1
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
2
|
Qubty D, Schreiber S, Rubovitch V, Boag A, Pick CG. No Significant Effects of Cellphone Electromagnetic Radiation on Mice Memory or Anxiety: Some Mixed Effects on Traumatic Brain Injured Mice. Neurotrauma Rep 2021; 2:381-390. [PMID: 34723249 PMCID: PMC8550818 DOI: 10.1089/neur.2021.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Current literature details an array of contradictory results regarding the effect of radiofrequency electromagnetic radiation (RF-EMR) on health, both in humans and in animal models. The present study was designed to ascertain the conflicting data published regarding the possible impact of cellular exposure (radiation) on male and female mice as far as spatial memory, anxiety, and general well-being is concerned. To increase the likelihood of identifying possible "subtle" effects, we chose to test it in already cognitively impaired (following mild traumatic brain injury; mTBI) mice. Exposure to cellular radiation by itself had no significant impact on anxiety levels or spatial/visual memory in mice. When examining the dual impact of mTBI and cellular radiation on anxiety, no differences were found in the anxiety-like behavior as seen at the elevated plus maze (EPM). When exposed to both mTBI and cellular radiation, our results show improvement of visual memory impairment in both female and male mice, but worsening of the spatial memory of female mice. These results do not allow for a decisive conclusion regarding the possible hazards of cellular radiation on brain function in mice, and the mTBI did not facilitate identification of subtle effects by augmenting them.
Collapse
Affiliation(s)
- Doaa Qubty
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Schreiber
- Department of Psychiatry, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Boag
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Psychiatry, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel.,Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Ismail H, Shakkour Z, Tabet M, Abdelhady S, Kobaisi A, Abedi R, Nasrallah L, Pintus G, Al-Dhaheri Y, Mondello S, El-Khoury R, Eid AH, Kobeissy F, Salameh J. Traumatic Brain Injury: Oxidative Stress and Novel Anti-Oxidants Such as Mitoquinone and Edaravone. Antioxidants (Basel) 2020; 9:antiox9100943. [PMID: 33019512 PMCID: PMC7601591 DOI: 10.3390/antiox9100943] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health concern worldwide and is classified based on severity into mild, moderate, and severe. The mechanical injury in TBI leads to a metabolic and ionic imbalance, which eventually leads to excessive production of reactive oxygen species (ROS) and a state of oxidative stress. To date, no drug has been approved by the food and drug administration (FDA) for the treatment of TBI. Nevertheless, it is thought that targeting the pathology mechanisms would alleviate the consequences of TBI. For that purpose, antioxidants have been considered as treatment options in TBI and were shown to have a neuroprotective effect. In this review, we will discuss oxidative stress in TBI, the history of antioxidant utilization in the treatment of TBI, and we will focus on two novel antioxidants, mitoquinone (MitoQ) and edaravone. MitoQ can cross the blood brain barrier and cellular membranes to accumulate in the mitochondria and is thought to activate the Nrf2/ARE pathway leading to an increase in the expression of antioxidant enzymes. Edaravone is a free radical scavenger that leads to the mitigation of damage resulting from oxidative stress with a possible association to the activation of the Nrf2/ARE pathway as well.
Collapse
Affiliation(s)
- Helene Ismail
- Department of Neurology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
| | - Maha Tabet
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt;
| | - Abir Kobaisi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
| | - Reem Abedi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
| | - Leila Nasrallah
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, UAE;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE;
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98165 Messina, Italy;
| | - Riyad El-Khoury
- Department of Pathology and Laboratory Medicine, Neuromuscular Diagnostic Laboratory, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Biomedical Sciences, Qatar University, Doha 2713, Qatar
- Correspondence: (A.H.E.); (F.K.); (J.S.); Tel.: +961-1-350000 (ext. 4891) (A.H.E.); +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 7359) (J.S.)
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
- Correspondence: (A.H.E.); (F.K.); (J.S.); Tel.: +961-1-350000 (ext. 4891) (A.H.E.); +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 7359) (J.S.)
| | - Johnny Salameh
- Department of Neurology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
- Correspondence: (A.H.E.); (F.K.); (J.S.); Tel.: +961-1-350000 (ext. 4891) (A.H.E.); +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 7359) (J.S.)
| |
Collapse
|
4
|
|
5
|
Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal 2020; 18:62. [PMID: 32293472 PMCID: PMC7158016 DOI: 10.1186/s12964-020-00549-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. Despite its high prevalence, effective treatment strategies for TBI are limited. Traumatic brain injury induces structural and functional alterations of astrocytes, the most abundant cell type in the brain. As a way of coping with the trauma, astrocytes respond in diverse mechanisms that result in reactive astrogliosis. Astrocytes are involved in the physiopathologic mechanisms of TBI in an extensive and sophisticated manner. Notably, astrocytes have dual roles in TBI, and some astrocyte-derived factors have double and opposite properties. Thus, the suppression or promotion of reactive astrogliosis does not have a substantial curative effect. In contrast, selective stimulation of the beneficial astrocyte-derived molecules and simultaneous attenuation of the deleterious factors based on the spatiotemporal-environment can provide a promising astrocyte-targeting therapeutic strategy. In the current review, we describe for the first time the specific dual roles of astrocytes in neuronal plasticity and reconstruction, including neurogenesis, synaptogenesis, angiogenesis, repair of the blood-brain barrier, and glial scar formation after TBI. We have also classified astrocyte-derived factors depending on their neuroprotective and neurotoxic roles to design more appropriate targeted therapies. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China.
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China
| |
Collapse
|
6
|
Yang B, Xu J, Li Y, Dong Y, Li Y, Tucker L, Yang L, Zong X, Wu C, Xu T, Hu S, Zhang Q, Yan X. Photobiomodulation therapy for repeated closed head injury in rats. JOURNAL OF BIOPHOTONICS 2020; 13:e201960117. [PMID: 31657525 DOI: 10.1002/jbio.201960117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Repeated traumatic brain injury, leads to cumulative neuronal injury and neurological impairments. There are currently no effective treatments to prevent these consequences. Growing interest is building in the use of transcranial photobiomodulation (PBM) therapy to treat traumatic brain injury. Here, we examined PBM in a repeated closed head injury (rCHI) rat model. Rats were administered a total of three closed head injuries, with each injury separated by 5 days. PBM treatment was initiated 2 hours after the first injury and administered daily for a total of 15 days. We found that PBM-treated rCHI rats had a significant reduction in motor ability, anxiety and cognitive deficits compared to CHI group. PBM group showed an increase of synaptic proteins and surviving neurons, along with a reduction in reactive gliosis and neuronal injury. These findings highlight the complexity of gliosis and neuronal injury following rCHI and suggest that PBM may be a viable treatment option to mitigate these effects and their detrimental consequences.
Collapse
Affiliation(s)
- Baocheng Yang
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Juanyong Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yuyu Li
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lorelei Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xuemei Zong
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Tie Xu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Emergency, Nanjing Jiangning Hospital, Nanjing, China
| | - Shuqun Hu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xianliang Yan
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Yang WC, Wang Q, Chi LT, Wang YZ, Cao HL, Li WZ. Therapeutic hypercapnia reduces blood-brain barrier damage possibly via protein kinase Cε in rats with lateral fluid percussion injury. J Neuroinflammation 2019; 16:36. [PMID: 30760300 PMCID: PMC6375143 DOI: 10.1186/s12974-019-1427-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/01/2019] [Indexed: 11/17/2022] Open
Abstract
Background This study investigated whether therapeutic hypercapnia (TH) ameliorated blood–brain barrier (BBB) damage and improved the neurologic outcome in a rat model of lateral fluid percussion injury (FPI), and explored the possible underlying mechanism. Methods Rats underwent lateral FPI and received inhalation of 30%O2–70%N2 or 30%O2–N2 plus CO2 to maintain arterial blood CO2 tension (PaCO2) between 80 and 100 mmHg for 3 h. To further explore the possible mechanisms for the protective effects of TH, a PKC inhibitor staurosporine or PKCαβ inhibitor GÖ6976 was administered via intracerebral ventricular injection. Results TH significantly improved neurological function 24 h, 48 h, 7 d, and 14 d after FPI. The wet/dry ratio, computed tomography values, Evans blue content, and histological lesion volume were significantly reduced by TH. Moreover, numbers of survived neurons and the expression of tight junction proteins (ZO-1, occludin, and claudin-5) were significantly elevated after TH treatment at 48-h post-FPI. TH significantly increased the expression of protein kinase Cε (PKCε) at 48-h post-FPI, but did not significantly change the expression of PKCα and PKCβII. PKC inhibitor staurosporine (but not the selective PKCαβ inhibitor-GÖ6976) inhibited the protective effect of TH. Conclusions Therapeutic hypercapnia is a promising candidate that should be further evaluated for clinical treatment. It not only protects the traumatic penumbra from secondary injury and improves histological structure but also maintains the integrity of BBB and reduces neurologic deficits after trauma in a rat model of FPI.
