1
|
Huang YT, Huang TH, Chen YS, Li YJ, Huang CW. Role of α-amino-3‑hydroxy-5-methyl-4-isoxazolepropionic acid receptors and the antagonist perampanel in geriatric epilepsy and status epilepticus. Arch Gerontol Geriatr 2025; 128:105605. [PMID: 39213748 DOI: 10.1016/j.archger.2024.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The α-amino-3‑hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is an ionotropic glutamate receptor recognized for its active involvement in epilepsy. Through AMPAR functional alterations, multiple factors contribute to the increased susceptibility to seizures in the geriatric population. These factors include changes in the hippocampus, neuroinflammation, ischemic insults, amyloid deposition, previous seizures, alterations in the microenvironment, and neurovascular unit dysfunction. Perampanel, a noncompetitive AMPAR antagonist, has been approved for the treatment of focal and generalized epilepsy. However, a complete understanding of AMPAR's role in epileptogenesis and the pharmacotherapy of perampanel in the geriatric population remains elusive. To address this gap, we conducted a comprehensive literature review, screening 1557 articles and ultimately selecting 94 relevant ones. We provided insights into AMPAR functionality changes and perampanel's role in treating geriatric epilepsy. Various clinical trials and retrospective studies have demonstrated that the safety and efficacy of perampanel in the older population are comparable to those in the younger population, with overall good tolerability. It is also effective for treating focal and generalized onset seizures and possibly for managing status epilepticus. In conclusion, the existing body of evidence supports the safety and efficacy of perampanel in the geriatric population, indicating its potential as a valuable therapeutic option for focal and generalized epilepsy. Additional research is warranted to deepen our understanding of AMPAR's involvement in epileptogenesis and to refine the pharmacotherapeutic nuances in this specific demographic.
Collapse
Affiliation(s)
- Yi-Te Huang
- Department of Geriatrics and Gerontology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hsin Huang
- Zhengxin Neurology & Rehabilitation Center, Tainan, Taiwan
| | - Yu-Shiue Chen
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Rd, Tainan 70428, Taiwan
| | - Ya-Jhen Li
- Kun-Yen Medical Library, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Rd, Tainan 70428, Taiwan.
| |
Collapse
|
2
|
Bjørklund G, Oliinyk P, Khavrona O, Lozynska I, Lysiuk R, Darmohray R, Antonyak H, Dub N, Zayachuk V, Antoniv O, Rybak O, Peana M. The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases. Mol Neurobiol 2025; 62:1225-1246. [PMID: 38970766 DOI: 10.1007/s12035-024-04321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer's and Parkinson's. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| | - Petro Oliinyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Khavrona
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Iryna Lozynska
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Darmohray
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, 79000, Ukraine
| | - Vasyl Zayachuk
- Department of Botany, Ukrainian National Forestry University, Wood Science and Non-Wood Forest Products, Lviv, 79057, Ukraine
| | - Olha Antoniv
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacology, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Rybak
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
3
|
Takeda A, Tamano H. Insight into brain metallothioneins from bidirectional Zn2+ signaling in synaptic dynamics. Metallomics 2024; 16:mfae039. [PMID: 39223100 DOI: 10.1093/mtomcs/mfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
The basal levels as the labile Zn2+ pools in the extracellular and intracellular compartments are in the range of ∼10 nM and ∼100 pM, respectively. The influx of extracellular Zn2+ is used for memory via cognitive activity and is regulated for synaptic plasticity, a cellular mechanism of memory. When Zn2+ influx into neurons excessively occurs, however, it becomes a critical trigger for cognitive decline and neurodegeneration, resulting in acute and chronic pathogenesis. Aging, a biological process, generally accelerates vulnerability to neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). The basal level of extracellular Zn2+ is age relatedly increased in the rat hippocampus, and the influx of extracellular Zn2+ contributes to accelerating vulnerability to the AD and PD pathogenesis in experimental animals with aging. Metallothioneins (MTs) are Zn2+-binding proteins for cellular Zn2+ homeostasis and involved in not only supplying functional Zn2+ required for cognitive activity, but also capturing excess (toxic) Zn2+ involved in cognitive decline and neurodegeneration. Therefore, it is estimated that regulation of MT synthesis is involved in both neuronal activity and neuroprotection. The present report provides recent knowledge regarding the protective/preventive potential of MT synthesis against not only normal aging but also the AD and PD pathogenesis in experimental animals, focused on MT function in bidirectional Zn2+ signaling in synaptic dynamics.
Collapse
Affiliation(s)
- Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Haruna Tamano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Shizuoka Tohto Medical College, 1949 Minamiema, Izunokuni, Shizuoka 410-2221, Japan
| |
Collapse
|
4
|
Sherwin A, Shaw IC. Sixty years of conjecture over a urinary biomarker: a step closer to understanding the proposed link between anxiety and urinary pyrroles. Lab Med 2024; 55:334-340. [PMID: 37699019 PMCID: PMC11064097 DOI: 10.1093/labmed/lmad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE For over 60 years there has been conjecture about the identity of an Ehrlich's test positive pyrrole (Mauve Factor) reputed to be a biomarker for psychological disorders, including anxiety. We reviewed studies that attempt to identify Mauve Factor and subjected authentic standards of the 2 main candidates, kryptopyrrole and hydroxypyrrole, to the Ehrlich's reaction. METHODS Modified Ehrlich's test for kryptopyrrole and hydroxypyrrole were applied to urine samples from 10 volunteers, anxious and nonanxious. RESULTS Based on the mechanistic chemistry of Ehrlich's reaction and reactions of the 2 compounds, Mauve Factor cannot be hydroxypyrrole. Analyses of urine samples from volunteers, identified by the Generalized Anxiety Disorder - 7 item scale (GAD-7 ≥10; n = 5) and control urine samples (GAD-7 <10; n = 5) using a kryptopyrrole calibration graph, show that concentrations are similar in both groups. CONCLUSION Kryptopyrrole may be the elusive Mauve Factor. Its possible origin from stercobilin via gut microbiome-mediated metabolism, its link to gut-mediated neurological effects via γ-aminobutyric acid (GABA) receptors, and its predicted interaction with Zn2+ and consequent impact on zinc homeostasis are discussed. The GAD-7 scale does not differentiate between state and trait anxiety and as such, the minimal difference in pyrrole levels between volunteer groups requires further study.
Collapse
Affiliation(s)
- Angela Sherwin
- School of Physical & Chemical Sciences
- School of Psychology, Speech & Hearing, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
5
|
Squitti R, Reale G, Tondolo V, Crescenti D, Bellini S, Moci M, Caliandro P, Padua L, Rongioletti M. Imbalance of Essential Metals in Traumatic Brain Injury and Its Possible Link with Disorders of Consciousness. Int J Mol Sci 2023; 24:ijms24076867. [PMID: 37047843 PMCID: PMC10095508 DOI: 10.3390/ijms24076867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Dysfunction of the complex cerebral networks underlying wakefulness and awareness is responsible for Disorders of Consciousness (DoC). Traumatic Brain Injury (TBI) is a common cause of DoC, and it is responsible for a multi-dimensional pathological cascade that affects the proper functioning of the brainstem and brain consciousness pathways. Iron (Fe), Zinc (Zn), and Copper (Cu) have a role in the neurophysiology of both the ascending reticular activating system, a multi-neurotransmitter network located in the brainstem that is crucial for consciousness, and several brain regions. We aimed to summarize the role of these essential metals in TBI and its possible link with consciousness alterations. We found that TBI alters many neuronal molecular mechanisms involving essential metals, causing neurodegeneration, neural apoptosis, synaptic dysfunction, oxidative stress, and inflammation. This final pattern resembles that described for Alzheimer's disease (AD) and other neurological and psychiatric diseases. Furthermore, we found that amantadine, zolpidem, and transcranial direct current stimulation (tDCS)-the most used treatments for DoC recovery-seem to have an effect on essential metals-related pathways and that Zn might be a promising new therapeutic approach. This review summarizes the neurophysiology of essential metals in the brain structures of consciousness and focuses on the mechanisms underlying their imbalance following TBI, suggesting their possible role in DoC. The scenario supports further studies aimed at getting a deeper insight into metals' role in DoC, in order to evaluate metal-based drugs, such as metal complexes and metal chelating agents, as potential therapeutic options.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| | - Giuseppe Reale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neuroriabilitazione ad Alta Intensità Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Daniela Crescenti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Moci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neuroriabilitazione ad Alta Intensità Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Pietro Caliandro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
| | - Luca Padua
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neuroriabilitazione ad Alta Intensità Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
6
|
Starowicz G, Siodłak D, Nowak G, Mlyniec K. The role of GPR39 zinc receptor in the modulation of glutamatergic and GABAergic transmission. Pharmacol Rep 2023; 75:609-622. [PMID: 36997827 DOI: 10.1007/s43440-023-00478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Despite our poor understanding of the pathophysiology of depression, a growing body of evidence indicates the role of both glutamate and gamma-aminobutyric acid (GABA) signaling behind the effects of rapid-acting antidepressants (RAADs). GPR39 is a zinc-sensing receptor whose activation leads to a prolonged antidepressant-like response in mice. Both GPR39 and zinc can modulate glutamatergic and GABAergic neurotransmission, however, exact molecular mechanisms are still elusive. In this study, we aimed to research the role of glutamatergic and GABAergic system activation in TC-G 1008 antidepressant-like effects and the disruptions in this effect caused by a low-zinc diet. METHODS In the first part of our study, we investigated the role of joint administration of the GPR39 agonist (TC-G 1008) and ligands of the glutamatergic or GABAergic systems, in antidepressant-like response. To evaluate animal behaviour we used the forced swim test in mice. In the second part of the study, we assessed the effectiveness of TC-G 1008-induced antidepressant-like response in conditions of decreased dietary zinc intake and its molecular underpinning by conducting a Western Blot analysis of selected proteins involved in glutamatergic and GABAergic neurotransmission. RESULTS The TC-G 1008-induced effect was blocked by the administration of NMDA or picrotoxin. The joint administration of TC-G 1008 along with muscimol or SCH50911 showed a trend toward decreased immobility time. Zinc-deficient diet resulted in dysregulation of GluN1, PSD95, and KCC2 protein expression. CONCLUSIONS Our findings indicate the important role of glutamate/GABA signaling in the antidepressant-like effect of TC-G 1008 and imply that GPR39 regulates the balance between excitatory and inhibitory activity in the brain. Thus, we suggest the zinc-sensing receptor be considered an interesting new target for the development of novel antidepressants.
