agata Ryżko
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Aliksandra Irhashava
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Kamil Senderowski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Magdalena Gołąbek
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawinskiego 5a St, 02-106 Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawinskiego 5a St, 02-106 Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a St, 02-106 Warsaw, Poland
| | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a St, 02-106 Warsaw, Poland
| | - Mirosław Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St, 02-106 Warsaw, Poland
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Institute for Cell Engineering, Cellular Imaging Section, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Maria A. Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| |
Collapse
|
12
|
Fariyike B, Singleton Q, Hunter M, Hill WD, Isales CM, Hamrick MW, Fulzele S. Role of MicroRNA-141 in the Aging Musculoskeletal System: A Current Overview. Mech Ageing Dev 2019; 178:9-15. [PMID: 30528652 PMCID: PMC6998035 DOI: 10.1016/j.mad.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
MicroRNA's are small non-coding RNAs that regulate the expression of genes by targeting the 3' UTR's of mRNA. Studies reveal that miRNAs play a pivotal role in normal musculoskeletal function such as mesenchymal stem cell differentiation, survivability and apoptosis, osteogenesis, and chondrogenesis. Changes in normal miRNA expression have been linked to a number of pathological disease processes. Additionally, with aging, it is noted that there is dysregulation in the normal function of stem cell differentiation, bone formation/degradation, chondrocyte function, and muscle degeneration. Due to the change in expression of miRNA in degenerative musculoskeletal pathology, it is believed that these molecules may be at least partially responsible for cellular dysfunction. A number of miRNAs have already been identified to play a role in osteoarthritis, osteoporosis and sarcopenia. One miRNA that has become of interest recently is miRNA 141. The purpose of this article is to review the current literature available on miRNA 141 and how it could play a role in osteoporosis, osteoarthritis and musculoskeletal pathology overall.
Collapse
Affiliation(s)
- Babatunde Fariyike
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - Quante Singleton
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - Monte Hunter
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - William D Hill
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Medicine, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States.
| |
Collapse
|
13
|
Ebner N, Anker SD, von Haehling S. Recent developments in the field of cachexia, sarcopenia, and muscle wasting: highlights from the 11th Cachexia Conference. J Cachexia Sarcopenia Muscle 2019; 10:218-225. [PMID: 30920774 PMCID: PMC6438336 DOI: 10.1002/jcsm.12408] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/16/2022] Open
Abstract
This article highlights the updates from preclinical and clinical studies into the field of wasting disorders that were presented at the 11th Cachexia Conference held in Maastricht, the Netherlands, in December 2018. Herein, we summarize the biological and clinical significance of different markers and new diagnostic tools and cut-offs for the detection of skeletal muscle wasting, including micro-RNAs, siRNAs, epigenetic targets, the ubiquitin-proteasome system, mammalian target of rapamycin signalling, news in body composition analysis including the D3-creatine dilution method, and electrocardiography that was modified to enable segmental impedance spectroscopy. Of particular interest were the beneficial effects of BIO101 on muscle cell differentiation, hypertrophy of myofibers associated with mammalian target of rapamycin pathways activation, and the effect of metal ion transporter ZIP14 loss that reduces cancer-induced cachexia. The potential of anti-ZIP14 antibodies and zinc chelation as anti-cachexia therapy should be tested in patients with cancer cachexia. Big randomized studies were presented such as RePOWER (observational study of patients with primary mitochondrial myopathy), STRAMBO (influence of physical performance assessed as score and clinical testing), MMPOWER (treatment of elamipretide in subjects with primary mitochondrial myopathy), FORCE (examined differences in relative dose intensity and moderate and severe chemotherapy-associated toxicities between a strength training intervention and a control group), and SPRINTT (effectiveness of exercise training in healthy aging). Effective treatments were urothelin A, rapamycin analogue treatment, epigenetic factor BRD 4 and epigenetic protein BET, and the gut pathobiont Klebsiella oxytoca. Clinical studies that investigated novel approaches, including urolithin A, the role of gut microbiota, metal ion transporter ZIP14, lysophosphatidylcholine and lysophosphatidylethanolamine, and BIO101, were described. It remains a fact, however, that effective treatments of cachexia and wasting disorders are urgently needed in order to improve patients' quality of life and their survival.