Collapse
Affiliation(s)
- Wan-Chao Yang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lai-Ting Chi
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue-Zhen Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Ling Cao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Zhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China. .,Anesthesiology Key Laboratory, Education Department, Harbin Medical University, No. 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
8
|
Duris K, Jurajda M. Evolutionary concept of inflammatory response and stroke. J Neurosci Res 2019; 98:98-104. [PMID: 30742319 DOI: 10.1002/jnr.24392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/21/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
The immune system plays an important role under both physiological and pathological conditions. Immune surveillance as well as defense and healing processes are crucial for the organism, but the immune system has a natural tendency to act aggressively when excessively stimulated. We may assume that the immune system is not designed to deal with severe conditions, such as polytrauma or severe stroke, because these are not compatible with life in the wilderness and evolution has no chance to act in such cases. These conditions are associated with exaggerated/deregulated inflammatory response, which may cause more damage than initial pathology. In this article, we would like to sketch a basic concept of the immune system-brain interactions from the evolutionary point of view and to discuss some implications related to stroke.
Collapse
Affiliation(s)
- K Duris
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Neurosurgery, The University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - M Jurajda
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Mirshekar MA, Sarkaki A, Farbood Y, Gharib Naseri MK, Badavi M, Mansouri MT, Haghparast A. Neuroprotective effects of gallic acid in a rat model of traumatic brain injury: behavioral, electrophysiological, and molecular studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1056-1063. [PMID: 30524680 PMCID: PMC6281072 DOI: 10.22038/ijbms.2018.29639.7165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective(s): Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. Clinically, it is essential to limit the development of cognitive impairment after TBI. In the present study, the neuroprotective effects of gallic acid (GA) on neurological score, memory, long-term potentiation (LTP) from hippocampal dentate gyrus (hDG), brain lipid peroxidation and cytokines after TBI were evaluated. Materials and Methods: Seventy-two adult male Wistar rats divided randomly into three groups with 24 in each: Veh + Sham, Veh + TBI and GA + TBI (GA; 100 mg/kg, PO for 7 days before TBI induction). Brain injury was made by Marmarou’s method. Briefly, a 200 g weight was fallen down from a 2 m height through a free-falling tube onto the head of anesthetized animal. Results: Veterinary coma scores (VCS), memory and recorded hDG -LTP significantly reduced in Veh + TBI group at 1 and 24 hr after TBI when compared to Veh + Sham (P<0.001), respectively, while brain tissue content of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) and malondialdehyde (MDA) were increased significantly (P<0.001). Pretreatment of TBI rats with GA improved clinical signs, memory and hDG-LTP significantly (P<0.001) compared to Veh + TBI group, while brain tissue content of IL-1β, IL-6, TNF-α and MDA were decreased significantly (P<0.001). Conclusion: Our results propose that GA has neuroprotective effect on memory and LTP impairment due to TBI through decrement of brain lipid peroxidation and cerebral pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Mohammad Ali Mirshekar
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Physiology, School of Medicine and Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Sarkaki
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoub Farbood
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Hernandez A, Tan C, Plattner F, Logsdon AF, Pozo K, Yousuf MA, Singh T, Turner RC, Lucke-Wold BP, Huber JD, Rosen CL, Bibb JA. Exposure to mild blast forces induces neuropathological effects, neurophysiological deficits and biochemical changes. Mol Brain 2018; 11:64. [PMID: 30409147 PMCID: PMC6225689 DOI: 10.1186/s13041-018-0408-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 01/28/2023] Open
Abstract
Direct or indirect exposure to an explosion can induce traumatic brain injury (TBI) of various severity levels. Primary TBI from blast exposure is commonly characterized by internal injuries, such as vascular damage, neuronal injury, and contusion, without external injuries. Current animal models of blast-induced TBI (bTBI) have helped to understand the deleterious effects of moderate to severe blast forces. However, the neurological effects of mild blast forces remain poorly characterized. Here, we investigated the effects caused by mild blast forces combining neuropathological, histological, biochemical and neurophysiological analysis. For this purpose, we employed a rodent blast TBI model with blast forces below the level that causes macroscopic neuropathological changes. We found that mild blast forces induced neuroinflammation in cerebral cortex, striatum and hippocampus. Moreover, mild blast triggered microvascular damage and axonal injury. Furthermore, mild blast caused deficits in hippocampal short-term plasticity and synaptic excitability, but no impairments in long-term potentiation. Finally, mild blast exposure induced proteolytic cleavage of spectrin and the cyclin-dependent kinase 5 activator, p35 in hippocampus. Together, these findings show that mild blast forces can cause aberrant neurological changes that critically impact neuronal functions. These results are consistent with the idea that mild blast forces may induce subclinical pathophysiological changes that may contribute to neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Adan Hernandez
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chunfeng Tan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Florian Plattner
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aric F Logsdon
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506-9183, USA
| | - Karine Pozo
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mohammad A Yousuf
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tanvir Singh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506-9183, USA
| | - Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506-9183, USA
| | - Jason D Huber
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, WV, 26506-9530, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506-9183, USA
| | - James A Bibb
- Departments of Surgery, Neurobiology, and Neurology, The University of Alabama at Birmingham Medical Center, 1720 2nd Ave S, THT 1052, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Estrada-Rojo F, Morales-Gomez J, Coballase-Urrutia E, Martinez-Vargas M, Navarro L. Diurnal variation of NMDA receptor expression in the rat cerebral cortex is associated with traumatic brain injury damage. BMC Res Notes 2018; 11:150. [PMID: 29467028 PMCID: PMC5822486 DOI: 10.1186/s13104-018-3258-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/14/2018] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Data from our laboratory suggest that recovery from a traumatic brain injury depends on the time of day at which it occurred. In this study, we examined whether traumatic brain injury -induced damage is related to circadian variation in N-methyl-D-aspartate receptor expression in rat cortex. RESULTS We confirmed that traumatic brain injury recovery depended on the time of day at which the damage occurred. We also found that motor cortex N-methyl-D-aspartate receptor subunit NR1 expression exhibited diurnal variation in both control and traumatic brain injury-subjected rats. However, this rhythm is more pronounced in traumatic brain injury-subjected rats, with minimum expression in those injured during nighttime hours. These findings suggest that traumatic brain injury occurrence times should be considered in future clinical studies and when designing neuroprotective strategies for patients.
Collapse
Affiliation(s)
- Francisco Estrada-Rojo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.,Programa de Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Julio Morales-Gomez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | - Marina Martinez-Vargas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Luz Navarro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
12
|
Mirshekar MA, Fanaei H, Keikhaei F, Javan FS. Diosmin improved cognitive deficit and amplified brain electrical activity in the rat model of traumatic brain injury. Biomed Pharmacother 2017; 93:1220-1229. [PMID: 28738538 DOI: 10.1016/j.biopha.2017.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities in humans. Clinically, it is essential to limit the progress of cognitive impairment after TBI. It is reported that diosmin has a neuroprotective effect that can limit the progress of the impairment. The aim of this study was to evaluate the effects of diosmin on neurological score, memory, tumor necrosis factor-α (TNF-α) level and long-term potentiation in hippocampal dentate gyrus after the injury. METHODS A total of ninety six adult male Wistar rats were used as test subjects in this study. The animals were randomly assigned into one of the following three groups (n=32/group): Sham, TBI and diosmin (100mg/kg, p.o for seven consecutive days before TBI induction). TBI was induced into the animals by Marmarou's method. Briefly, a 200g weight was dropped from a 1m height through a free-falling tube onto the head of the anesthetized rats. RESULTS The veterinary coma scale scores, memory and long-term potentiation in TBI group showed significant decrease at different times after the onset of TBI when compared with Sham (p<0.001). The TNF-α level in the hippocampus of the TBI group of animals was significantly higher than that found in the test subjects from the Sham group (p<0.001). The pre-treatment of the TBI group with diosmin significantly improved their neurological scores, memory and long-term potentiation (p<0.001) when compared with the TBI group. The TNF-α level in hippocampus of the diosmin group was significantly lower than the TBI group (p<0.001). CONCLUSION Based on the results of the present study, pre-treatment with diosmin has protective effects against TBI-induced memory and long-term potentiation impairment. The effects of diosmin may be mediated through a decrement in the TNF-α concentration of hippocampus as a pro-inflammatory cytokine.