Collapse
Affiliation(s)
- Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Dominika Siodłak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
- Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| |
Collapse
|
7
|
Dietary Zinc Differentially Regulates the Effects of the GPR39 Receptor Agonist, TC-G 1008, in the Maximal Electroshock Seizure Test and Pentylenetetrazole-Kindling Model of Epilepsy. Cells 2023; 12:cells12020264. [PMID: 36672199 PMCID: PMC9856893 DOI: 10.3390/cells12020264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The G-protein coupled receptor 39 (GPR39) is gaining increasing attention as a target for future drugs, yet there are gaps in the understanding of its pharmacology. Zinc is an endogenous agonist or an allosteric modulator, while TC-G 1008 is a synthetic, small molecule agonist. Zinc is also a positive allosteric modulator for the activity of TC-G 1008 at GPR39. Activation of GPR39 by TC-G 1008 facilitated the development of epileptogenesis in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy. Congruently, TC-G 1008 decreased the seizure threshold in the maximal electroshock seizure threshold (MEST) test. Here, we investigated the effects of TC-G 1008 under the condition of zinc deficiency. Mice were fed a zinc-adequate diet (ZnA, 50 mg Zn/kg) or a zinc-deficient diet (ZnD, 3 mg Zn/kg) for 4 weeks. Following 4 weeks of dietary zinc restriction, TC-G 1008 was administered as a single dose and the MEST test was performed. Additional groups of mice began the PTZ-kindling model during which TC-G 1008 was administered repeatedly and the diet was continued. TC-G 1008 administered acutely decreased the seizure threshold in the MEST test in mice fed the ZnD diet but not in mice fed the ZnA diet. TC-G 1008 administered chronically increased the maximal seizure severity and the percentage of fully kindled mice in those fed the ZnA diet, but not in mice fed the ZnD diet. Our data showed that the amount of zinc in a diet is a factor contributing to the effects of TC-G 1008 in vivo.
Collapse
|
8
|
Tabata K, Miyashita M, Yamasaki S, Toriumi K, Ando S, Suzuki K, Endo K, Morimoto Y, Tomita Y, Yamaguchi S, Usami S, Itokawa M, Hiraiwa-Hasegawa M, Takahashi H, Kasai K, Nishida A, Arai M. Hair zinc levels and psychosis risk among adolescents. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:107. [PMID: 36433958 PMCID: PMC9700858 DOI: 10.1038/s41537-022-00307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
Recent meta-analyses have shown lower zinc and higher copper levels in the serum of people with schizophrenia than in healthy controls. However, the relationship between trace elements (TEs) and the pathophysiology of psychosis, including schizophrenia, remains unclear due to the antipsychotic effects on mineral levels. In this study, we aimed to determine the relationship between zinc and copper levels in hair and psychosis risk among drug-naïve adolescents. This study was conducted as a part of a population-based biomarker subsample study of the Tokyo Teen Cohort Study, including 252 community-dwelling 14-year-old drug-naïve adolescents. Zinc and copper levels in hair were measured using inductively coupled plasma mass spectrometry. The thought problems (TP) scale from the Child Behavior Checklist was used to evaluate psychosis risk. Regression analysis showed that hair zinc levels were negatively correlated with the TP scale (T-score) (β = -0.176, P = 0.005). This result remained significant after adjusting for age and sex (β = -0.175, P = 0.005). In contrast, hair copper levels were not associated with the TP scale (T-score) (β = 0.026, P = 0.687). These findings suggest that lower zinc levels could be involved in the pathophysiology of psychosis, independent of antipsychotics. Further longitudinal studies are required to investigate whether hair zinc level is a useful new biomarker for assessing psychosis risk.
Collapse
Grants
- JP19dm0207069 Japan Agency for Medical Research and Development (AMED)
- JP18dm0307001 Japan Agency for Medical Research and Development (AMED)
- JP18dm0307004 Japan Agency for Medical Research and Development (AMED)
- JSPS KAKENHI (grant numbers JP17H05930 and JP20H03608)
- JSPS KAKENHI (grant number JP20H01777) and JST-Mirai Program (grant number JPMJMI21J3)
- JSPS KAKENHI (grant number JP22K07609)
- JSPS KAKENHI (grant numbers JP16K15566, JP17H05931, JP19H04877, and JP19K17055)
- JSPS KAKENHI (grant numbers JP16H06395, JP16H06399, JP16K21720, JP20H03596, JP21H05171, and JP21H05174), Moonshot R&D (grant number JPMJMS2021), UTokyo Center for Integrative Science of Human Behavior (CiSHuB), and the International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS)
- JSPS KAKENHI (grant numbers JP16H06398, JP19H00972, JP20H03951, JP21H05173 and JP21K10487)
Collapse
Affiliation(s)
- Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Syudo Yamasaki
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kaori Endo
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Morimoto
- Department of Psychology, Ube Frontier University, Ube, Japan
| | - Yasufumi Tomita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Satoshi Yamaguchi
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Usami
- Center for Research and Development on Transition from Secondary to Higher Education, The University of Tokyo, Tokyo, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Atsushi Nishida
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
9
|
Treatment of refractory obsessive-compulsive disorder with nutraceuticals (TRON): a 20-week, open label pilot study. CNS Spectr 2022; 27:588-597. [PMID: 34165060 DOI: 10.1017/s1092852921000638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is often challenging to treat and resistant to psychological interventions and prescribed medications. The adjunctive use of nutraceuticals with potential neuromodulatory effects on underpinning pathways such as the glutamatergic and serotonergic systems is one novel approach. OBJECTIVE To assess the effectiveness and safety of a purpose-formulated combination of nutraceuticals in treating OCD: N-acetyl cysteine, L-theanine, zinc, magnesium, pyridoxal-5' phosphate, and selenium. METHODS A 20-week open label proof-of-concept study was undertaken involving 28 participants with treatment-resistant DSM-5-diagnosed OCD, during 2017 to 2020. The primary outcome measure was the Yale-Brown Obsessive-Compulsive Scale (YBOCS), administered every 4 weeks. RESULTS An intention-to-treat analysis revealed an estimated mean reduction across time (baseline to week-20) on the YBOCS total score of -7.13 (95% confidence interval = -9.24, -5.01), with a mean reduction of -1.21 points per post-baseline visit (P ≤ .001). At 20-weeks, 23% of the participants were considered "responders" (YBOCS ≥35% reduction and "very much" or "much improved" on the Clinical Global Impression-Improvement scale). Statistically significant improvements were also revealed on all secondary outcomes (eg, mood, anxiety, and quality of life). Notably, treatment response on OCD outcome scales (eg, YBOCS) was greatest in those with lower baseline symptom levels, while response was limited in those with relatively more severe OCD. CONCLUSIONS While this pilot study lacks placebo-control, the significant time effect in this treatment-resistant OCD population is encouraging and suggests potential utility especially for those with lower symptom levels. Our findings need to be confirmed or refuted via a follow-up placebo-controlled study.
Collapse
|
10
|
Sun Y, Zhao J, Song X, Sun Z, Zhang R, Zhong J, Huang X, Dong Y, Yu Q, Dong F, Li Z, Fan L, Wang M, Peng C, Wang F. Effects of marginal zinc deficiency on learning and memory ability after birth. Food Funct 2022; 13:7204-7214. [PMID: 35713090 DOI: 10.1039/d2fo01074g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc deficiency during pregnancy and severe zinc deficiency after birth both impaired learning and memory ability, but the effects of marginal zinc deficiency (MZD) after birth on learning and memory are unclear. In the first experiment, 4-week-old male rats were randomly divided into three groups: the marginal zinc-deficient group (MZG, 10 mg kg-1, 1/3 RNI), normal zinc group (NZG, 30 mg kg-1, RNI), and paired zinc group (PZG, 30 mg kg-1). After a 4-week feeding period, the brain weight, brain coefficient, and serum zinc concentration were measured, and hippocampal proteomics analysis was performed. In the second experiment, 4-week-old male rats were fed the same diet for 8 weeks. In addition to the previously mentioned indicators, the Morris water maze results, brain pathology, post-translational modifications (PTMs) of hippocampal proteins, and the concentrations of indicators known to be related to learning and memory were analyzed. In both experiments, compared with those of the NZG, the food intake, body weight and serum zinc of the MZG were significantly decreased, and the brain weight was unchanged, but the brain coefficient was increased. Two hippocampal proteomics analyses and PTM screening showed that MZD did not change the expression and PTM of proteins. The brain pathology, learning, memory and the concentrations of indicators known to be related to learning and memory were not changed by MZD. Our study confirmed that marginal zinc deficiency (10 mg kg-1, 1/3 RNI) had no effect on the learning and memory abilities of rats after birth.