Collapse
Affiliation(s)
- Nicole Ebner
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Stefan D Anker
- Division of Cardiology and Metabolism, Department of Cardiology (CVK), Charité, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Charité, Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Shewan LG. Contemporary publication patterns in the Journal of Cachexia, Sarcopenia and Muscle by type and sub-speciality: facts and numbers. J Cachexia Sarcopenia Muscle 2018; 9:1192-1195. [PMID: 30697979 PMCID: PMC6351672 DOI: 10.1002/jcsm.12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Louise G. Shewan
- Sydney Medical SchoolUniversity of SydneySydneyNew South Wales2006Australia
- University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
15
|
Kowalski K, Dos Santos M, Maire P, Ciemerych MA, Brzoska E. Induction of bone marrow-derived cells myogenic identity by their interactions with the satellite cell niche. Stem Cell Res Ther 2018; 9:258. [PMID: 30261919 PMCID: PMC6161400 DOI: 10.1186/s13287-018-0993-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022] Open
Abstract
Background Skeletal muscle regeneration is possible thanks to unipotent stem cells, which are satellite cells connected to the myofibers. Populations of stem cells other than muscle-specific satellite cells are considered as sources of cells able to support skeletal muscle reconstruction. Among these are bone marrow-derived mesenchymal stem cells (BM-MSCs), which are multipotent, self-renewing stem cells present in the bone marrow stroma. Available data documenting the ability of BM-MSCs to undergo myogenic differentiation are not definitive. In the current work, we aimed to check if the satellite cell niche could impact the ability of bone marrow-derived cells to follow a myogenic program. Methods We established a new in-vitro method for the coculture of bone marrow-derived cells (BMCs) that express CXCR4 (CXCR4+BMCs; the stromal-derived factor-1 (Sdf-1) receptor) with myofibers. Using various tests, we analyzed the myogenic identity of BMCs and their ability to fuse with myoblasts in vitro and in vivo. Results We showed that Sdf-1 treatment increased the number of CXCR4+BMCs able to bind the myofiber and occupy the satellite cell niche. Moreover, interaction with myofibers induced the expression of myogenic regulatory factors (MRFs) in CXCR4+BMCs. CXCR4+BMCs, pretreated by the coculture with myofibers and Sdf-1, participated in myotube formation in vitro and also myofiber reconstruction in vivo. We also showed that Sdf-1 overexpression in vivo (in injured and regenerating muscles) supported the participation of CXCR4+BMCs in new myofiber formation. Conclusion We showed that CXCR4+BMC interaction with myofibers (that is, within the satellite cell niche) induced CXCR4+BMC myogenic commitment. CXCR4+BMCs, pretreated using such a method of culture, were able to participate in skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Matthieu Dos Santos
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
16
|
Ebner N, von Haehling S. Silver linings on the horizon: highlights from the 10th Cachexia Conference. J Cachexia Sarcopenia Muscle 2018; 9:176-182. [PMID: 29417752 PMCID: PMC5803612 DOI: 10.1002/jcsm.12290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 01/22/2023] Open
Abstract
This article highlights the updates from preclinical and clinical studies into the field of wasting disorders that were presented at the 10th Cachexia Conference held in Rome, Italy, in December 2017. This year's conference saw some interesting results of larger-scale studies and clinical trials and new therapeutic targets. Herein, we summarize the biological and clinical significance of different markers and new diagnostic tools and cut-offs for the detection of skeletal muscle wasting, including micro RNAs, the ubiquitin-proteasome system, mTOR signalling, news in body composition analysis including the D3-creatine dilution method, and new biomarkers. Clinical studies investigated novel nutritional approaches, trials of elamipretide, enobosarm, and urolithin A. It remains a fact, however, that effective treatments of cachexia and wasting disorders are urgently needed in order to improve patients' quality of life and their survival.