Collapse
Affiliation(s)
- Mohammad Ali Mirshekar
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Fereshteh Keikhaei
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Sargolzaee Javan
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
13
|
Bruschetta G, Impellizzeri D, Campolo M, Casili G, Di Paola R, Paterniti I, Esposito E, Cuzzocrea S. FeTPPS Reduces Secondary Damage and Improves Neurobehavioral Functions after Traumatic Brain Injury. Front Neurosci 2017; 11:6. [PMID: 28223911 PMCID: PMC5293762 DOI: 10.3389/fnins.2017.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) determinate a cascade of events that rapidly lead to neuron's damage and death. We already reported that administration of FeTPPS, a 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrin iron III chloride peroxynitrite decomposition catalyst, possessed evident neuroprotective effects in a experimental model of spinal cord damage. The present study evaluated the neuroprotective property of FeTPPS in TBI, using a clinically validated model of TBI, the controlled cortical impact injury (CCI). We observe that treatment with FeTPPS (30 mg/kg, i.p.) reduced: the state of brain inflammation and the tissue hurt (histological score), myeloperoxidase activity, nitric oxide production, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines expression and apoptosis process. Moreover, treatment with FeTPPS re-established motor-cognitive function after CCI and it resulted in a reduction of lesion volumes. Our results established that FeTPPS treatment decreases the growth of inflammatory process and the tissue injury associated with TBI. Thus our study confirmed the neuroprotective role of FeTPPS treatment on TBI.
Collapse
Affiliation(s)
- Giuseppe Bruschetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy; Department of Pharmacological and Physiological Science, Saint Louis University School of MedicineSt. Louis. MO, USA
| |
Collapse
|
14
|
Effgen GB, Ong T, Nammalwar S, Ortuño AI, Meaney DF, 'Dale' Bass CR, Morrison B. Primary Blast Exposure Increases Hippocampal Vulnerability to Subsequent Exposure: Reducing Long-Term Potentiation. J Neurotrauma 2016; 33:1901-1912. [PMID: 26699926 DOI: 10.1089/neu.2015.4327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Up to 80% of injuries sustained by U.S. soldiers in Operation Enduring Freedom and Operation Iraqi Freedom were the result of blast exposure from improvised explosive devices. Some soldiers experience multiple blasts while on duty, and it has been suggested that symptoms of repetitive blast are similar to those that follow multiple non-blast concussions, such as sport-related concussion. Despite the interest in the effects of repetitive blast exposure, it remains unknown whether an initial blast renders the brain more vulnerable to subsequent exposure, resulting in a synergistic injury response. To investigate the effect of multiple primary blasts on the brain, organotypic hippocampal slice cultures were exposed to single or repetitive (two or three total) primary blasts of varying intensities. Long-term potentiation was significantly reduced following two Level 2 (92.7 kPa, 1.4 msec, 38.5 kPa·msec) blasts delivered 24 h apart without altering basal evoked response. This deficit persisted when the interval between injuries was increased to 72 h but not when the interval was extended to 144 h. The repeated blast exposure with a 24 h interval increased microglia staining and activation significantly but did not significantly increase cell death or damage axons, dendrites, or principal cell layers. Lack of overt structural damage and change in basal stimulated neuron response suggest that injury from repetitive primary blast exposure may specifically affect long-term potentiation. Our studies suggest repetitive primary blasts can exacerbate injury dependent on the injury severity and interval between exposures.
Collapse
Affiliation(s)
- Gwen B Effgen
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Tiffany Ong
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Shruthi Nammalwar
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Andrea I Ortuño
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - David F Meaney
- 2 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - Barclay Morrison
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
15
|
Sarkaki A, Farbood Y, Gharib-Naseri MK, Badavi M, Mansouri MT, Haghparast A, Mirshekar MA. Gallic acid improved behavior, brain electrophysiology, and inflammation in a rat model of traumatic brain injury. Can J Physiol Pharmacol 2015. [DOI: 10.1139/cjpp-2014-0546] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. In the clinic it is essential to limit the development of cognitive impairment after TBI. In this study, the effects of gallic acid (GA; 100 mg/kg, per oral, from 7 days before to 2 days after TBI induction) on neurological score, passive avoidance memory, long-term potentiation (LTP) deficits, and levels of proinflammatory cytokines including interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in the brain have been evaluated. Brain injury was induced following Marmarou’s method. Data were analyzed by one-way and repeated measures ANOVA followed by Tukey’s post-hoc test. The results indicated that memory was significantly impaired (p < 0.001) in the group treated with TBI + vehicle, together with deterioration of the hippocampal LTP and increased brain tissue levels of IL-1β, IL-6, and TNF-α. GA treatment significantly improved memory and LTP in the TBI rats. The brain tissue levels of IL-1β, IL-6, and TNF-α were significantly reduced (p < 0.001) in the group treated with GA. The results suggest that GA has neuroprotective properties against TBI-induced behavioral, electrophysiological, and inflammatory disorders, probably via the decrease of cerebral proinflammatory cytokines.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoub Farbood
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammad Badavi
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mirshekar
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Park MS, Oh HA, Ko IG, Kim SE, Kim SH, Kim CJ, Kim HB, Kim H. Influence of mild traumatic brain injury during pediatric stage on short-term memory and hippocampal apoptosis in adult rats. J Exerc Rehabil 2014; 10:148-54. [PMID: 25061593 PMCID: PMC4106768 DOI: 10.12965/jer.140109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of neurological deficit in the brain, which induces short- and long-term brain damage, cognitive impairment with/without structural alteration, motor deficits, emotional problems, and death both in children and adults. In the present study, we evaluated whether mild TBI in childhood causes persisting memory impairment until adulthood. Moreover, we investigated the influence of mild TBI on memory impairment in relation with hippocampal apoptosis. For this, step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 were performed. Male Sprague-Dawley rats were used in the experiments. The animals were randomly divided into two groups: sham-operation group and TBI-induction group. The mild TBI model was created with an electromagnetic contusion device activated at a velocity of 3.0 m/sec. The results showed that mild TBI during the pediatric stage significantly decreased memory retention. The numbers of TUNEL-positive and caspase-3-positive cells were increased in the TBI-induction group compared to those in the sham-operation group. Defective memory retention and apoptosis sustained up to the adult stage. The present results shows that mild TBI induces long-lasting cognitive impairment from pediatric to adult stages in rats through the high level of apoptosis. The finding of this study suggests that children with mild TBI may need intensive treatments for the reduction of long-lasting cognitive impairment by secondary neuronal damage.
Collapse
Affiliation(s)
- Mi-Sook Park
- Department of Health and Welfare for the Elderly, Graduate School, Daegu Haany University, Gyeongsan, Korea
| | - Hyean-Ae Oh
- Department of Health and Welfare for the Elderly, Graduate School, Daegu Haany University, Gyeongsan, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sung-Eun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Hoon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Bae Kim
- Department of Taekwondo, College of Physical Education, Kyung Hee University, Suwon, Korea
| | - Hong Kim
- Department of Oriental Sports Medicine, College of Biomedical Science, Daegu Haany University, Gyeongsan, Korea
| |
Collapse
|
17
|
Gupta RK, Przekwas A. Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects. Front Neurol 2013; 4:59. [PMID: 23755039 PMCID: PMC3667273 DOI: 10.3389/fneur.2013.00059] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/09/2013] [Indexed: 01/13/2023] Open
Abstract
Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI.