Collapse
Affiliation(s)
- Yongzhi Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Jiali Zhao
- Yiwu Maternity and Children Hospital, Yiwu, Zhejiang, China
| | - Xinyu Song
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Zhaohui Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Rui Zhang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Jiayi Zhong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Xiaocai Huang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Yingran Dong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Qingli Yu
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Feng Dong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Zixiang Li
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Lina Fan
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Chenghai Peng
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
11
|
Rahnama M, Mohammadian A, Aarabi S. Network Module analysis of bipolar disorder mechanism deciphers underlying pathways. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Li J, Cao D, Huang Y, Chen B, Chen Z, Wang R, Dong Q, Wei Q, Liu L. Zinc Intakes and Health Outcomes: An Umbrella Review. Front Nutr 2022; 9:798078. [PMID: 35211497 PMCID: PMC8861317 DOI: 10.3389/fnut.2022.798078] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
It is widely accepted that the zinc element is crucial in human beings. Zinc has gained more attention during the COVID-19 pandemic due to its utilization for the treatment and prevention of respiratory tract infections. However, some studies also pointed out that zinc intake might cause unwanted side effects and even be dangerous when overdosed. To reveal the relationship between zinc intake and health outcomes, we performed an umbrella review from human studies. In total, the umbrella review included 43 articles and identified 11 outcomes for dietary zinc intake and 86 outcomes for supplementary zinc intake. Dietary zinc intake in the highest dose would decrease the risk of overall and specific digestive tract cancers, depression, and type 2 diabetes mellitus (T2DM) in adults. Supplementary zinc consumption in adults was linked to an improvement of depression, antioxidant capacity and sperm quality, higher serum zinc concentration, and lower concentration of inflammatory markers. Zinc supplementation in children would reduce the incidence of diarrhea and pneumonia, improve zinc deficiency and boost growth. However, zinc might not decrease all-cause mortality in adults or the in-hospital mortality of COVID-19. And better maternal and neonatal outcomes may not derive from pregnant women who consumed higher or lower doses of zinc supplementation (>20 mg/day and <20 mg/day, respectively). Dose-response analyses revealed that a daily 5 mg increment of zinc would lower the risk of colorectal and esophageal cancer, whereas a large dose of zinc supplementation (daily 100 mg) showed no benefit in reducing prostate cancer risk.
Collapse
Affiliation(s)
- Jin Li
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dehong Cao
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Ruyi Wang
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Dong
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiang Wei
| | - Liangren Liu
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Liangren Liu
| |
Collapse
|
13
|
Paramita ADP, Adnyana IGANS, Subanada IB, Suwarba IGNM, Gunawijaya E, Wati DK. Association of Hair Zinc Level with Cognitive and Language Delays in Children Aged 9–24 Months Old. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The delay in cognitive and language development can be caused by multifactor, including chronic deficiency of micronutrient, zinc. Level of zinc serum is influenced by food intake which can cause bias. There are inconsistencies in previous studies between zinc levels and the development caused by differences of sample or subjects. This study using hair as sample in analyzing the association between zinc level on cognitive and language delays in children aged 9-24 months old.
AIM: To find out that low hair zinc level is associated with delayed of cognitive and language development in children 9-24 months old.
Method: This analytical observational study with case-control design. Case group consisted of 69 children with cognitive and language development delays, based on CAT/CLAMS scores < 85 subjects aged 9-24 months meanwhile the control group consist of 69 children with normal cognitive and language development. Chi-square test was used to assess the association between zinc levels and the incidence of cognitive and language delays. Multivariate analysis was performed by logistic regression.
Results: Univariate analysis showed no association between low zinc level and delayed of cognitive and language development in children aged 9-24 months (OR 1.263; 95% CI 0.64-2.46; p=0.495). Logistic regression was performed for other variables and screen time > 2 hours and lack of stimulation were risk factors for cognitive and language development delays (adjusted OR 2.78; 95% CI 1,284-6.058; p=0.010 and adjusted OR 3.96; 95% CI 1.833-8.581; p<0.001).
Conclusion: There is no relationship between low hair zinc level and delays in cognitive and language development in children age 9-24 months, but there is an association between screen time more than two hours per day and lack of stimulation with delays in cognitive and language development in children 9-24 months 24 months.
Collapse
|
14
|
Yamada S, Tanaka S, Seki S, Kogo M. Membrane excitabilities in neonatal rat mesencephalic trigeminal neurons under dietary zinc deficiency. J Oral Sci 2021; 63:242-246. [PMID: 33980769 DOI: 10.2334/josnusd.20-0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The present study aimed to evaluate the effects of zinc deprivation on the properties of membrane and spike-discharge features of mesencephalic trigeminal neurons (MTNs), which are important sensory neurons for oral-motor reflexes and rhythmical jaw movements. METHODS Neonatal Sprague Dawley rats (P10-12) were distributed equally into a normal diet group and a zinc-deficient diet (ZD) group. Whole cell patch-clamp recordings were obtained from MTNs from coronal brain slices. RESULTS Passive membrane properties showed a modest depolarized membrane potential and decreased cell capacitance in the ZD group. Zinc deprivation decreased the minimal current amplitude, which induced an action potential and increased the amplitude of afterhyperpolarization following the action potential. Negligible changes were observed for other action potential properties. A decreased burst duration was observed, accompanied by hastened spike frequency adaptation in the burst discharge. There was no difference in the resonant properties at both the subthreshold depolarized potential and hyperpolarized membrane potential between the control and ZD groups. CONCLUSION These results suggests that neither the persistent sodium conductance nor slow inwardly rectifying conductance were altered; however, there appeared to be an increase in Ca2+-dependent K+ conductance in zincdeficient MTNs.
Collapse
Affiliation(s)
- Saori Yamada
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Soju Seki
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| |
Collapse
|
15
|
Bhutta ZA, Ashar A, Mahfooz A, Khan JA, Saleem MI, Rashid A, Aqib AI, Kulyar MFEA, Sarwar I, Shoaib M, Nawaz S, Yao W. Enhanced wound healing activity of nano ZnO and nano Curcuma longa in third-degree burn. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01661-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Johnstone JM, Hughes A, Goldenberg JZ, Romijn AR, Rucklidge JJ. Multinutrients for the Treatment of Psychiatric Symptoms in Clinical Samples: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020; 12:E3394. [PMID: 33158241 PMCID: PMC7694278 DOI: 10.3390/nu12113394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
This systematic review and meta-analysis focused on randomized controlled trials (RCT) of multinutrients consisting of at least four vitamins and/or minerals as interventions for participants with psychiatric symptoms. A systematic search identified 16 RCTs that fit the inclusion criteria (n = 1719 participants) in six psychiatric categories: depression, post-disaster stress, antisocial behavior, behavioral deficits in dementia, attention-deficit/hyperactivity disorder, and autism. Grading of Recommendations, Assessment, Development and Evaluations (GRADE) was used to rate the evidence base. Significant clinical benefit was assessed using minimal clinically important differences (MIDs). Due to heterogeneity in participants, multinutrient formulas, outcome measures, and absence of complete data, only the Attention-Deficit/Hyperactivity Disorder (ADHD) category was eligible for meta-analyses. In ADHD populations, statistically and clinically significant improvements were found in global functioning, Mean Difference (MD) -3.3, p = 0.001, MID -3.26; Standardized Mean Difference (SMD) -0.49 p = 0.001 MD -0.5), clinician ratings of global improvement (MD -0.58, p = 0.001, MID -0.5) and ADHD improvement (MD -0.54, p = 0.002, MID -0.5), and clinician (but not observer) measures of ADHD inattentive symptoms (MD -1.53, p = 0.05, MID -0.5). Narrative synthesis also revealed a pattern of benefit for global measures of improvement, for example: in autism, and in participants with behavioral deficits in dementia. Post-natural disaster anxiety and the number of violent incidents in prison populations also improved. Broad-spectrum formulas (vitamins + minerals) demonstrated more robust effects than formulas with fewer ingredients. This review highlights the need for robust methodology-RCTs that report full data, including means and standard deviations for all outcomes-in order to further elucidate the effects of multinutrients for psychiatric symptoms.