Collapse
Affiliation(s)
- Nicole Ebner
- Department of Cardiology and Pneumology, Innovative Clinical TrialsUniversity Medical Center GoettingenGoettingenGermany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, Innovative Clinical TrialsUniversity Medical Center GoettingenGoettingenGermany
| |
Collapse
|
17
|
Abstract
Introduction Cachexia is a common complication of many and varied chronic disease processes, yet it has received very little attention as an area of clinical research effort until recently. We sought to survey the contemporary literature on published research into cachexia to define where it is being published and the proportion of output classified into the main types of research output. Methods I searched the PubMed listings under the topic research term "cachexia" and related terms for articles published in the calendar years of 2015 and 2016, regardless of language. Searches were conducted and relevant papers extracted by two observers, and disagreements were resolved by consensus. Results There were 954 publications, 370 of which were review articles or commentaries, 254 clinical observations or non-randomised trials, 246 original basic science reports and only 26 were randomised controlled trials. These articles were published in 478 separate journals but with 36% of them being published in a core set of 23 journals. The H-index of these papers was 25 and there were 147 papers with 10 or more citations. Of the top 100 cited papers, 25% were published in five journals. Of the top cited papers, 48% were review articles, 18% were original basic science, and 7% were randomised clinical trials. Discussion This analysis shows a steady but modest increase in publications concerning cachexia with a strong pipeline of basic science research but still a relative lack of randomised clinical trials, with none exceeding 1000 patients. Research in cachexia is still in its infancy, but the solid basic science effort offers hope that translation into randomised controlled clinical trials may eventually lead to effective therapies for this troubling and complex clinical disease process.
Collapse
|
18
|
Maeda Y, Yonemochi Y, Nakajyo Y, Hidaka H, Ikeda T, Ando Y. CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration. Sci Rep 2017; 7:3305. [PMID: 28607396 PMCID: PMC5468354 DOI: 10.1038/s41598-017-02928-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/30/2017] [Indexed: 01/01/2023] Open
Abstract
Muscle satellite cells are essential for muscle regeneration. However, efficient regeneration does not occur without muscle-resident mesenchymal progenitor cells. We show here that bone marrow-derived mesenchymal stromal cells (Bm-MSCs) also facilitate muscle regeneration in Duchenne muscular dystrophy (DMD) model mice. Bm-MSCs transplanted into peritoneal cavities of DMD model mice with severe muscle degeneration strongly suppressed dystrophic pathology and improved death-related symptoms, which resulted in dramatic lifespan extension. Isolated single myofibers from Bm-MSC-transplanted mice manifested considerably less myofiber splitting compared with myofibers from non-transplanted mice, which indicated that transplantation significantly ameliorated abnormal regeneration. With regard to the number of satellite cells, several cells remained on myofibers from Bm-MSC-transplanted model mice, but satellite cells rarely occurred on myofibers from non-transplanted mice. Also, CXCL12 was crucial for muscle regeneration. CXCL12 facilitated muscle regeneration and paired box protein–7 (PAX7) expression after cardiotoxin-related muscle injury in vivo. The majority of primary muscle satellite cells sorted by integrin-α7 and CD34 expressed CXCR4, a receptor specific for CXCL12. CXCL12 strongly suppressed p-STAT3 expression in these sorted cells in vitro. CXCL12 may therefore influence muscle regeneration through STAT3 signaling in satellite cells. Targeting these proteins in or on muscle satellite cells may improve many degenerative muscle diseases.