Collapse
Affiliation(s)
- Raj K Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command , Fort Detrick, MD , USA
| | | |
Collapse
|
18
|
Crupi R, Paterniti I, Campolo M, Di Paola R, Cuzzocrea S, Esposito E. Exogenous T3 administration provides neuroprotection in a murine model of traumatic brain injury. Pharmacol Res 2013; 70:80-9. [PMID: 23313345 DOI: 10.1016/j.phrs.2012.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/12/2012] [Accepted: 12/26/2012] [Indexed: 01/26/2023]
Abstract
Traumatic brain injury (TBI) induces primary and secondary damage in both the endothelium and the brain parenchyma. While neurons die quickly by necrosis, a vicious cycle of secondary injury in endothelial cells exacerbates the initial injury. Thyroid hormones are reported to be decreased in patients with brain injury. Controlled cortical impact injury (CCI) is a widely used, clinically relevant model of TBI. Here, using CCI in adult male mice, we set to determine whether 3,5,3'-triiodothyronine (T3) attenuates posttraumatic neurodegeneration and neuroinflammation in an experimental model of TBI. Treatment with T3 (1.2μg/100g body weight, i.p.) 1h after TBI resulted in a significant improvement in motor and cognitive recovery after CCI, as well as in marked reduction of lesion volumes. Mouse model for brain injury showed reactive astrocytes with increased glial fibrillary acidic protein, and formation of inducible nitric oxide synthase (iNOS). Western blot analysis revealed the ability of T3 to reduce brain trauma through modulation of cytoplasmic-nuclear shuttling of nuclear factor-κB (NF-κB). Twenty-four hours after brain trauma, T3-treated mice also showed significantly lower number of TUNEL(+) apoptotic neurons and curtailed induction of Bax, compared to vehicle control. In addition, T3 significantly enhanced the post-TBI expression of the neuroprotective neurotrophins (BDNF and GDNF) compared to vehicle. Our data provide an additional mechanism for the anti-inflammatory effects of thyroid hormone with critical implications in immunopathology at the cross-roads of the immune-endocrine circuits.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Biological and Environmental Sciences, University of Messina, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Banik A, Anand A. Preclinical non-human models to combat dementia. Ann Neurosci 2013; 20:24-9. [PMID: 25206006 PMCID: PMC4117094 DOI: 10.5214/ans.0972.7531.200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 12/30/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022] Open
Abstract
Dementia is characterized by a certain degree of memory loss with disabled intellectual functioning, which mostly presents as Alzheimer's disease. The underlying causes range from gene mutations, lifestyle factors, and other environmental influences to brain injuries and normal aging. Although there have been many rodent and non-human primate models created by various drugs, neurotoxins and genetic ablation but the current scenario does not exhibit a well characterized animal model to evaluate novel compounds and various treatment strategies for dementia. Therefore, a comprehensive model exhibiting the pathologies and neuro-behavioral parameters close to this syndrome is very much needed. This report discusses the various experimental strategies to create animal models of dementia.
Collapse
Affiliation(s)
- Avijit Banik
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, INDIA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, INDIA
| |
Collapse
|
20
|
Administration of palmitoylethanolamide (PEA) protects the neurovascular unit and reduces secondary injury after traumatic brain injury in mice. Brain Behav Immun 2012; 26:1310-21. [PMID: 22884901 DOI: 10.1016/j.bbi.2012.07.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of preventable death and morbidity in young adults. This complex condition is characterized by significant blood brain barrier leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Recovery of function after TBI is partly through neuronal plasticity. In order to test whether treatments that enhance plasticity might improve functional recovery, a controlled cortical impact (CCI) in adult mice, as a model of TBI, in which a controlled cortical impactor produced full thickness lesions of the forelimb region of the sensorimotor cortex, was performed. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. The endogenous fatty acid palmitoylethanolamide (PEA) is one of the members of N-acyl-ethanolamines family that maintain not only redox balance but also inhibit the mechanisms of secondary injury. Therefore, we tested whether PEA shows efficacy in a mice model of experimental TBI. PEA treatment is able to reduced edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride staining across brain sections. PEA-mediated improvements in tissues histology shown by reduction of lesion size and improvement in apoptosis level further support the efficacy of PEA therapy. The PEA treatment blocked infiltration of astrocytes and restored CCI-mediated reduced expression of PAR, nitrotyrosine, iNOS, chymase, tryptase, CD11b and GFAP. PEA inhibited the TBI-mediated decrease in the expression of pJNK and NF-κB. PEA-treated injured animals improved neurobehavioral functions as evaluated by behavioral tests.
Collapse
|
21
|
Hussain ZM, Fitting S, Watanabe H, Usynin I, Yakovleva T, Knapp PE, Scheff SW, Hauser KF, Bakalkin G. Lateralized response of dynorphin a peptide levels after traumatic brain injury. J Neurotrauma 2012; 29:1785-93. [PMID: 22468884 PMCID: PMC3360894 DOI: 10.1089/neu.2011.2286] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) induces a cascade of primary and secondary events resulting in impairment of neuronal networks that eventually determines clinical outcome. The dynorphins, endogenous opioid peptides, have been implicated in secondary injury and neurodegeneration in rodent and human brain. To gain insight into the role of dynorphins in the brain's response to trauma, we analyzed short-term (1-day) and long-term (7-day) changes in dynorphin A (Dyn A) levels in the frontal cortex, hippocampus, and striatum, induced by unilateral left-side or right-side cortical TBI in mice. The effects of TBI were significantly different from those of sham surgery (Sham), while the sham surgery also produced noticeable effects. Both sham and TBI induced short-term changes and long-term changes in all three regions. Two types of responses were generally observed. In the hippocampus, Dyn A levels were predominantly altered ipsilateral to the injury. In the striatum and frontal cortex, injury to the right (R) hemisphere affected Dyn A levels to a greater extent than that seen in the left (L) hemisphere. The R-TBI but not L-TBI produced Dyn A changes in the striatum and frontal cortex at 7 days after injury. Effects of the R-side injury were similar in the two hemispheres. In naive animals, Dyn A was symmetrically distributed between the two hemispheres. Thus, trauma may reveal a lateralization in the mechanism mediating the response of Dyn A-expressing neuronal networks in the brain. These networks may differentially mediate effects of left and right brain injury on lateralized brain functions.
Collapse
Affiliation(s)
- Zubair Muhammad Hussain
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sylvia Fitting
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Hiroyuki Watanabe
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ivan Usynin
- Institute of Biochemistry, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Tatjana Yakovleva
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Stephen W. Scheff
- Spinal Cord and Brain Injury Research Center and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Georgy Bakalkin
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Archer T, Svensson K, Alricsson M. Physical exercise ameliorates deficits induced by traumatic brain injury. Acta Neurol Scand 2012; 125:293-302. [PMID: 22233115 DOI: 10.1111/j.1600-0404.2011.01638.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2011] [Indexed: 12/11/2022]
Abstract
The extent and depth of traumatic brain injury (TBI) remains a major determining factor together with the type of structural insult and its location, whether mild, moderate or severe, as well as the distribution and magnitude of inflammation and loss of cerebrovascular integrity, and the eventual efficacy of intervention. The influence of exercise intervention in TBI is multiple, ranging from anti-apoptotic effects to the augmentation of neuroplasticity. Physical exercise diminishes cerebral inflammation by elevating factors and agents involved in immunomodulatory function, and buttresses glial cell, cerebrovascular, and blood-brain barrier intactness. It provides unique non-pharmacologic intervention that incorporate different physical activity regimes, whether dynamic or static, endurance or resistance. Physical training regimes ought necessarily to be adapted to the specific demands of diagnosis, type and degree of injury and prognosis for individuals who have suffered TBI.
Collapse
Affiliation(s)
| | - K. Svensson
- School of Education; Psychology and Sport Science; Linnaeus University; Kalmar; Sweden
| | | |
Collapse
|
23
|
Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012; 3:60. [PMID: 22518104 PMCID: PMC3324969 DOI: 10.3389/fphar.2012.00060] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 03/24/2012] [Indexed: 01/10/2023] Open
Abstract
Cell death and dysfunction after traumatic brain injury (TBI) is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.