Collapse
Affiliation(s)
- Jeanette M. Johnstone
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA;
- Child and Adolescent Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew Hughes
- Adult Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Joshua Z. Goldenberg
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Amy R. Romijn
- Department of Psychology, Swansea University, Swansea SA2 8PP, UK;
| | - Julia J. Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, 8140 Christchurch, New Zealand
| |
Collapse
|
17
|
Xie Z, Wu H, Zhao J. Multifunctional roles of zinc in Alzheimer’s disease. Neurotoxicology 2020; 80:112-123. [DOI: 10.1016/j.neuro.2020.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
18
|
Baraibar AM, Hernández-Guijo JM. Micromolar concentrations of Zn 2+ depress cellular excitability through a blockade of calcium current in rat adrenal slices. Toxicology 2020; 444:152543. [PMID: 32858065 DOI: 10.1016/j.tox.2020.152543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 11/30/2022]
Abstract
The present work, using chromaffin cells in rat adrenal slices (RCCs), aims to describe what type of ionic current alterations induced by zinc underlies their effects reported on synaptic transmission. Thus, Zn2+ blocked calcium channels of RCCs in a time- and concentration-dependent manner with an IC50 of 391 μM. This blockade was partially reversed upon washout and was greater at more depolarizing holding potentials (i.e. 32 ± 5% at -110 mV, and 43 ± 6% at -50 mV, after 5 min perfusion). In ω-toxins-sensitive calcium channels (N-, P- and Q-types), Zn2+caused a lower blockade of ICa, 33.3%, than in ω-toxins-resistant ones (L-type, 55.3%; and R-type, 90%). This compound inhibited calcium current at all test potentials and shows a shift of the I-V curve to more depolarized values of about 10 mV. The sodium current was not blocked by acute application of high Zn2+concentrations. Voltage-dependent potassium current was marginally affected by high Zn2+ concentrations showing no concentration-dependence. Nevertheless, calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 453 μM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to BK channels. Under current-clamp conditions, RCCs exhibit a resting potential of -50.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of voltage and Ca2+-activated K+-channels (BK). We found that the blockade of these ionic currents by Zn2+ led to a drastic alteration of cellular excitability with a depolarization of the membrane potential, the slowdown and broadening of the APs and the severe reduction of the after hyperpolarization (AHP) which led to a decrease in the APs firing frequency. Taken together, these results point to a neurotoxic action evoked by zinc that is associated with changes to cellular excitability by blocking the ionic currents responsible for both the neurotransmitter release and the action potentials firing.
Collapse
Affiliation(s)
- Andrés M Baraibar
- Department of Neuroscience, University of Minnesota, 4-260 Wallin Medical Biosciences Building, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Teófilo Hernando, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, 28029, Madrid, Spain.
| |
Collapse
|
19
|
Food in Chronic Pain: Friend or Foe? Nutrients 2020; 12:nu12082473. [PMID: 32824467 PMCID: PMC7469060 DOI: 10.3390/nu12082473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/14/2023] Open
|
20
|
Ashraf A, Jeandriens J, Parkes HG, So PW. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: Evidence of ferroptosis. Redox Biol 2020; 32:101494. [PMID: 32199332 PMCID: PMC7083890 DOI: 10.1016/j.redox.2020.101494] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Iron dyshomeostasis is implicated in Alzheimer’s disease (AD) alongside β-amyloid and tau pathologies. Despite the recent discovery of ferroptosis, an iron-dependent form cell death, hitherto, in vivo evidence of ferroptosis in AD is lacking. The present study uniquely adopts an integrated multi-disciplinary approach, combining protein (Western blot) and elemental analysis (total reflection X-ray fluorescence) with metabolomics (1H nuclear magnetic resonance spectroscopy) to identify iron dyshomeostasis and ferroptosis, and possible novel interactions with metabolic dysfunction in age-matched male cognitively normal (CN) and AD post-mortem brain tissue (n = 7/group). Statistical analysis was used to compute differences between CN and AD, and to examine associations between proteins, elements and/or metabolites. Iron dyshomeostasis with elevated levels of ferritin, in the absence of increased elemental iron, was observed in AD. Moreover, AD was characterised by enhanced expression of the light-chain subunit of the cystine/glutamate transporter (xCT) and lipid peroxidation, reminiscent of ferroptosis, alongside an augmented excitatory glutamate to inhibitory GABA ratio. Protein, element and metabolite associations also greatly differed between CN and AD suggesting widespread metabolic dysregulation in AD. We demonstrate iron dyshomeostasis, upregulated xCT (impaired glutathione metabolism) and lipid peroxidation in AD, suggesting anti-ferroptotic therapies may be efficacious in AD.
Collapse
Affiliation(s)
- Azhaar Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jérôme Jeandriens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Human Biology and Toxicology, Faculty of Medicine, University of Mons, Place du Parc 20, Mons, Belgium
| | - Harold G Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
21
|
Malakooti N, Roberts B, Pritchard MA, Volitakis I, Kim RC, Lott IT, McLean CA, Finkelstein DI, Adlard PA. Characterising the brain metalloproteome in Down syndrome patients with concomitant Alzheimer's pathology. Metallomics 2020; 12:114-132. [PMID: 31764918 DOI: 10.1039/c9mt00196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Down syndrome (DS) is a common intellectual disability, with an incidence of 1 in 700 and is caused by trisomy 21. People with DS develop Alzheimer's disease (AD)-like neuropathology by the age of 40. As metal ion dyshomeostasis (particularly zinc, iron and copper) is one of the characteristics of AD and is believed to be involved in the pathogenesis of disease, we reasoned that it may also be altered in DS. Thus, we used inductively coupled plasma mass spectrometry to examine metal levels in post-mortem brain tissue from DS individuals with concomitant AD pathology. Size exclusion-ICPMS was also utilised to characterise the metalloproteome in these cases. We report here for the first time that iron levels were higher in a number of regions in the DS brain, including the hippocampus (40%), frontal cortex (100%) and temporal cortex (34%), compared to controls. Zinc and copper were also elevated (both 29%) in the DS frontal cortex, but zinc was decreased (23%) in the DS temporal cortex. Other elements were also examined, a number of which also showed disease-specific changes. The metalloproteomic profile in the DS brain was also different to that in the controls. These data suggest that metals and metal:protein interactions are dysregulated in the DS brain which, given the known role of metals in neurodegeneration and AD, is likely to contribute to the pathogenesis of disease. Interrogation of the underlying cellular mechanisms and consequences of this failure in metal ion homeostasis, and the specific contributions of the individual DS and AD phenotypes to these changes, should be explored.
Collapse
Affiliation(s)
- Nakisa Malakooti
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, and The Melbourne Dementia Research Centre, Parkville, 3010, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Meguid NA, Bjørklund G, Gebril OH, Doşa MD, Anwar M, Elsaeid A, Gaber A, Chirumbolo S. The role of zinc supplementation on the metallothionein system in children with autism spectrum disorder. Acta Neurol Belg 2019; 119:577-583. [PMID: 31302864 DOI: 10.1007/s13760-019-01181-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/01/2019] [Indexed: 01/10/2023]
Abstract
The present research was carried out to elucidate the role of zinc (Zn) supplementation on the plasma concentration and gene expression, as well as the effects on cognitive-motor performance, in a cohort of children with autism spectrum disorder (ASD). The study was performed on a cohort of 30 pediatric subjects with ASD, encompassing an age range of 3-8 years. The impact of Zn supplementation was investigated in 3 months (or 12 weeks) on the ASD children. Each daily dosage of Zn was calculated as being equal to the body weight in kg plus 15-20 mg. The effect of Zn was also evaluated on the serum level of metallothionein 1 (MT-1A), and the severity of autism via scores on the Childhood Autism Rating Scale. The effect of Zn was investigated on the gene expression of MT1-A before and after Zn supplementation. The data of the present study showed an increase in cognitive-motor performance and an increased serum metallothionein concentration, as well as a significant lowering in the circulating serum levels of copper (Cu) following Zn supplementation. In the cohort of ASD patients, the genetic expression of MT-1 was higher after Zn therapy than before the treatment. In conclusion, Zn supplementation might be an important factor in the treatment of children with ASD.
Collapse
Affiliation(s)
- Nagwa A Meguid
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| | - Ola H Gebril
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanţa, Romania
| | - Mona Anwar
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
- Department of Basic Sciences and Biomechanics, Faculty of Physical Therapy, Heliopolis University, Cairo, Egypt
| | - Amal Elsaeid
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Ahmad Gaber
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
23
|
Chen NN, Zhao DJ, Sun YX, Wang DD, Ni H. Long-Term Effects of Zinc Deficiency and Zinc Supplementation on Developmental Seizure-Induced Brain Damage and the Underlying GPR39/ZnT-3 and MBP Expression in the Hippocampus. Front Neurosci 2019; 13:920. [PMID: 31551684 PMCID: PMC6737275 DOI: 10.3389/fnins.2019.00920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/16/2019] [Indexed: 01/17/2023] Open
Abstract
We previously illustrated that long-term upregulated expression of ZnT-3 in the hippocampus of rats that underwent neonatal seizures was restored by pretreatment with a ketogenic diet. It was recently demonstrated that upregulated expression of ZnT-3 was associated with increased concentrations of intracellular free zinc ions in an in vitro model of glutamate-induced hippocampal neuronal excitotoxic damage. However, there is still a lack of research on the effects of different concentrations of zinc in the diet on developmental convulsive brain injury. The aim of this study was to investigate the effects of different zinc concentrations in the diet on long-term neurobehavioral and seizure thresholds following lithium chloride-pilocarpine-induced developmental seizures. Sprague-Dawley rats (postnatal day 27, P27) were randomly assigned to one of six dietary groups for 4 weeks: normal zinc control group (Control group, 44 mg/kg Zn), Zn-deficient control group (ZD group, 2.7 mg/kg Zn), Zn supplemented control group (ZS group, 246 mg/kg Zn), pilocarpine-induced seizure plus regular zinc diet group (SE group, 44 mg/kg Zn), seizure plus low-zinc diet group (SE + ZD group, 2.7 mg/kg Zn), and seizure plus high-zinc diet group (SE + ZS group, 246 mg/kg Zn). Novel object recognition and passive avoidance tests were performed on rats at P42 and P56. After routine seizure threshold detection and Timm staining procedures at P57, expression of GPR39, ZnT-3, and MBP were detected in the hippocampus by Western blot analysis. The results revealed that the Zinc-deficient diet for 4 weeks aggravated the long-term adverse effects of developmental seizures, evidenced by weight, cognition, seizure threshold and serum zinc concentrations, which were paralleled by expression changes in hippocampal GPR39 and ZnT-3. In contrast, zinc supplementation for 4 weeks significantly improved damage-related changes described above and rescued the abnormal expression of GPR39, ZnT-3, and MBP in the hippocampus. Similar alterations between the expression pattern of MBP and aberrant sprouting of mossy fibers in the hippocampus may indicate that sprouting is a secondary pathological change caused by developmental brain damage rather than the cause of epileptogenesis. Up-regulation of MBP protein levels in the high zinc diet-treated seizure group as well as the corresponding improvement of cognitive impairment and reduced hippocampal mossy fiber regenerative sprouting, may represent a compensatory mechanism for neuronal membrane damage and repair.