Collapse
Affiliation(s)
- Yasushi Maeda
- Department of Neurology, National Hospital Organization Kumamoto Saishunso National Hospital, Kumamoto, Japan.
| | - Yasuhiro Yonemochi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Nakajyo
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideaki Hidaka
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tokunori Ikeda
- Department of Clinical Research Center, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Ebner N, von Haehling S. Highlights from the 9th Cachexia Conference. J Cachexia Sarcopenia Muscle 2017; 8:508-511. [PMID: 28631415 PMCID: PMC5476858 DOI: 10.1002/jcsm.12217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/14/2023] Open
Abstract
This article highlights updates of pathways as well as pre-clinical and clinical studies into the field of wasting disorders that were presented at the 9th Cachexia Conference held in Berlin, Germany, December 2016. This year, some interesting results from clinical trials and different new therapeutic targets were shown. This article presents the biological and clinical significance of different markers and new diagnostic tools and cut-offs of detecting skeletal muscle wasting. Effective treatments of cachexia and wasting disorders are urgently needed in order to improve the patients' quality of life and their survival.
Collapse
Affiliation(s)
- Nicole Ebner
- Department of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
20
|
Li Z, Wang W, Xu H, Ning Y, Fang W, Liao W, Zou J, Yang Y, Shao N. Effects of altered CXCL12/CXCR4 axis on BMP2/Smad/Runx2/Osterix axis and osteogenic gene expressions during osteogenic differentiation of MSCs. Am J Transl Res 2017; 9:1680-1693. [PMID: 28469774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/21/2017] [Indexed: 09/28/2022]
Abstract
This study investigated the effects of altered CXCL12/CXCR4 axis on the bone morphogenetic protein 2 (BMP-2)/Smad/runt-related transcription factor 2 (Runx2)/Osterix (Osx) signal axis and osteogenic gene expression during osteogenic differentiation of mesenchymal stem cells (MSCs), to gain understanding of the link between migration and osteogenic differentiation signal axis and MSCs osteogenic differentiation mechanisms. The pHBAd-MCMV- CXCL12-GFP vector (Ad-CXCL12) was constructed and quantitative polymerase chain reaction (qPCR)/western blotting used to determine CXCL12 expression in Ad-CXCL12-transfected MSCs. MSCs were treated with Ad-CXCL12 and AMD3100 (CXCL12 inhibitor) to detect BMP-2/Smad/Runx2/Osterix expression, bone sialoprotein (BSP), osteocalcin (OCN) and osteopontin (OPN) mRNA expression, and alkaline phosphatase (ALP) activity. PCR and sequencing confirmed successful construction of Ad-CXCL12. qPCR and enzyme-linked immunosorbent assay indicated that Ad-CXCL12 transfection promoted CXCL12 expression in MSCs. At 72 hours, Runx2 and Osterix, and Smad1/5/8 mRNA and protein expressions were significantly higher in the Ad-CXCL12 group than in the control group (P < 0.01). At 1 and 2 weeks, ALP activity and BSP mRNA expression were significantly higher in the Ad-CXCL12 group than in the control group (P < 0.01), respectively. No significant difference in OCN and OPN mRNA expression was determined between Ad-CXCL12 and control groups (P > 0.05). At 3 weeks, no significant difference in mineralized nodule staining was observed between groups (P > 0.05). Changes in the CXCL12/CXCR4 migration axis affected the BMP-2/Smad/Runx2/Osterix axis and BSP, OCN and OPN mRNA expression in early-stage, but not mid-/latestage, MSCs osteogenic differentiation, therefore affecting the ability of MSCs to undergo osteogenic differentiation.