Collapse
Affiliation(s)
- John T. Weber
- School of Pharmacy and Division of BioMedical Sciences, Faculty of Medicine, Memorial University of NewfoundlandSt. John’s, NL, Canada
| |
Collapse
|
24
|
Wu Q, Xuan W, Ando T, Xu T, Huang L, Huang YY, Dai T, Dhital S, Sharma SK, Whalen MJ, Hamblin MR. Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med 2012; 44:218-26. [PMID: 22275301 DOI: 10.1002/lsm.22003] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Traumatic brain injury (TBI) affects millions worldwide and is without effective treatment. One area that is attracting growing interest is the use of transcranial low-level laser therapy (LLLT) to treat TBI. The fact that near-infrared light can penetrate into the brain would allow non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. LLLT may treat TBI by increasing respiration in the mitochondria, causing activation of transcription factors, reducing inflammatory mediators and oxidative stress, and inhibiting apoptosis. STUDY DESIGN/MATERIALS AND METHODS We tested LLLT in a mouse model of closed-head TBI produced by a controlled weight drop onto the skull. Mice received a single treatment with continuous-wave 665, 730, 810, or 980 nm lasers (36 J/cm(2) delivered at 150 mW/cm(2)) 4-hour post-TBI and were followed up by neurological performance testing for 4 weeks. RESULTS Mice with moderate-to-severe TBI treated with 665 and 810 nm laser (but not with 730 or 980 nm) had a significant improvement in Neurological Severity Score that increased over the course of the follow-up compared to sham-treated controls. Morphometry of brain sections showed a reduction in small deficits in 665 and 810 nm laser treated mouse brains at 28 days. CONCLUSIONS The effectiveness of 810 nm agrees with previous publications, and together with the effectiveness of 660 nm and non-effectiveness of 730 and 980 nm can be explained by the absorption spectrum of cytochrome oxidase, the candidate mitochondrial chromophore in transcranial LLLT.
Collapse
Affiliation(s)
- Qiuhe Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lado WE, Persinger MA. Spatial Memory Deficits and Their Correlations with Clusters of Shrunken Neuronal Soma in the Cortices and Limbic System Following a “Mild’’ Mechanical Impact to the Dorsal Skull in Female Rats. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbbs.2012.23038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Archer T. Influence of Physical Exercise on Traumatic Brain Injury Deficits: Scaffolding Effect. Neurotox Res 2011; 21:418-34. [DOI: 10.1007/s12640-011-9297-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022]
|
27
|
Abstract
Mild traumatic brain injury, especially sport-related concussion, is common among young persons. Consequences of transient pathophysiologic dysfunction must be considered in the context of a developing or immature brain, as must the potential for an accumulation of damage with repeated exposure. This review summarizes the underlying neurometabolic cascade of concussion, with emphasis on the young brain in terms of acute pathophysiology, vulnerability, alterations in plasticity and activation, axonal injury, and cumulative risk from chronic, repetitive damage, and discusses their implications in the context of clinical care for the concussed youth, highlighting areas for future investigation.
Collapse
Affiliation(s)
- Daniel W Shrey
- Division of Pediatric Neurology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Mattel Children's Hospital, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
28
|
Ferreira AGK, Scherer EB, da Cunha MJ, Machado FR, Cunha AAD, Graeff JS, Netto CA, Wyse ATS. Physical exercise reverses cognitive impairment in rats subjected to experimental hyperprolinemia. Neurochem Res 2011; 36:2306-15. [PMID: 21792675 DOI: 10.1007/s11064-011-0555-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 12/20/2022]
Abstract
This study investigated whether physical exercise would reverse proline-induced performance deficits in water maze tasks, as well as its effects on brain-derived neurotrophic factor (BDNF) immunocontent and brain acetylcholinesterase (AChE) activity in Wistar rats. Proline administration followed partial time (6th-29th day of life) or full time (6th-60th day of life) protocols. Treadmill exercise was performed from 30th to 60th day of life, when behavioral testing was started. After that, animals were sacrificed for BDNF and AChE determination. Results show that proline impairs cognitive performance, decreases BDNF in cerebral cortex and hippocampus and increases AChE activity in hippocampus. All reported effects were prevented by exercise. These results suggest that cognitive, spatial learning/memory, deficits caused by hyperprolinemia may be associated, at least in part, to the decrease in BDNF levels and to the increase in AChE activity, as well as support the role of physical exercise as a potential neuroprotective strategy.
Collapse
Affiliation(s)
- Andréa G K Ferreira
- Laboratório de Neuroproteção e Doença Metabólica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Griesbach GS. Exercise After Traumatic Brain Injury: Is it a Double-Edged Sword? PM R 2011; 3:S64-72. [DOI: 10.1016/j.pmrj.2011.02.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/10/2011] [Indexed: 01/08/2023]
|
30
|
Khuman J, Meehan WP, Zhu X, Qiu J, Hoffmann U, Zhang J, Giovannone E, Lo EH, Whalen MJ. Tumor necrosis factor alpha and Fas receptor contribute to cognitive deficits independent of cell death after concussive traumatic brain injury in mice. J Cereb Blood Flow Metab 2011; 31:778-89. [PMID: 20940727 PMCID: PMC3049532 DOI: 10.1038/jcbfm.2010.172] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor necrosis factor alpha (TNFα) and Fas receptor contribute to cell death and cognitive dysfunction after focal traumatic brain injury (TBI). We examined the role of TNFα/Fas in postinjury functional outcome independent of cell death in a novel closed head injury (CHI) model produced with weight drop and free rotational head movement in the anterior-posterior plane. The CHI produced no cerebral edema or blood-brain barrier damage at 24 to 48 hours, no detectable cell death, occasional axonal injury (24 hours), and no brain atrophy or hippocampal cell loss (day 60). Microglia and astrocytes were activated (48 to 72 hours). Tumor necrosis factor-α mRNA, Fas mRNA, and TNFα protein were increased in the brain at 3 to 6 hours after injury (P<0.001 versus sham injured). In wild-type (WT) mice, CHI produced hidden platform (P=0.009) and probe deficits (P=0.001) in the Morris water maze versus sham. Surprisingly, injured TNFα/Fas knockout (KO) mice performed worse in hidden platform trials (P=0.036) but better in probe trials than did WT mice (P=0.0001). Administration of recombinant TNFα to injured TNFα/Fas KO mice reduced probe trial performance to that of WT. Thus, TNFα/Fas influence cognitive deficits independent of cell death after CHI. Therapies targeting TNFα/Fas together may be inappropriate for patients with concussive TBI.
Collapse
Affiliation(s)
- Jugta Khuman
- Neuroscience Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Longo B, Romariz S, Blanco MM, Vasconcelos JF, Bahia L, Soares MBP, Mello LE, Ribeiro-dos-Santos R. Distribution and proliferation of bone marrow cells in the brain after pilocarpine-induced status epilepticus in mice. Epilepsia 2010; 51:1628-32. [PMID: 20384764 DOI: 10.1111/j.1528-1167.2010.02570.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distribution of bone marrow cells in brain areas during the acute period after pilocarpine-induced status epiepticus (SE) was investigated here. To achieve this, we generated chimeric mice by engrafting bone marrow cells from enhanced green fluorescent protein (eGFP) transgenic mice. GFP(+) bone marrow-derived cells were found throughout the brain, predominantly in the hippocampus. As expected, these cells exhibited the characteristics of microglia. The pattern of distribution, proliferation, and differentiation of GFP(+)cells changes as a function of intensity and time following SE. This pattern is also a consequence of the inflammatory response, which is followed by the progressive neuronal damage that is characteristic of the pilocarpine model.
Collapse
Affiliation(s)
- Beatriz Longo
- Laboratório de Engenharia Tecidual e Imunofarmacologia, CPqGM/FIOCRUZ, Bahia, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
PKC activator therapeutic for mild traumatic brain injury in mice. Neurobiol Dis 2010; 41:329-37. [PMID: 20951803 DOI: 10.1016/j.nbd.2010.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/25/2010] [Accepted: 10/02/2010] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a frequent consequence of vehicle, sport and war related injuries. More than 90% of TBI patients suffer mild injury (mTBI). However, the pathologies underlying the disease are poorly understood and treatment modalities are limited. We report here that in mice, the potent PKC activator bryostatin1 protects against mTBI induced learning and memory deficits and reduction in pre-synaptic synaptophysin and post-synaptic spinophylin immunostaining. An effective treatment has to start within the first 8h after injury, and includes 5 × i.p. injections over a period of 14 days. The treatment is dose dependent. Exploring the effects of the repeated bryostatin1 treatment on the processing of the amyloid precursor protein, we found that the treatment induced an increase in the putative α-secretase ADAM10 and a reduction in β-secretase activities. Both these effects could contribute towards a reduction in β-amyloid production. These results suggest that bryostatin1 protects against mTBI cognitive and synaptic sequela by rescuing synapses, which is possibly mediated by an increase in ADAM10 and a decrease in BACE1 activity. Since bryostatin1 has already been extensively used in clinical trials as an anti-cancer drug, its potential as a remedy for the short- and long-term TBI sequelae is quite promising.