Collapse
Affiliation(s)
- Ni-Na Chen
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Dong-Jing Zhao
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yu-Xiao Sun
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Dan-Dan Wang
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Darroudi S, Abolbashari S, Ahangari N, Tayefi M, Khashyarmanesh Z, Zamani P, Haghighi HM, Mohammadpour AH, Tavalaei S, Esmaily H, Ferns GA, Meshkat Z, Tayefi B, Ghayour-Mobarhan M. Association Between Trace Element Status and Depression in HTLV-1-Infected Patients: a Retrospective Cohort Study. Biol Trace Elem Res 2019; 191:75-80. [PMID: 30715684 DOI: 10.1007/s12011-018-1613-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/09/2018] [Indexed: 01/12/2023]
Abstract
Depression and Anxiety are two important public health problems that are known to be associated with viral infections. The association between the intake of nutrients such as zinc and copper with symptoms of depression has been studied previously. The aim of the current study was to investigate the association between depression with human T cell lymphotropic virus type 1 (HTLV-1) infection and serum content of zinc and copper in a large Iranian population cohort. The study population consisted of 279 HTLV-1-positive patients who were identified after recruitment as part of a large cohort study: the Mashhad Stroke and Heart Association Disorder (MASHAD) study. They were divided into two groups of diagnosed with or without depression based on their symptoms. Serum zinc and copper levels of all subjects were measured using the flame atomic absorption spectrometry. The population sample comprised of 279 individuals infected with HTLV-1 of whom 192 (68.8%) were women. The mean serum zinc in the group with and without depression was 78.69 ± 13.79 μg/dl and 86.87 ± 19.44 μg/dl, respectively (p < 0.001). Also, the serum copper level was higher in the depressive group (116.75 ± 39.56) than in the non-depressive group (104.76 ± 30.77) (p 0.004). The association between serum zinc and copper with depression in HTLV-1-infected patients which was shown in this study could be considered in the treatment strategies in these patients.
Collapse
Affiliation(s)
- Susan Darroudi
- Student Research Committee, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Abolbashari
- Student Research Committee, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Ahangari
- Student Research Committee, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Tayefi
- Cardiovascular Research Center, Mashhad University of Medical Science , Mashhad, Iran
- University International Accreditation, International Office, Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khashyarmanesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Hooshang Mohammadpour
- Clinical Pharmacy Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavalaei
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Batool Tayefi
- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 99199-91766, Iran.
| |
Collapse
|
25
|
Petit-Pierre G, Colin P, Laurer E, Déglon J, Bertsch A, Thomas A, Schneider BL, Renaud P. In vivo neurochemical measurements in cerebral tissues using a droplet-based monitoring system. Nat Commun 2017; 8:1239. [PMID: 29093476 PMCID: PMC5665973 DOI: 10.1038/s41467-017-01419-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/15/2017] [Indexed: 11/09/2022] Open
Abstract
Direct collection of extracellular fluid (ECF) plays a central role in the monitoring of neurological disorders. Current approaches using microdialysis catheters are however drastically limited in term of temporal resolution. Here we show a functional in vivo validation of a droplet collection system included at the tip of a neural probe. The system comprises an advanced droplet formation mechanism which enables the collection of neurochemicals present in the brain ECF at high-temporal resolution. The probe was implanted in a rat brain and could successfully collect fluid samples organized in a train of droplets. A microfabricated target plate compatible with most of the surface-based detection methods was specifically developed for sample analysis. The time-resolved brain-fluid samples are analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results provide a time evolution picture of the cerebral tissues neurochemical composition for selected elements known for their involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Guillaume Petit-Pierre
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Philippe Colin
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Estelle Laurer
- Unit of Toxicology, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne-Geneva, Switzerland
| | - Julien Déglon
- Unit of Toxicology, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne-Geneva, Switzerland
| | - Arnaud Bertsch
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aurélien Thomas
- Unit of Toxicology, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne-Geneva, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Philippe Renaud
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
26
|
Characteristic of Extracellular Zn 2+ Influx in the Middle-Aged Dentate Gyrus and Its Involvement in Attenuation of LTP. Mol Neurobiol 2017; 55:2185-2195. [PMID: 28290149 DOI: 10.1007/s12035-017-0472-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
An increased influx of extracellular Zn2+ into neurons is a cause of cognitive decline. The influx of extracellular Zn2+ into dentate granule cells was compared between young and middle-aged rats because of vulnerability of the dentate gyrus to aging. The influx of extracellular Zn2+ into dentate granule cells was increased in middle-aged rats after injection of AMPA and high K+ into the dentate gyrus, but not in young rats. Simultaneously, high K+-induced attenuation of LTP was observed in middle-aged rats, but not in young rats. The attenuation was rescued by co-injection of CaEDTA, an extracellular Zn2+ chelator. Intracellular Zn2+ in dentate granule cells was also increased in middle-aged slices with high K+, in which the increase in extracellular Zn2+ was the same as young slices with high K+, suggesting that ability of extracellular Zn2+ influx into dentate granule cells is greater in middle-aged rats. Furthermore, extracellular zinc concentration in the hippocampus was increased age-dependently. The present study suggests that the influx of extracellular Zn2+ into dentate granule cells is more readily increased in middle-aged rats and that its increase is a cause of age-related attenuation of LTP in the dentate gyrus.
Collapse
|
27
|
Takeda A, Tamano H. New Insight into Metallomics in Cognition. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Tamano H, Koike Y, Nakada H, Shakushi Y, Takeda A. Significance of synaptic Zn 2+ signaling in zincergic and non-zincergic synapses in the hippocampus in cognition. J Trace Elem Med Biol 2016; 38:93-98. [PMID: 26995290 DOI: 10.1016/j.jtemb.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 11/24/2022]
Abstract
A portion of zinc concentrates in the synaptic vesicles in the brain and is released from glutamatergic (zincergic) neuron terminals. It serves as a signaling factor (in a form of free Zn2+). Both extracellular Zn2+ signaling, which predominantly originates in Zn2+ release from zincergic neuron terminals, and intracellular Zn2+ signaling, which is often linked to extracellular Zn2+ signaling, are involved in hippocampus-dependent memory. At mossy fiber-CA3 pyramidal cell synapses and Schaffer collateral-CA1 pyramidal cell synapses, which are zincergic, extracellular Zn2+ signaling leads to intracellular Zn2+ signaling and is involved in learning and memory. At medial perforant pathway-dentate granule cell synapses, which are non-zincergic, intracellular Zn2+ signaling, which originates in the internal stores containing Zn2+, is involved in learning and memory. The blockade of Zn2+ signaling with Zn2+ chelators induces memory deficit, while the optimal amount range of Zn2+ signaling is unknown. It is possible that the degree and frequency of Zn2+ signaling, which determine the increased Zn2+ levels, modulates learning and memory as well as intracellular Ca2+ signaling. To understand the precise role of synaptic Zn2+ signaling in the hippocampus, the present paper summarizes the current knowledge on Zn2+ signaling at zincergic and non-zincergic synapses in the hippocampus in cognition and involvement of zinc transporters and zinc-binding proteins in synaptic Zn2+ signaling.
Collapse
Affiliation(s)
- Hanuna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuta Koike
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Nakada
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yukina Shakushi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
29
|
Potential antidepressant-like properties of the TC G-1008, a GPR39 (zinc receptor) agonist. J Affect Disord 2016; 201:179-84. [PMID: 27235821 DOI: 10.1016/j.jad.2016.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/26/2016] [Accepted: 05/09/2016] [Indexed: 01/20/2023]
Abstract
Some forms of depression appear to be more related to the glutamatergic system. G-coupled protein receptor 39 (GPR39) is the metabotropic zinc receptor, which may be involved in the pathophysiology of depression and in the antidepressant response. Its deficiency abolishes the antidepressant response, which means that GPR39 is required to obtain a therapeutic effect in depression. This raises the possibility that agonists of the zinc receptor may have a role in antidepressant treatment. To explore this possibility we investigated animal behaviour in the forced swim test, the tail suspension test (to assess antidepressant-like properties), the light/dark test and the elevated plus maze test (to assess anxiolytic-like properties), following acute administration of a GPR39 agonist (TC G-1008). We found an antidepressant response (as measured by the forced swim test but not by the tail suspension test) in mice following the GPR39 agonist treatment. Additionally, we observed the opposite results in the light/dark box (decreased overall distance; increased time spent in the lit compartment; decreased time spent in the dark compartment; increased freezing time) and elevated plus maze (no significant changes), which may be a consequence of the sedative effect of TC G-1008. We also found hippocampal GPR39 and brain-derived neurotrophic factor (BDNF) up-regulation following administration of the GPR39 agonist, which may be undiscovered so far as a possible novel agent in the treatment of mood disorders.