Collapse
Affiliation(s)
- Zhanghua Li
- Tongren Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Wei Wang
- Hubei University of Chinese MedicineWuhan 430065, Hubei, China
| | - Haijia Xu
- Tongren Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Yu Ning
- Hubei University of Chinese MedicineWuhan 430065, Hubei, China
| | - Weijun Fang
- Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Wen Liao
- Tongren Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Ji Zou
- Hubei University of Chinese MedicineWuhan 430065, Hubei, China
| | - Yi Yang
- Health Science College, Wuhan Sports UniversityWuhan 430079, China
| | - Ningsheng Shao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Academy of Military Medical SciencesBeijing 100000, China
| |
Collapse
|
21
|
Kowalski K, Kołodziejczyk A, Sikorska M, Płaczkiewicz J, Cichosz P, Kowalewska M, Stremińska W, Jańczyk-Ilach K, Koblowska M, Fogtman A, Iwanicka-Nowicka R, Ciemerych MA, Brzoska E. Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis. Cell Adh Migr 2016; 11:384-398. [PMID: 27736296 PMCID: PMC5569967 DOI: 10.1080/19336918.2016.1227911] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor −1) increased migration of stem cells and their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1 receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the cells of different migration and myogenic potential. We showed that Sdf-1 altered actin organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras-Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the transcription profile of genes encoding factors engaged in cells adhesion and migration. As the result, cells such as primary myoblasts or embryonic stem cells, became characterized by more effective migration when transplanted into regenerating muscle.
Collapse
Affiliation(s)
- Kamil Kowalski
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | | | - Maria Sikorska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Jagoda Płaczkiewicz
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Paulina Cichosz
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Magdalena Kowalewska
- b Department of Molecular and Translational Oncology , Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology , Warsaw , Poland.,c Department of Immunology, Biochemistry and Nutrition , Medical University of Warsaw , Warsaw , Poland
| | - Władysława Stremińska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | | | - Marta Koblowska
- d Laboratory of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw , Poland.,e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Anna Fogtman
- e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Roksana Iwanicka-Nowicka
- d Laboratory of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw , Poland.,e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Maria A Ciemerych
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Edyta Brzoska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| |
Collapse
|
22
|
Kowalski K, Archacki R, Archacka K, Stremińska W, Paciorek A, Gołąbek M, Ciemerych MA, Brzoska E. Stromal derived factor-1 and granulocyte-colony stimulating factor treatment improves regeneration of Pax7-/- mice skeletal muscles. J Cachexia Sarcopenia Muscle 2016; 7:483-96. [PMID: 27239402 PMCID: PMC4863826 DOI: 10.1002/jcsm.12092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/03/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The skeletal muscle has the ability to regenerate after injury. This process is mediated mainly by the muscle specific stem cells, that is, satellite cells. In case of extensive damage or under pathological conditions, such as muscular dystrophy, the process of muscle reconstruction does not occur properly. The aim of our study was to test whether mobilized stem cells, other than satellite cells, could participate in skeletal muscle reconstruction. METHODS Experiments were performed on wild-type mice and mice lacking the functional Pax7 gene, that is, characterized by the very limited satellite cell population. Gastrocnemius mice muscles were injured by cardiotoxin injection, and then the animals were treated by stromal derived factor-1 (Sdf-1) with or without granulocyte-colony stimulating factor (G-CSF) for 4 days. The muscles were subjected to thorough assessment of the tissue regeneration process using histological and in vitro methods, as well as evaluation of myogenic factors' expression at the transcript and protein levels. RESULTS Stromal derived factor-1 alone and Sdf-1 in combination with G-CSF significantly improved the regeneration of Pax7-/- skeletal muscles. The Sdf-1 and G-CSF treatment caused an increase in the number of mononucleated cells associated with muscle fibres. Further analysis showed that Sdf-1 and G-CSF treatment led to the rise in the number of CD34+ and Cxcr4+ cells and expression of Cxcr7. CONCLUSIONS Stromal derived factor-1 and G-CSF stimulated regeneration of the skeletal muscles deficient in satellite cells. We suggest that mobilized CD34+, Cxcr4+, and Cxcr7+ cells can efficiently participate in the skeletal muscle reconstruction and compensate for the lack of satellite cells.
Collapse
Affiliation(s)
- Kamil Kowalski
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Rafał Archacki
- Laboratory of Systems Biology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | | | - Anna Paciorek
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Magdalena Gołąbek
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology University of Warsaw Warsaw Poland
| |
Collapse
|