Collapse
|
33
|
Rubovitch V, Edut S, Sarfstein R, Werner H, Pick CG. The intricate involvement of the Insulin-like growth factor receptor signaling in mild traumatic brain injury in mice. Neurobiol Dis 2010; 38:299-303. [PMID: 20138993 DOI: 10.1016/j.nbd.2010.01.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 12/28/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) was suggested as a potential neuroprotective treatment for traumatic brain injury (TBI) induced damage (cognitive as well as cellular). The main goal of the present study was to evaluate the role of the IGF-1R activation in spatial memory outcome following mild traumatic brain injury. mTBI-induced phosphorylation of IGF-1R, AKT and ERK1/2, in mice hippocampus, which was inhibited when mice were pretreated with the selective IGF-1R inhibitor AG1024. IGF-1 administration prevented spatial memory deficits following mTBI. Surprisingly, blocking the IGF-1R signaling in mTBI mice did not augment the spatial memory deficit. In addition, this data imply an intriguing and complex role of the IGF-1 signaling axis in the cellular and behavioral events following mTBI.
Collapse
Affiliation(s)
- Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | |
Collapse
|
34
|
Griesbach GS, Hovda DA, Gomez-Pinilla F. Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res 2009; 1288:105-15. [PMID: 19555673 DOI: 10.1016/j.brainres.2009.06.045] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/09/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
We have previously shown that voluntary exercise upregulates brain derived neurotrophic factor (BDNF) within the hippocampus and is associated with an enhancement of cognitive recovery after a lateral fluid percussion injury (FPI). In order to determine if BDNF is critical to this effect we used an immunoadhesin chimera (TrkB-IgG) that inactivates free BDNF. This BDNF inhibitor was administered to adult male rats two weeks after they had received a mild fluid percussion injury (FPI) or sham surgery. These animals were then housed with or without access to a running wheel (RW) from post-injury-day (PID) 14 to 20. On PID 21, rats were tested for spatial learning in a Morris Water Maze. Results showed that exercise counteracted the cognitive deficits associated with the injury. However this exercise-induced cognitive improvement was attenuated in the FPI-RW rats that were treated with TrkB-IgG. Molecules important for synaptic plasticity and learning were measured in a separate group of rats that were sacrificed immediately after exercise (PID 21). Western blot analyses showed that exercise increased the mature form of BDNF, synapsin I and cyclic-AMP response-element-binding protein (CREB) in the vehicle treated Sham-RW group. However, only the mature form of BDNF and CREB were increased in the vehicle treated FPI-RW group. Blocking BDNF (pre administration of TrkB-IgG) greatly reduced the molecular effects of exercise in that exercise-induced increases of BDNF, synapsin I and CREB were not observed. These studies provide evidence that BDNF has a major role in exercise's cognitive effects in traumatically injured brain.
Collapse
Affiliation(s)
- Grace Sophia Griesbach
- Department of Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-7039, USA.
| | | | | |
Collapse
|
35
|
Griesbach GS, Sutton RL, Hovda DA, Ying Z, Gomez-Pinilla F. Controlled contusion injury alters molecular systems associated with cognitive performance. J Neurosci Res 2009; 87:795-805. [PMID: 18831070 DOI: 10.1002/jnr.21893] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated whether a learning impairment after a controlled cortical impact (CCI) injury was associated with alterations in molecules involved in synaptic plasticity and learning and memory. Adult male rats with moderate CCI to the left parietal cortex, tested in a Morris water maze (MWM) beginning at postinjury day 10, showed impaired cognitive performance compared with sham-treated rats. Tissue was extracted for mRNA analysis on postinjury day 21. The expression of brain-derived neurotrophic factor (BDNF), synapsin I, cyclic-AMP response element binding protein (CREB), and calcium-calmodulin-dependent protein kinase II (alpha-CAMKII) were all significantly decreased compared with sham injury levels within the ipsilateral hippocampus after CCI. No significant molecular level changes were found in the contralateral hippocampus. Decreased expression of BDNF and synapsin I was also found within the ipsilateral parietal cortex of CCI-injured rats compared with shams. However, BDNF and synapsin I expressions were significantly increased in the contralateral parietal cortex of the CCI rats. CREB expression was significantly decreased within the contralateral cortex of the CCI group. These findings show enduring reductions in the expression of BDNF, synapsin I, CREB, and alpha-CAMKII ipsilateral to a CCI injury, which seem associated with the spatial learning deficits observed in this injury model. In addition, the delayed increase in the expression of BDNF and synapsin I within the cortex contralateral to CCI may reflect restorative processes in areas homotypical to the injury.
Collapse
Affiliation(s)
- Grace Sophia Griesbach
- Department of Neurosurgery, University of California, Los Angeles, California 90024-7039, USA.
| | | | | | | | | |
Collapse
|
36
|
Albensi BC. Can in vitro assessment provide relevant end points for cognitive drug programs? Expert Opin Drug Discov 2008; 3:1377-82. [PMID: 23506103 DOI: 10.1517/17460440802580700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several start-up biotechnology companies have been created with the primary intent of developing cognitive enhancers. In addition, established pharmaceutical companies also frequently focus their efforts on cognitive drug discovery. In many instances, the rationale and evidence for these endeavors are based largely on in vitro assessments. In particular, the experimental paradigm, know as long-term potentiation (LTP), a cellular model of synaptic plasticity and memory encoding, is being increasing used preclinically for assessing potential nootropic drugs in vitro. Central to this thinking is the idea that the modulation of LTP and/or glutamate receptors are the key criteria that must be met for the development of cognitive enhancers. However, programs targeting the NMDA receptor, a glutamate receptor subtype, over the years have been less than fruitful. In addition, skeptics criticize the relevance of some in vitro tests such as LTP for simulating human cognitive function. Given these considerations, one may wonder if in vitro assessments in general, and the LTP paradigm in particular, provide relevant end points for cognitive drug discovery and development programs. The focus of this article is to address this question and to present evidence as to why in vitro assessment is still critical to the success of any cognitive drug program.
Collapse
|
37
|
Tashlykov V, Katz Y, Volkov A, Gazit V, Schreiber S, Zohar O, Pick CG. Minimal traumatic brain injury induce apoptotic cell death in mice. J Mol Neurosci 2008; 37:16-24. [PMID: 18651249 DOI: 10.1007/s12031-008-9094-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 04/25/2008] [Indexed: 11/29/2022]
Abstract
In the United States, 1.4 million people suffer from traumatic brain injury (TBI) each year because of traffic, sports, or war-related injuries. The majority of TBI victims suffer mild to minimal TBI (mTBI), but most are released undiagnosed. Detailed pathologies are poorly understood. We characterized the microscopic changes of neurons of closed-head mTBI mice after increased unilateral trauma using hematoxylin and eosin (H&E) stain, and correlated it with the expression of the apoptotic proteins c-jun, p53, and BCL-2. Minimal damage to the brain increases the number of pyknotic appearing neurons and activates the apoptotic proteins in both hemispheres. Although minimal, increased impact was positively correlated with the increased number of damaged neurons. These results may explain the wide variety of behavioral and cognitive deficits closed-head mTBI causes in mice. Our cumulative results point to the pathological origin of post-concussion syndrome and may aid in the development of future neuroprotective strategies for the disease.