Collapse
|
30
|
Pharmacological Evaluation of Naproxen Metal Complexes on Antinociceptive, Anxiolytic, CNS Depressant, and Hypoglycemic Properties. Adv Pharmacol Sci 2016; 2016:3040724. [PMID: 27478435 PMCID: PMC4958467 DOI: 10.1155/2016/3040724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022] Open
Abstract
Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand.
Collapse
|
31
|
Takeda A, Tamano H, Nishio R, Murakami T. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model. Int J Mol Sci 2016; 17:ijms17071149. [PMID: 27438830 PMCID: PMC4964522 DOI: 10.3390/ijms17071149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023] Open
Abstract
Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer’s disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD), as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Ryusuke Nishio
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Taku Murakami
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
32
|
Doboszewska U, Szewczyk B, Sowa-Kućma M, Noworyta-Sokołowska K, Misztak P, Gołębiowska J, Młyniec K, Ostachowicz B, Krośniak M, Wojtanowska-Krośniak A, Gołembiowska K, Lankosz M, Piekoszewski W, Nowak G. Alterations of Bio-elements, Oxidative, and Inflammatory Status in the Zinc Deficiency Model in Rats. Neurotox Res 2016; 29:143-54. [PMID: 26581375 PMCID: PMC4701762 DOI: 10.1007/s12640-015-9571-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Our previous study showed that dietary zinc restriction induces depression-like behavior with concomitant up-regulation of the N-methyl-D-aspartate receptor (NMDAR). Because metal ions, oxidative stress, and inflammation are involved in depression/NMDAR function, in the present study, bio-elements (zinc, copper, iron, magnesium, and calcium), oxidative (thiobarbituric acid-reactive substances; protein carbonyl content), and inflammatory (IL-1α, IL-1β) factors were measured in serum, hippocampus (Hp), and prefrontal cortex (PFC) of male Sprague-Dawley rats subjected to a zinc-adequate (ZnA) (50 mg Zn/kg) or a zinc-deficient (ZnD) (3 mg Zn/kg) diet for 4 or 6 weeks. Both periods of dietary zinc restriction reduced serum zinc and increased serum iron levels. At 4 weeks, lowered zinc level in the PFC and Hp as well as lowered iron level in the PFC of the ZnD rats was observed. At 6 weeks, however, iron level was increased in the PFC of these rats. Although at 6 weeks zinc level in the PFC did not differ between the ZnA and ZnD rats, extracellular zinc concentration after 100 mM KCl stimulation was reduced in the PFC of the ZnD rats and was accompanied by increased extracellular iron and glutamate levels (as measured by the in vivo microdialysis). The examined oxidative and inflammatory parameters were generally enhanced in the tissue of the ZnD animals. The obtained data suggest dynamic redistribution of bio-elements and enhancement of oxidative/inflammatory parameters after dietary zinc restriction, which may have a link with depression-like behavior/NMDAR function/neurodegeneration.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Bernadeta Szewczyk
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Magdalena Sowa-Kućma
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | | | - Paulina Misztak
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Gołębiowska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Młyniec
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059, Kraków, Poland
| | - Mirosław Krośniak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | | | - Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Marek Lankosz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059, Kraków, Poland
| | | | - Gabriel Nowak
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
33
|
Takeda A, Tamano H. Significance of the degree of synaptic Zn2+ signaling in cognition. Biometals 2015; 29:177-85. [DOI: 10.1007/s10534-015-9907-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 11/24/2022]
|
34
|
Alvarez‐Salas E, Alcántara‐Alonso V, Matamoros‐Trejo G, Vargas MA, Morales‐Mulia M, Gortari P. Mediobasal hypothalamic and adenohypophyseal TRH‐degrading enzyme (PPII) is down‐regulated by zinc deficiency. Int J Dev Neurosci 2015; 46:115-24. [DOI: 10.1016/j.ijdevneu.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- Elena Alvarez‐Salas
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
- ISSSTE School of Dietetics and NutritionMexico
| | - Viridiana Alcántara‐Alonso
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
- ISSSTE School of Dietetics and NutritionMexico
| | - Gilberto Matamoros‐Trejo
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
| | - Miguel Angel Vargas
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMor 62271Mexico
| | - Marcela Morales‐Mulia
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
| | - Patricia Gortari
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
| |
Collapse
|
35
|
Han J, Zhao J, Jiang J, Ma X, Liu X, Wang C, Jiang S, Wan C. Zinc deficiency impairs the renewal of hippocampal neural stem cells in adult rats: involvement of FoxO3a activation and downstream p27(kip1) expression. J Neurochem 2015; 134:879-91. [PMID: 26086369 DOI: 10.1111/jnc.13199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022]
Abstract
Zinc plays an important role in the development and maintenance of central neural system. Zinc deficiency has been known to alter normal brain function, whose molecular mechanism remains largely elusive. In the present study, we established a zinc deficiency-exposed rat model, and, using western blot and immunohistochemical analyses, found that the expression of FoxO3a and p27(kip1) was remarkably up-regulated in the rat brain hippocampus. Immunofluorescence assay showed that FOXO3a and p27(kip1) were significantly co-localized with nestin, the marker of neural stem cells (NSCs). Furthermore, we identified that the proportion of proliferating NSCs was markedly decreased in zinc-deficient rat hippocampaus. Using C17.2 neural stem cells, it was revealed that exposure to zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethy) ethylenediamine induced the expression of FoxO3a and p27(kip1) , which coincided with reduced NSC proliferation. Furthermore, depletion of FoxO3a inhibited p27(kip1) expression and restored the growth of NSCs. On the basis of these data, we concluded that FoxO3a/p27(kip1) signaling might play a significant role in zinc deficiency-induced growth impairment of NSCs and consequent neurological disorders. We describe here that zinc deficiency induces the proliferative impairment of hippocampal neural stem cells partially through the activation of FOXO3a-p27 axis in rats. Neural progenitor cells exhibited significantly up-regulated expression of FOXO3a and p27 after zinc deficiency in vivo and in vitro. Depletion of FOXO3a ameliorates zinc deficiency-induced expression of p27 and growth impairment of neural stem cells. We provide novel insight into the mechanisms underlying zinc deficiency-induced neurological deficits.
Collapse
Affiliation(s)
- Jingling Han
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Jianya Zhao
- Department of Nutrition and Food hygiene, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Junkang Jiang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Xia Ma
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Xinhang Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Cheng Wang
- Department of Nutrition and Food hygiene, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Shengyang Jiang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Chunhua Wan
- Department of Nutrition and Food hygiene, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
36
|
Soukupova M, Binaschi A, Falcicchia C, Palma E, Roncon P, Zucchini S, Simonato M. Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats. Neuroscience 2015; 301:246-53. [PMID: 26073699 DOI: 10.1016/j.neuroscience.2015.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
An increase in the release of excitatory amino acids has consistently been observed in the hippocampus during seizures, both in humans and animals. However, very little or nothing is known about the extracellular levels of glutamate and aspartate during epileptogenesis and in the interictal chronic period of established epilepsy. The aim of this study was to systematically evaluate the relationship between seizure activity and changes in hippocampal glutamate and aspartate extracellular levels under basal and high K(+)-evoked conditions, at various time-points in the natural history of experimental temporal lobe epilepsy, using in vivo microdialysis. Hippocampal extracellular glutamate and aspartate levels were evaluated: 24h after pilocarpine-induced status epilepticus (SE); during the latency period preceding spontaneous seizures; immediately after the first spontaneous seizure; in the chronic (epileptic) period. We found that (i) basal (spontaneous) glutamate outflow is increased in the interictal phases of the chronic period, whereas basal aspartate outflow remains stable for the entire course of the disease; (ii) high K(+) perfusion increased glutamate and aspartate outflow in both control and pilocarpine-treated animals, and the overflow of glutamate was clearly increased in the chronic group. Our data suggest that the glutamatergic signaling is preserved and even potentiated in the hippocampus of epileptic rats, and thus may favor the occurrence of spontaneous recurrent seizures. Together with an impairment of GABA signaling (Soukupova et al., 2014), these data suggest that a shift toward excitation occurs in the excitation/inhibition balance in the chronic epileptic state.
Collapse
Affiliation(s)
- M Soukupova
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy.
| | - A Binaschi
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy.
| | - C Falcicchia
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy.
| | - E Palma
- Department of Physiology and Pharmacology, University of Roma "Sapienza", Piazzale Aldo Moro 5, Roma, Italy; IRCCS San Raffaele, Via della Pisana 235, Roma, Italy.
| | - P Roncon
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy.
| | - S Zucchini
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy; Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Via Ludovico Ariosto 35, Ferrara, Italy.
| | - M Simonato
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Via Fossato di Mortara 17-19, Ferrara, Italy; Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Via Ludovico Ariosto 35, Ferrara, Italy.
| |
Collapse
|
37
|
Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog Neurobiol 2015; 129:1-36. [PMID: 25817891 DOI: 10.1016/j.pneurobio.2014.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/20/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent a key link between electrical signals and non-electrical processes, such as contraction, secretion and transcription. Evolved to achieve high rates of Ca(2+)-selective flux, they possess an elaborate mechanism for selection of Ca(2+) over foreign ions. It has been convincingly linked to competitive binding in the pore, but the fundamental question of how this is reconcilable with high rates of Ca(2+) transfer remains unanswered. By virtue of their similarity to Ca(2+), polyvalent cations can interfere with the function of VGCCs and have proven instrumental in probing the mechanisms underlying selective permeation. Recent emergence of crystallographic data on a set of Ca(2+)-selective model channels provides a structural framework for permeation in VGCCs, and warrants a reconsideration of their diverse modulation by polyvalent cations, which can be roughly separated into three general mechanisms: (I) long-range interactions with charged regions on the surface, affecting the local potential sensed by the channel or influencing voltage-sensor movement by repulsive forces (electrostatic effects), (II) short-range interactions with sites in the ion-conducting pathway, leading to physical obstruction of the channel (pore block), and in some cases (III) short-range interactions with extracellular binding sites, leading to non-electrostatic modifications of channel gating (allosteric effects). These effects, together with the underlying molecular modifications, provide valuable insights into the function of VGCCs, and have important physiological and pathophysiological implications. Allosteric suppression of some of the pore-forming Cavα1-subunits (Cav2.3, Cav3.2) by Zn(2+) and Cu(2+) may play a major role for the regulation of excitability by endogenous transition metal ions. The fact that these ions can often traverse VGCCs can contribute to the detrimental intracellular accumulation of metal ions following excessive release of endogenous Cu(2+) and Zn(2+) or exposure to non-physiological toxic metal ions.
Collapse
|
38
|
Soukupová M, Binaschi A, Falcicchia C, Zucchini S, Roncon P, Palma E, Magri E, Grandi E, Simonato M. Impairment of GABA release in the hippocampus at the time of the first spontaneous seizure in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 2014; 257:39-49. [PMID: 24768627 DOI: 10.1016/j.expneurol.2014.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/27/2014] [Accepted: 04/16/2014] [Indexed: 01/03/2023]
Abstract
The alterations in GABA release have not yet been systematically measured along the natural course of temporal lobe epilepsy. In this work, we analyzed GABA extracellular concentrations (using in vivo microdialysis under basal and high K(+)-evoked conditions) and loss of two GABA interneuron populations (parvalbumin and somatostatin neurons) in the ventral hippocampus at different time-points after pilocarpine-induced status epilepticus in the rat, i.e. during development and progression of epilepsy. We found that (i) during the latent period between the epileptogenic insult, status epilepticus, and the first spontaneous seizure, basal GABA outflow was reduced to about one third of control values while the number of parvalbumin-positive cells was reduced by about 50% and that of somatostatin-positive cells by about 25%; nonetheless, high K(+) stimulation increased extracellular GABA in a proportionally greater manner during latency than under control conditions; (ii) at the time of the first spontaneous seizure (i.e., when the diagnosis of epilepsy is made in humans) this increased responsiveness to stimulation disappeared, i.e. there was no longer any compensation for GABA cell loss; (iii) thereafter, this dysfunction remained constant until a late phase of the disease. These data suggest that a GABAergic hyper-responsiveness can compensate for GABA cell loss and protect from occurrence of seizures during latency, whereas impaired extracellular GABA levels can favor the occurrence of spontaneous recurrent seizures and the maintenance of an epileptic state.
Collapse
Affiliation(s)
- Marie Soukupová
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy.
| | - Anna Binaschi
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy
| | - Chiara Falcicchia
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy
| | - Silvia Zucchini
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy; Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Italy
| | - Paolo Roncon
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology University of Roma "Sapienza", Italy; IRCCS San Raffaele Pisana, Roma, Italy
| | - Eros Magri
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, University of Ferrara, Italy
| | - Enrico Grandi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, University of Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy; Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Italy
| |
Collapse
|
39
|
|
40
|
Takeda A, Itoh H, Tamano H, Yuzurihara M, Oku N. Suppressive effect of Yokukansan on excessive release of glutamate and aspartate in the hippocampus of zinc-deficient rats. Nutr Neurosci 2013; 11:41-6. [DOI: 10.1179/147683008x301414] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Time course of zinc deprivation-induced alterations of mice behavior in the forced swim test. Pharmacol Rep 2013; 64:567-75. [PMID: 22814010 DOI: 10.1016/s1734-1140(12)70852-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/14/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Zinc is an important trace element essential for numerous bodily functions. It is believed that a deficiency of zinc can lead to various conditions, including depression, on which this study is focused. It is still not known if hypozincemia leads to the development of depression or whether zinc deficiency is a result of depression. It is hypothesized that zinc may be a therapeutic agent or supplement that would help to reverse the symptoms of this disease. METHODS In the present study, the behavior of mice was assessed 2, 4, and 10 weeks following administration of a zinc deficient diet. To evaluate animal activity we used the forced swim test (FST). RESULTS After 2-week zinc deprivation we demonstrated a significant reduction in the immobility time. However, after 4 and 10 weeks of zinc deprivation the mice exhibited an increased immobility time. There were no changes in locomotor activity at each time period. After 2-, 4- and 10-week zinc deprivation and the subsequent FST, serum zinc concentration was decreased and determined to be 59, 61 and 20%, respectively, compared with appropriate controls. The serum corticosterone concentration in mice after 2-, 4- and 10-week zinc deprivation and subjected to the FST was also assessed, whereby the differences between the control and experimental animals were demonstrated (increased by: 11, 97 and 225%, respectively). CONCLUSIONS The obtained results indicate that zinc deprivation induced "pro-depressive" behavior (after the initial period of "antidepressive" behavior). This pro-depressive behavior correlates with enhanced serum corticosterone concentration.
Collapse
|
42
|
Młyniec K, Nowak G. Zinc deficiency induces behavioral alterations in the tail suspension test in mice. Effect of antidepressants. Pharmacol Rep 2012; 64:249-55. [DOI: 10.1016/s1734-1140(12)70762-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 11/21/2011] [Indexed: 12/14/2022]
|
43
|
Russo AJ, Bazin AP, Bigega R, Carlson RS, Cole MG, Contreras DC, Galvin MB, Gaydorus SS, Holik SD, Jenkins GP, Jones BM, Languell PA, Lyman PJ, March KP, Meuer KA, Peterson SR, Piedmonte MT, Quinn MG, Smaranda NC, Steves PL, Taylor HP, Waddingham TE, Warren JS. Plasma copper and zinc concentration in individuals with autism correlate with selected symptom severity. Nutr Metab Insights 2012; 5:41-7. [PMID: 23882147 PMCID: PMC3698472 DOI: 10.4137/nmi.s8761] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To assess plasma zinc and copper concentration in individuals with autism and correlate these levels with symptom severity. SUBJECTS AND METHODS Plasma from 102 autistic individuals, and 18 neurotypical controls, were tested for plasma zinc and copper using inductively-coupled plasma-mass spectrometry. Copper and zinc levels and Cu/Zn were analyzed for possible correlation with severity of 19 symptoms. RESULTS Autistic individuals had elevated plasma levels of copper and Cu/Zn and lower, but not significantly lower, plasma Zn compared to neurotypical controls. There was a correlation between Cu/Zn and expressive language, receptive language, focus attention, hyperactivity, fine motor skills, gross motor skills and Tip Toeing. There was a negative correlation between plasma zinc concentration and hyperactivity, and fine motor skills severity. DISCUSSION These results suggest an association between plasma Cu/Zn and severity of symptoms associated with autism.