Collapse
Affiliation(s)
- V Tashlykov
- Laboratory of Anesthesia, Pain and Neural Research, Bruce Rapaport Medical Faculty, Technion Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Griesbach GS, Gómez-Pinilla F, Hovda DA. Time window for voluntary exercise-induced increases in hippocampal neuroplasticity molecules after traumatic brain injury is severity dependent. J Neurotrauma 2007; 24:1161-71. [PMID: 17610355 DOI: 10.1089/neu.2006.0255] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We recently found that an exercise-induced increase in hippocampal brain-derived neurotrophic factor (BDNF) is dependent when exercise is initiated after traumatic brain injury (TBI). When voluntary exercise was delayed by 2 weeks after a mild fluid-percussion injury (FPI) in rats, an increase in BDNF and an improvement in behavioral outcome were observed. This suggests that following FPI there is a therapeutic window for the implementation of voluntary exercise. To determine if more severely injured animals require more time after TBI before voluntary exercise can increase neuroplasticity, adult male rats with a moderate lateral FPI or sham injury were housed with or without access to a running wheel from post-injury-day (PID) 0-6, 14-20 or 30-36. Rats with a mild injury only had access to the running wheel from PID 0-6 or 14-20. Rats were sacrificed at PID 7, 21, or 37. BDNF, synapsin I, and cyclic AMP response element binding protein (CREB) were analyzed within the ipsilateral hippocampus. Whereas BDNF levels significantly increased with exercise in the mild FPI rats that were exercised from PID 14 to 20, the moderate FPI rats only showed significant increases in BDNF when exercised from PID 30 to 36. In addition, moderate FPI rats that were allowed to exercise from PID 30 to 36 also exhibited significant increases in synapsin I and CREB. These results indicate that the time window for exercise-induced increases in BDNF, synapsin I, and CREB is dependent on injury severity.
Collapse
Affiliation(s)
- Grace S Griesbach
- Division of Neurosurgery, University of California-Los Angeles (UCLA), Los Angeles, California, USA.
| | | | | |
Collapse
|
39
|
Chopp M, Li Y, Zhang J. Plasticity and remodeling of brain. J Neurol Sci 2007; 265:97-101. [PMID: 17610903 DOI: 10.1016/j.jns.2007.06.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/15/2007] [Accepted: 06/14/2007] [Indexed: 01/01/2023]
Abstract
The injured brain can be stimulated to amplify its intrinsic restorative processes to improve neurological function. Thus, after stroke, both cell and pharmacological neurorestorative treatments, amplify the induction of brain neurogenesis and angiogenesis, and thereby reduce neurological deficits. In this manuscript, we describe the use of bone marrow mesenchymal cells (MSCs) and erythropoietin (EPO) as examples of cell-based and pharmacological neurorestorative treatments, respectively, for both stroke and a mouse model of experimental autoimmune encephalomyelitis (EAE). We demonstrate that these therapies significantly improve neurological function with treatment initiated after the onset of injury and concomitantly promote brain plasticity. The application of MRI to monitor changes in the injured brain associated with reduction of neurological deficit is also described.
Collapse
Affiliation(s)
- Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Bouleverd, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
40
|
Hua X, Lei M, Zhang Y, Ding J, Han Q, Hu G, Xiao M. Long-term d-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer's disease. Life Sci 2007; 80:1897-905. [PMID: 17391708 DOI: 10.1016/j.lfs.2007.02.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/22/2006] [Accepted: 02/17/2007] [Indexed: 10/23/2022]
Abstract
Estrogen deprivation and oxidative stress have been well established as two main factors closely related to the pathological development of Alzheimer's disease (AD). The aim of the present study is to investigate whether these two components act synergistically to accelerate the pathophysiological course of AD. To do this, we examined the effect of long-term intraperitoneal administration of D-galactose (D-gal) into ovariectomized (OVX) rats. Six weeks later, the OVX and d-gal-injected rats exhibited a higher degree of cognitive and memory impairment. This was accompanied by cholinergic neuronal loss in the forebrain and synaptic degeneration in the hippocampus and cerebral cortex which was not observed in intact controls, animals receiving injections of d-gal alone, untreated OVX animals or OVX animals receiving both D-gal and 17-beta estradiol. The typical histopathological alterations associated with AD, including intracellular deposition of amyloid beta peptide and the appearance of intracellular neurofibrillary tangles and nuclear granulovacuolar bodies, were observed in the hippocampus of OVX and D-gal-injected rats but not in other control groups. These results strongly suggest that estrogen deprivation and oxidative stress behave synergistically to enhance the development and progression of AD. Long-term OVX combined with D-gal injection serves as an ideal AD rodent model capable of mimicking pathological, neurochemical and behavioral alterations in AD.
Collapse
Affiliation(s)
- Xiangdong Hua
- Department of Human Anatomy, Histology and Embryology, Institute of Neurosciences, Nanjing Medical University, Nanjing, 210029 China
| | | | | | | | | | | | | |
Collapse
|
41
|
Sato N, Shimamura M, Takeuchi D, Kurinami H, Ogihara T, Morishita R. Gene therapy for ischemic brain disease with special reference to vascular dementia. Geriatr Gerontol Int 2007. [DOI: 10.1111/j.1447-0594.2007.00373.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Abstract
Repetitive traumatic brain injury (TBI) occurs in a significant portion of trauma patients, especially in specific populations, such as child abuse victims or athletes involved in contact sports (e.g. boxing, football, hockey, and soccer). A continually emerging hypothesis is that repeated mild injuries may cause cumulative damage to the brain, resulting in long-term cognitive dysfunction. The growing attention to this hypothesis is reflected in several recent experimental studies of repeated mild TBI in vivo. These reports generally demonstrate cellular and cognitive dysfunction after repetitive injury using rodent TBI models. In some cases, data suggests that the effects of a second mild TBI may be synergistic, rather than additive. In addition, some studies have found increases in cellular markers associated with Alzheimer's disease after repeated mild injuries, which demonstrates a direct experimental link between repetitive TBI and neurodegenerative disease. To complement the findings from humans and in vivo experimentation, my laboratory group has investigated the effects of repeated trauma in cultured brain cells using a model of stretch-induced mechanical injury in vitro. In these studies, hippocampal cells exhibited cumulative damage when mild stretch injuries were repeated at either 1-h or 24-h intervals. Interestingly, the extent of damage to the cells was dependent on the time between repeated injuries. Also, a very low level of stretch, which produced no cell damage on its own, induced cell damage when it was repeated several times at a short interval (every 2 min). Although direct comparisons to the clinical situation are difficult, these types of repetitive, low-level, mechanical stresses may be similar to the insults received by certain athletes, such as boxers, or hockey and soccer players. This type of in vitro model could provide a reliable system in which to study the mechanisms underlying cellular dysfunction following repeated injuries. As this area of TBI research continues to evolve, it will be imperative that models of repetitive injury replicate injuries in humans as closely as possible. For example, it will be important to model appropriately concussive episodes versus even lower level injuries (such as those that might occur during boxing matches). Suitable inter-injury intervals will also be important parameters to incorporate into models. Additionally, it will be crucial to design and utilize proper controls, which can be more challenging than experimental approaches to single mild TBI. It will also be essential to combine, and compare, data derived from in vitro experiments with those conducted with animals in vivo. These issues, as well as a summary of findings from repeated TBI research, are discussed in this review.
Collapse
Affiliation(s)
- John T Weber
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Albensi BC, Oliver DR, Toupin J, Odero G. Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp Neurol 2006; 204:1-13. [PMID: 17258711 DOI: 10.1016/j.expneurol.2006.12.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/28/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is a widely accepted model that attempts to link synaptic plasticity with memory. LTP models are also now used in order to test how a variety of neurological disorders might affect synaptic plasticity. Interestingly, electrical stimulation protocols that induce LTP appear to display different efficiencies and importantly, some may not be as physiologically relevant as others. In spite of advancements in our understanding of these differences, many types of LTP inducing protocols are still widely used. In addition, in some cases electrical stimulation leads to normal biological phenomena, such as putative memory encoding and in other cases electrical stimulation triggers pathological phenomena, such as epileptic seizures. Kindling, a model of epileptogenesis involving repeated electrical stimulation, leads to seizure activity and has also been thought of, and studied as, a form of long-term neural plasticity and memory. Furthermore, some investigators now use electrical stimulation in order to reduce aspects of seizure activity. In this review, we compare in vitro and in vivo electrical stimulation protocols employed in the hippocampal formation that are utilized in models of synaptic plasticity or neuronal hyperexcitability. Here the effectiveness and physiological relevance of these electrical stimulation protocols are examined in situations involving memory encoding (e.g., LTP/LTD) and epileptiform activity.