Collapse
|
44
|
Takeda A, Takada S, Nakamura M, Suzuki M, Tamano H, Ando M, Oku N. Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit. PLoS One 2011; 6:e28615. [PMID: 22163318 PMCID: PMC3233599 DOI: 10.1371/journal.pone.0028615] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/11/2011] [Indexed: 11/21/2022] Open
Abstract
The translocation of synaptic Zn2+ to the cytosolic compartment has been studied to understand Zn2+ neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn2+ in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn2+ in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn2+ delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn2+ levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl2 into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn2+ in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn2+ and/or the preferential vulnerability to Zn2+ in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn2+ in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn2+. The present study indicates that the transient increase in cytosolic Zn2+ in CA1 pyramidal neurons reversibly impairs object recognition memory.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Global COE-21, Suruga-ku, Shizuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Russo A, deVito R. Analysis of Copper and Zinc Plasma Concentration and the Efficacy of Zinc Therapy in Individuals with Asperger's Syndrome, Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) and Autism. Biomark Insights 2011; 6:127-33. [PMID: 22174567 PMCID: PMC3235993 DOI: 10.4137/bmi.s7286] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To assess plasma zinc and copper concentration in individuals with Asperger's Syndrome, Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS) and autistic disorder, and to analyze the efficacy of zinc therapy on the normalization of zinc and copper levels and symptom severity in these disorders. SUBJECTS AND METHODS Plasma from 79 autistic individuals, 52 individuals with PDD-NOS, 21 individuals with Asperger's Syndrome (all meeting DSM-IV diagnostic criteria), and 18 age and gender similar neurotypical controls, were tested for plasma zinc and copper using inductively-coupled plasma-mass spectrometry. RESULTS Autistic and PDD-NOS individuals had significantly elevated plasma levels of copper. None of the groups (autism, Asperger's or PDD-NOS) had significantly lower plasma zinc concentrations. Post zinc and B-6 therapy, individuals with autism and PDD-NOS had significantly lower levels of copper, but individuals with Asperger's did not have significantly lower copper. Individuals with autism, PDD-NOS and Asperger's all had significantly higher zinc levels. Severity of symptoms decreased in autistic individuals following zinc and B-6 therapy with respect to awareness, receptive language, focus and attention, hyperactivity, tip toeing, eye contact, sound sensitivity, tactile sensitivity and seizures. None of the measured symptoms worsened after therapy. None of the symptoms in the Asperger's patients improved after therapy. DISCUSSION These results suggest an association between copper and zinc plasma levels and individuals with autism, PDD-NOS and Asperger's Syndrome. The data also indicates that copper levels normalize (decrease to levels of controls) in individuals with autism and PDD-NOS, but not in individuals with Asperger's. These same Asperger's patients do not improve with respect to symptoms after therapy, whereas many symptoms improved in the autism group. This may indicate an association between copper levels and symptom severity.
Collapse
Affiliation(s)
- A.J. Russo
- Health Research Institute, Warrenville, Illinois
- Visiting Assistant Professor of Biology, Hartwick College, Oneonta, New York
| | | |
Collapse
|
46
|
Russo AJ. Increased Copper in Individuals with Autism Normalizes Post Zinc Therapy More Efficiently in Individuals with Concurrent GI Disease. Nutr Metab Insights 2011; 4:49-54. [PMID: 23946661 PMCID: PMC3738468 DOI: 10.4137/nmi.s6827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIM To assess plasma zinc and copper concentration in individuals with autism. SUBJECTS AND METHODS Plasma from 79 autistic individuals, and 18 age and gender similar neurotypical controls, were tested for plasma zinc and copper using inductively-coupled plasma-mass spectrometry. RESULTS Autistic individuals had significantly elevated plasma levels of copper and Cu/Zn and lower, but not significantly lower, plasma Zn compared to neurotypical controls. Zn levels increased significantly in autistic individuals with and without GI disease after zinc therapy. Cu decreased significantly after zinc therapy in the GI disease group but not in the autistic group without GI disease. Autistic children significantly improved with respect to hyperactivity and stimming after zinc therapy in autistic children with GI disease. Autistic children without GI disease did not improve in these symptoms after the same therapy. DISCUSSION These results suggest an association between zinc and copper plasma levels and autism, and they suggest that zinc therapy may be most effective at lowering copper levels in autistic children with GI disease.
Collapse
Affiliation(s)
- Anthony J. Russo
- Visiting Assistant Professor of Biology, Hartwick College, Oneonta, NY 13820. Research Director Health Research Institute/Pfeiffer Treatment Center 4575 Weaver Parkway Warrenville, Illinois 60555
| |
Collapse
|
47
|
Takeda A, Tamano H, Ogawa T, Takada S, Ando M, Oku N, Watanabe M. Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res 2011; 226:259-64. [PMID: 21946308 DOI: 10.1016/j.bbr.2011.09.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 12/26/2022]
Abstract
Dietary zinc deficiency elicits neuropsychological symptoms and cognitive dysfunction. To pursue the mechanisms of these symptoms, in the present study, the relationship among serum glucocorticoid, chelatable zinc in the synaptic cleft and brain function based on behavior was examined in young rats fed a zinc-deficient diet for 4 weeks. Serum glucocorticoid level was significantly increased in zinc-deficient rats. However, the induction of in vivo dentate gyrus LTP and object recognition memory were not affected in zinc-deficient rats. Chelatable zinc levels were decreased in the stratum lucidum of the hippocampal CA3, but not in the molecular layer of the dentate gyrus. It is reported that dentate gyrus LTP and object recognition memory are affected in clioquinol (30mg/kg)-administered rats, in which chelatable zinc is significantly decreased in the molecular layer of the dentate gyrus. Thus, the significant decrease in chelatable zinc in the molecular layer of the dentate gyrus may be required for object recognition memory deficit in zinc deficiency. On the other hand, the time of grooming in the open-field test was decreased in zinc-deficient rats. Immobility time in the forced swim test was increased in zinc-deficient rats, but not in clioquinol-administered rats, in which chelatable zinc was more markedly decreased than in zinc-deficient rats, suggesting that the lack of chelatable zinc does not increase depression-like behavior. These results suggest that the chronic increase in serum glucocorticoid level is involved in the increase in depression-like behavior rather than the decrease in chelatable zinc after 4-week zinc deficiency.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Global COE, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Takeda A, Tamano H. Zinc signaling through glucocorticoid and glutamate signaling in stressful circumstances. J Neurosci Res 2011; 88:3002-10. [PMID: 20568287 DOI: 10.1002/jnr.22456] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Humans and animals are constantly exposed to environmental stress. The hypothalamic-pituitary-adrenal (HPA) axis responds to stress, followed by glucocorticoid secretion from the adrenal glands. This response serves to maintain homeostasis in the living body through energy mobilization or to restore it. The brain is an important target for glucocorticoids. The hippocampus participates in the regulation of the HPA axis. Stress activates glutamatergic neurons in the hippocampus, and serious stress induces dyshomeostasis of extracellular glutamate. This dyshomeostasis, which is potentiated by glucocorticoids, modifies cognitive and emotional behavior. On the other hand, zinc is necessary for glucocorticoid signaling and is released from glutamatergic (zincergic) neurons to modulate synaptic glutamate signaling. Stress also induces dyshomeostasis of extracellular zinc, which may be linked to dyshomeostasis of extracellular glutamate. Thus, glucocorticoid signaling might also contribute to dyshomeostasis of extracellular zinc. It is likely that zinc signaling participates in cognitive and emotional behavior through glucocorticoid and glutamate signaling under stressful circumstances. This Mini-Review analyzes the relationship among signals of glucocorticoid, glutamate, and zinc under stressful circumstances to elucidate the significance of the zinc signaling in response to stress.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | | |
Collapse
|
49
|
Russo AJ. Analysis of plasma zinc and copper concentration, and perceived symptoms, in individuals with depression, post zinc and anti-oxidant therapy. Nutr Metab Insights 2011; 4:19-27. [PMID: 23946658 PMCID: PMC3738484 DOI: 10.4137/nmi.s6760] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIM To assess plasma Zn and Cu levels in individuals with depression. SUBJECTS AND METHODS Plasma from 73 clinically depressed individuals, 38 individuals with anxiety and 16 controls were tested for plasma Zn and Cu concentration using inductively-coupled plasma-mass spectrometry. RESULTS Depressed individuals, with and without secondary anxiety, had decreased plasma Zn and elevated plasma Cu compared to controls. Zn normalized (increased to the level of normal controls) but Cu increased in individuals with depression (with and without secondary anxiety), after Zn therapy, whereas both plasma Zn increased and Cu levels decreased in anxiety, with and without secondary depression, after Zn therapy. Individuals with depression,with and without secondary anxiety, had significantly higher symptom severity when compared to neurotypical controls. Symptom severity in individuals with anxiety (both with and without secondary depression) significantly decreased after Zn therapy, whereas symptoms remained the same in individuals with primary depression. DISCUSSION These data show an association between Zn and Cu plasma levels and clinically depressed individuals, and suggest that high Cu levels are associated with high symptom severity.
Collapse
Affiliation(s)
- A J Russo
- Health Research Institute/Pfeiffer Treatment Center, 4575 Weaver Parkway, Warrenville, Illinois 60555, USA
| |
Collapse
|
50
|
Abstract
Aim: To assess plasma zinc and copper levels in individuals with anxiety and to test the hypothesis that there is a relationship between copper and zinc concentration and improved symptoms. Subjects and methods: Serum from 38 individuals with anxiety and 16 neurotypical age, gender and size similar controls were tested for plasma zinc and copper concentration using inductively-coupled plasma-mass spectrometry. Zinc and copper levels, pre and post therapy, were compared and assessed for perceived anxiety symptoms. Results: In this preliminary study, individuals with anxiety had significantly higher plasma levels of Cu (P = 0.0348), Cu/Zn (P = 0.0493) and lower Zn (P = 0.0294) compared to controls. Zn levels normalized (increased to the normal range) and Cu/Zn significantly decreased after zinc therapy (P = 0.0004, P = 0.0033, respectively), but Cu did not significantly decrease (0.3577). These same patients improved significantly with respect to perceived overall symptoms after zinc and anti-oxidant therapy (P = 0.013). Discussion: These results suggest an association between Zn plasma levels and individuals with anxiety, demonstrate that zinc therapy is effective in increasing zinc plasma levels, and show that zinc supplementation may play a role in improved symptoms.
Collapse
Affiliation(s)
- A J Russo
- Research Director, Health Research Institute, Pfeiffer Treatment Center, Warrenville, Illinois 60555, USA
| |
Collapse
|