Collapse
|
44
|
DeLorenzo RJ, Sun DA, Deshpande LS. Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266]. Pharmacol Ther 2006; 111:288-325. [PMID: 16832874 DOI: 10.1016/j.pharmthera.2004.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, 23298-0599, USA.
| | | | | |
Collapse
|
45
|
Tayebati SK. Animal models of cognitive dysfunction. Mech Ageing Dev 2006; 127:100-8. [PMID: 16293295 DOI: 10.1016/j.mad.2005.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 02/04/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
The increased life expectancy in industrialised countries in the last half century has also brought to a greater incidence of neurological disorders, including neurodegenerative diseases and developing in a rather long time. In this respect, Alzheimer's disease (AD), for the large incidence, and the dramatic loss of autonomy caused by its cognitive and behavioural symptoms represents one of the main challenges of modern medicine. Although AD is a typical human disease and probably includes several nosographic entities, the use of animal models may contribute to understand specific aspects of pathophysiology of the disease. The most widely used animal models are rodents and non-human primates. In this review different animal models characterised by impaired cognitive functions are analysed. None of the models available mimics exactly cognitive, behavioural, biochemical and histopathological abnormalities observed in neurological disorders characterised by cognitive impairment. However, partial reproduction of neuropathology and/or cognitive deficits of Alzheimer's disease (AD), vascular dementia and dementia occurring in Huntington's and Parkinson's diseases, or in other neurodegenerative disorders may represent a basis for understanding pathophysiological traits of these diseases and for contributing to their treatments.
Collapse
Affiliation(s)
- Seyed Khosrow Tayebati
- Anatomia Umana, Dipartimento di Medicina Sperimentale e Sanità Pubblica Università di Camerino, 62032 Camerino, Italy.
| |
Collapse
|
46
|
Henninger N, Dützmann S, Sicard KM, Kollmar R, Bardutzky J, Schwab S. Impaired spatial learning in a novel rat model of mild cerebral concussion injury. Exp Neurol 2005; 195:447-57. [PMID: 16084512 DOI: 10.1016/j.expneurol.2005.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 05/20/2005] [Accepted: 06/10/2005] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to develop a model of mild traumatic brain injury in the rat that mimics human concussive brain injury suitable to study pathophysiology and potential treatments. 34 male Wistar rats received a closed head trauma (TBI) and 30 animals served as controls (CON). Immediately following trauma, animals lost their muscle tone and righting reflex response, recovering from the latter within 11.4 +/- 8.2 min. Corneal reflex and whisker responses returned within 4.5 +/- 3.0 min and 6.1 +/- 2.9 min, respectively. The impact resulted in a short transient decrease of pO2 (P < 0.001), increase in mean arterial blood pressure (P = 0.026), and a reduction of heart rate (P < 0.01). Serial MRI did not show any abnormalities across the entire cerebrum on diffusion, T1, T2, and T2*-weighted images at all investigated time points. TBI animals needed significantly longer to locate the hidden platform in a Morris water maze and spent less time in the training quadrant than controls. TBI led to a significant neuronal loss in frontal cortex (P < 0.001), as well as hippocampal CA3 (P = 0.017) and CA1 (P = 0.002) at 9 days after the trauma; however, cytoskeletal architecture was preserved as indicated by normal betaAPP- and MAP-2 staining. We present a unique, noninvasive rat model of mild closed head trauma with characteristics of human concussion injury, including brief loss of consciousness, cognitive impairment, and minor brain injury.
Collapse
Affiliation(s)
- Nils Henninger
- Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005; 105:229-66. [PMID: 15737406 PMCID: PMC2819430 DOI: 10.1016/j.pharmthera.2004.10.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury (central nervous system [CNS] insult), (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but they share a common molecular mechanism for producing brain damage-an increase in extracellular glutamate concentration that causes increased intracellular neuronal calcium, leading to neuronal injury and/or death. Neurons that survive the injury induced by glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0599, USA.
| | | | | |
Collapse
|
48
|
Világi I, Bárdos G, Dénes K, Farkas B, Friedrich P. Enhancement of synaptic strength in the somatosensory cortex following nerve injury does not parallel behavioural alterations. Brain Res Bull 2005; 64:463-9. [PMID: 15639541 DOI: 10.1016/j.brainresbull.2004.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 06/11/2004] [Accepted: 06/14/2004] [Indexed: 11/28/2022]
Abstract
Following infraorbital nerve transection, underlying mechanisms of the altered synaptic strength were studied in rat barrel cortex slice experiments. In addition to the in vitro electrophysiological studies, open-field tests were run to detect possible behavioural changes associated with cortical oversensitization. Enhanced NMDA receptor-mediated component of the evoked field response appeared in the barrel cortex after nerve injury. The alteration was transient, very distinct on the first day following injury, and almost returned to normal level by the end of the second week. Behavioural changes had not followed this time-course since long-lasting alterations were detected in the open-field test. These observations are in agreement with findings that showed biphasic regenerative processes following nerve injuries in other cortical areas.
Collapse
Affiliation(s)
- I Világi
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| | | | | | | | | |
Collapse
|
49
|
Farkas B, Tantos A, Schlett K, Világi I, Friedrich P. Ischemia-induced increase in long-term potentiation is warded off by specific calpain inhibitor PD150606. Brain Res 2004; 1024:150-8. [PMID: 15451377 DOI: 10.1016/j.brainres.2004.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2004] [Indexed: 01/08/2023]
Abstract
In the present study, the effect of specific, membrane-permeable calpain inhibitor, PD150606, was analysed on synaptic efficacy in in vitro brain slices experiments after ischemic insult of rats in vivo, and on cell viability in a glutamate excitotoxicity test in mouse cell culture. Bilateral common carotid artery ligation (BCCL) for 24 h markedly increased calpain activity and enhanced LTP induction in rat hippocampus, although the CA1 layer significantly shrank. The enhancement of LTP could be diminished by short-term application of PD150606 (40 microM) into the perfusion solution. Intracerebroventricular administration of PD150606 (100 microM) parallel with ischemic insult prevented LTP and effectively inhibited hippocampal calpain activity. Intracerebroventricularly applied PD150606 inhibited the CA1 layer shrinkage after common carotid ligation. High level of exogenous glutamate caused marked decrease of cell viability in mouse cerebellar granule cell cultures, which could be partly warded off by 20 microM PD150606. Our data witness that calpain action is intricately involved in the regulation of synaptic efficacy.
Collapse
Affiliation(s)
- Bence Farkas
- Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Pázmány P. sétány 1/C, Hungary
| | | | | | | | | |
Collapse
|
50
|
Jin C, Schachar R. Methylphenidate treatment of attention-deficit/hyperactivity disorder secondary to traumatic brain injury: a critical appraisal of treatment studies. CNS Spectr 2004; 9:217-26. [PMID: 14999162 DOI: 10.1017/s1092852900009019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Are stimulants effective in treating attention-deficit/hyperactivity disorder secondary to traumatic brain injury (ADHD/TBI)? The authors reviewed and examined the current knowledge on efficacy of stimulant treatment ADHD/TBI. METHOD A systematic review of the literature using a quality assessment scale to assess the quality of randomized clinical trials was undertaken. We identified all studies in which stimulants had been administered to individuals with ADHD/TBI. Information was extracted on study characteristics, interventions, and outcomes. A meta-analysis was not performed because of the limited number of studies with strict research design and the heterogeneity of outcome measures. Seven studies involving 118 subjects, 41 of whom were children and adolescents, were identified. RESULTS Of the seven identified studies, one was a chart review, one used a single-blind, placebo-controlled crossover design, and five were double-blind, placebo-controlled crossovers. These studies used >50 subjective and objective tests to measure behavioral and cognitive outcomes. Methylphenidate (MPH) effects on behavior (hyperactivity, impulsivity) were evident but were not as robust as those typically observed with MPH in primary ADHD. The effect of MPH on cognition was less apparent. More favorable outcome was associated with initiation of treatment soon after head injury, although this factor was not systematically studied, and trials with relatively long durations. Studies with negative MPH response reported neither improvement in behavioral nor cognitive symptoms. CONCLUSION There is only modest evidence to support the efficacy of MPH in the treatment of ADHD/TBI. While MPH might still be a promising treatment for ADHD/TBI, there is need for rigorous treatment outcome research among representative samples of ADHD/TBI individuals.
Collapse
Affiliation(s)
- Charles Jin
- Department of Psychiatry, North Shore University Hospital, Manhasset, New York, USA
| | | |
Collapse
|